1
|
Wang C, Liu Y, Chen R, Wang X, Wang Y, Wei J, Zhang K, Zhang C. Electrochemical biosensing of circulating microRNA-21 in cerebrospinal fluid of medulloblastoma patients through target-induced redox signal amplification. Mikrochim Acta 2022; 189:105. [DOI: 10.1007/s00604-022-05210-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/30/2022] [Indexed: 12/21/2022]
|
2
|
Bunda S, Zuccato JA, Voisin MR, Wang JZ, Nassiri F, Patil V, Mansouri S, Zadeh G. Liquid Biomarkers for Improved Diagnosis and Classification of CNS Tumors. Int J Mol Sci 2021; 22:4548. [PMID: 33925295 PMCID: PMC8123653 DOI: 10.3390/ijms22094548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
Liquid biopsy, as a non-invasive technique for cancer diagnosis, has emerged as a major step forward in conquering tumors. Current practice in diagnosis of central nervous system (CNS) tumors involves invasive acquisition of tumor biopsy upon detection of tumor on neuroimaging. Liquid biopsy enables non-invasive, rapid, precise and, in particular, real-time cancer detection, prognosis and treatment monitoring, especially for CNS tumors. This approach can also uncover the heterogeneity of these tumors and will likely replace tissue biopsy in the future. Key components of liquid biopsy mainly include circulating tumor cells (CTC), circulating tumor nucleic acids (ctDNA, miRNA) and exosomes and samples can be obtained from the cerebrospinal fluid, plasma and serum of patients with CNS malignancies. This review covers current progress in application of liquid biopsies for diagnosis and monitoring of CNS malignancies.
Collapse
Affiliation(s)
- Severa Bunda
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
| | - Jeffrey A. Zuccato
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Mathew R. Voisin
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Justin Z. Wang
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Farshad Nassiri
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Vikas Patil
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
| | - Sheila Mansouri
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
| | - Gelareh Zadeh
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
3
|
Saito K, Hattori K, Hidese S, Sasayama D, Miyakawa T, Matsumura R, Tatsumi M, Yokota Y, Ota M, Hori H, Kunugi H. Profiling of Cerebrospinal Fluid Lipids and Their Relationship with Plasma Lipids in Healthy Humans. Metabolites 2021; 11:metabo11050268. [PMID: 33923144 PMCID: PMC8146161 DOI: 10.3390/metabo11050268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
Lipidomics provides an overview of lipid profiles in biological systems. Although blood is commonly used for lipid profiling, cerebrospinal fluid (CSF) is more suitable for exploring lipid homeostasis in brain diseases. However, whether an individual’s background affects the CSF lipid profile remains unclear, and the association between CSF and plasma lipid profiles in heathy individuals has not yet been defined. Herein, lipidomics approaches were employed to analyze CSF and plasma samples obtained from 114 healthy Japanese subjects. Results showed that the global lipid profiles differed significantly between CSF and plasma, with only 13 of 114 lipids found to be significantly correlated between the two matrices. Additionally, the CSF total protein content was the primary factor associated with CSF lipids. In the CSF, the levels of major lipids, namely, phosphatidylcholines, sphingomyelins, and cholesterolesters, correlated with CSF total protein levels. These findings indicate that CSF lipidomics can be applied to explore changes in lipid homeostasis in patients with brain diseases.
Collapse
Affiliation(s)
- Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa 210-9501, Japan
- Correspondence: (K.S.); (H.K.); Tel.:+81-44-270-6628 (K.S.); +81-42-346-1714 (H.K.)
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Tomoko Miyakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Ryo Matsumura
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Megumi Tatsumi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Yuuki Yokota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
- Correspondence: (K.S.); (H.K.); Tel.:+81-44-270-6628 (K.S.); +81-42-346-1714 (H.K.)
| |
Collapse
|
4
|
Bruschi M, Petretto A, Cama A, Pavanello M, Bartolucci M, Morana G, Ramenghi LA, Garré ML, Ghiggeri GM, Panfoli I, Candiano G. Potential biomarkers of childhood brain tumor identified by proteomics of cerebrospinal fluid from extraventricular drainage (EVD). Sci Rep 2021; 11:1818. [PMID: 33469081 PMCID: PMC7815722 DOI: 10.1038/s41598-020-80647-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/24/2020] [Indexed: 11/10/2022] Open
Abstract
Brain tumors are the most common solid tumors in childhood. There is the need for biomarkers of residual disease, therapy response and recurrence. Cerebrospinal fluid (CSF) is a source of brain tumor biomarkers. We analyzed the proteome of waste CSF from extraventricular drainage (EVD) from 29 children bearing different brain tumors and 17 controls needing EVD insertion for unrelated causes. 1598 and 1526 proteins were identified by liquid chromatography-coupled tandem mass spectrometry proteomics in CSF control and brain tumor patients, respectively, 263 and 191 proteins being exclusive of either condition. Bioinformatic analysis revealed promising protein biomarkers for the discrimination between control and tumor (TATA-binding protein-associated factor 15 and S100 protein B). Moreover, Thymosin beta-4 (TMSB4X) and CD109, and 14.3.3 and HSP90 alpha could discriminate among other brain tumors and low-grade gliomas plus glyoneuronal tumors/pilocytic astrocytoma, or embryonal tumors/medulloblastoma. Biomarkers were validated by ELISA assay. Our method was able to distinguish among brain tumor vs non-tumor/hemorrhagic conditions (controls) and to differentiate two large classes of brain tumors. Further prospective studies may assess whether the biomarkers proposed by our discovery approach can be identified in other bodily fluids, therefore less invasively, and are useful to guide therapy and predict recurrences.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Armando Cama
- Department of Neurosurgery, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Pavanello
- Department of Neurosurgery, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Martina Bartolucci
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giovanni Morana
- Unit of Neuroradiology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Maria Luisa Garré
- Department of Neuroncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gian Marco Ghiggeri
- UO of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Isabella Panfoli
- Dipartimento di Farmacia (DIFAR), Università di Genova, V.le Benedetto XV, 3, 16132, Genoa, Italy.
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
5
|
Dong Y, Yuan Y, Fang Y, Zheng T, Du D, Gao D, Du J, Liu L, He Q. Effect of aquaporin 4 protein overexpression in nigrostriatal system on development of Parkinson's disease. Int J Neurosci 2020; 131:666-673. [PMID: 32259464 DOI: 10.1080/00207454.2020.1753727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTS Recent studies indicated that aquaporin 4 (AQP4), as the main water channel in the central nervous system (CNS), participated in the onset and progression of Parkinson's disease (PD). But how the AQP4 influenced the exacerbation of PD has not been described in detail. In this study, the effect of the AQP4 protein overexpression in nigrostriatal system that include substantia nigra (SN) and striatum (CPu) on the development of PD was investigated. METHODS Forty male Sprague Dawley rats were equally divided into two groups at random: PD group and control group, PD group undergoing surgery and receiving 6-hydroxydopamine (6-OHDA). Using MRI tracer-based method, extracellular space (ECS) diffusion parameters of nigrostriatal system for all rats were measured, including the clearance coefficient (k') and the half-life (t1/2). Immunohistochemistry of AQP4 was performed for 20 rats. RESULTS The area of dark-stained AQP4 immunoreactivity increased markedly in SN of PD rats, there were significant differences between two groups (SN: t = 5.809, p < 0.0001; CPu: t = 5.943, p < 0.0001). And the diffusion parameters were significantly greater in PD group than that of control group, including k' (SN: t = 5.519, p < 0.0001; CPu: t = 2.149, p = 0.045) and t1/2 (SN: t = 6.131, p < 0.0001; CPu: t = 6.708, p < 0.0001). There was a significant positive correlation between the AQP4 expression level and the k' values (SN: r = 0.827, p = 0.0031; CPu: r = 0.641, p = 0.0046), and a significant negative correlation between AQP4 and the t1/2 values (SN: r=-0.654, p = 0.0403; CPu: r=-0.664, p = 0.0362). CONCLUSIONS The results indicated that AQP4 expression was increased in nigrostriatal system of PD rats, therefore, the overexpression of AQP4 led to acceleration of the diffusion and drainage process of drugs in ECS, reduced the effect of drugs for the treatment of PD, inhibited the development of PD.
Collapse
Affiliation(s)
- Yanchao Dong
- Department of Interventional Therapy, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yi Yuan
- College of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Yuan Fang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Tao Zheng
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Dan Du
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Dawei Gao
- College of Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Juan Du
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Qingyuan He
- Department of Radiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Zheng L, Zhang Y, Hao S, Chen L, Sun Z, Yan C, Whitin JC, Jang T, Merchant M, McElhinney DB, Sylvester KG, Cohen HJ, Recht L, Yao X, Ling XB. A proteomic clock for malignant gliomas: The role of the environment in tumorigenesis at the presymptomatic stage. PLoS One 2019; 14:e0223558. [PMID: 31600288 PMCID: PMC6786640 DOI: 10.1371/journal.pone.0223558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/17/2019] [Indexed: 11/25/2022] Open
Abstract
Malignant gliomas remain incurable with a poor prognosis despite of aggressive treatment. We have been studying the development of brain tumors in a glioma rat model, where rats develop brain tumors after prenatal exposure to ethylnitrosourea (ENU), and there is a sizable interval between when the first pathological changes are noted and tumors become detectable with MRI. Our aim to define a molecular timeline through proteomic profiling of the cerebrospinal fluid (CSF) such that brain tumor commitment can be revealed earlier than at the presymptomatic stage. A comparative proteomic approach was applied to profile CSF collected serially either before, at and after the time MRI becomes positive. Elastic net (EN) based models were developed to infer the timeline of normal or tumor development respectively, mirroring a chronology of precisely timed, “clocked”, adaptations. These CSF changes were later quantified by longitudinal entropy analyses of the EN predictive metric. False discovery rates (FDR) were computed to control the expected proportion of the EN models that are due to multiple hypothesis testing. Our ENU rat brain tumor dating EN model indicated that protein content in CSF is programmed even before tumor MRI detection. The findings of the precisely timed CSF tumor microenvironment changes at presymptomatic stages, deviation from the normal development timeline, may provide the groundwork for the understanding of adaptation of the brain environment in tumorigenesis to devise effective brain tumor management strategies.
Collapse
Affiliation(s)
- Le Zheng
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, United States of America
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America
| | - Yan Zhang
- Department of Oncology, the First Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Shiying Hao
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, United States of America
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America
| | - Lin Chen
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zhen Sun
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chi Yan
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - John C. Whitin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Taichang Jang
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, California, United States of America
| | - Milton Merchant
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, California, United States of America
| | - Doff B. McElhinney
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, United States of America
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America
| | - Karl G. Sylvester
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Harvey J. Cohen
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lawrence Recht
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, California, United States of America
| | - Xiaoming Yao
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Xuefeng B. Ling
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Spreafico F, Bongarzone I, Pizzamiglio S, Magni R, Taverna E, De Bortoli M, Ciniselli CM, Barzanò E, Biassoni V, Luchini A, Liotta LA, Zhou W, Signore M, Verderio P, Massimino M. Proteomic analysis of cerebrospinal fluid from children with central nervous system tumors identifies candidate proteins relating to tumor metastatic spread. Oncotarget 2018; 8:46177-46190. [PMID: 28526811 PMCID: PMC5542258 DOI: 10.18632/oncotarget.17579] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Central nervous system (CNS) tumors are the most common solid tumors in childhood. Since the sensitivity of combined cerebrospinal fluid (CSF) cytology and radiological neuroimaging in detecting meningeal metastases remains relatively low, we sought to characterize the CSF proteome of patients with CSF tumors to identify biomarkers predictive of metastatic spread. CSF samples from 27 children with brain tumors and 13 controls (extra-CNS non-Hodgkin lymphoma) were processed using core-shell hydrogel nanoparticles, and analyzed with reverse-phase liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS). Candidate proteins were identified with Fisher's exact test and/or a univariate logistic regression model. Reverse phase protein array (RPPA), Western blot (WB), and ELISA were used in the training set and in an independent set of CFS samples (60 cases, 14 controls) to validate our discovery findings. Among the 558 non-redundant proteins identified by LC-MS/MS, 147 were missing from the CSF database at http://www.biosino.org. Fourteen of the 26 final top-candidate proteins were chosen for validation with WB, RPPA and ELISA methods. Six proteins (type 1 collagen, insulin-like growth factor binding protein 4, procollagen C-endopeptidase enhancer 1, glial cell-line derived neurotrophic factor receptor α2, inter-alpha-trypsin inhibitor heavy chain 4, neural proliferation and differentiation control protein-1) revealed the ability to discriminate metastatic cases from controls. Combining a unique dataset of CSFs from pediatric CNS tumors with a novel enabling nanotechnology led us to identify CSF proteins potentially related to metastatic status.
Collapse
Affiliation(s)
- Filippo Spreafico
- Pediatric Oncology Unit, Department of Hematology and Pediatric Hematology-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Italia Bongarzone
- Proteomics Laboratory, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pizzamiglio
- Unit of Medical Statistics, Biometry and Bioinformatics, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Elena Taverna
- Proteomics Laboratory, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maida De Bortoli
- Proteomics Laboratory, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara M Ciniselli
- Unit of Medical Statistics, Biometry and Bioinformatics, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Barzanò
- Pediatric Oncology Unit, Department of Hematology and Pediatric Hematology-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Biassoni
- Pediatric Oncology Unit, Department of Hematology and Pediatric Hematology-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Michele Signore
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Verderio
- Unit of Medical Statistics, Biometry and Bioinformatics, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Department of Hematology and Pediatric Hematology-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
8
|
Gahoi N, Malhotra D, Moiyadi A, Varma SG, Gandhi MN, Srivastava S. Multi-pronged proteomic analysis to study the glioma pathobiology using cerebrospinal fluid samples. Proteomics Clin Appl 2017; 12:e1700056. [PMID: 28679024 DOI: 10.1002/prca.201700056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/14/2017] [Accepted: 06/30/2017] [Indexed: 11/10/2022]
Abstract
PURPOSE Gliomas are one of the most aggressive and lethal brain tumors arising from neoplastic transformation of astrocytes and oligodendrocytes. A comprehensive quantitative analysis of proteome level differences in cerebrospinal fluid (CSF) across different grades of gliomas for a better understanding of glioma pathobiology is carried out. EXPERIMENTAL DESIGN Glioma patients are diagnosed by radiology and histochemistry-based analyses. Differential proteomic analysis of high (n = 12) and low (n = 5) grade gliomas, and control (n = 3) samples is performed by using two complementary quantitative proteomic approaches; 2D-DIGE and iTRAQ. Further, comparative analysis of three IDH wild-type and five IDH mutants is performed to identify the proteome level differences between these two sub-classes. RESULTS Level of several proteins including haptoglobin, transthyretin, osteopontin, vitronectin, complement factor H and different classes of immunoglobulins are found to be considerably increased in CSF of higher grades of gliomas. Subsequent bioinformatics analysis indicated that many of the dysregulated CSF proteins are associated with metabolism of lipids and lipoproteins, complement and coagulation cascades and extracellular matrix remodeling in gliomas. Intriguingly, CSF of glioma patients with IDH mutations exhibite increased levels of multiple proteins involved in response to oxidative stress. CONCLUSION AND CLINICAL RELEVANCE To the best of our knowledge, this is the foremost proteome level investigation describing comprehensive proteome profiles of different grades of gliomas using proximal fluid (CSF); and thereby providing insights into disease pathobiology, which aided in identification of grade and sub-type specific alterations. Moreover, if validated in larger clinical cohorts, a panel of differentially abundant CSF proteins may serve as potential disease monitoring and prognostic markers for gliomas.
Collapse
Affiliation(s)
- Nikita Gahoi
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.,Centre for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Darpan Malhotra
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.,Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | | | - Santosh G Varma
- Dept. of Biochemistry, Grant Govt. Medical College and Sir JJ Group of Hospitals, Byculla, Mumbai, India.,BJ Medical College & Sassoon Hospital, Jai Prakash Narayan Road, Near Pune Railway Station, Pune, Maharashtra, India
| | - Mayuri N Gandhi
- Centre for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sanjeeva Srivastava
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
9
|
Whitin JC, Yu TTS, Ling XB, Kanegaye JT, Burns JC, Cohen HJ. A Novel Truncated Form of Serum Amyloid A in Kawasaki Disease. PLoS One 2016; 11:e0157024. [PMID: 27271757 PMCID: PMC4894573 DOI: 10.1371/journal.pone.0157024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022] Open
Abstract
Background Kawasaki disease (KD) is an acute vasculitis in children that can cause coronary artery abnormalities. Its diagnosis is challenging, and many cytokines, chemokines, acute phase reactants, and growth factors have failed evaluation as specific biomarkers to distinguish KD from other febrile illnesses. We performed protein profiling, comparing plasma from children with KD with febrile control (FC) subjects to determine if there were specific proteins or peptides that could distinguish the two clinical states. Materials and Methods Plasma from three independent cohorts from the blood of 68 KD and 61 FC subjects was fractionated by anion exchange chromatography, followed by surface-enhanced laser desorption ionization (SELDI) mass spectrometry of the fractions. The mass spectra of KD and FC plasma samples were analyzed for peaks that were statistically significantly different. Results A mass spectrometry peak with a mass of 7,860 Da had high intensity in acute KD subjects compared to subacute KD (p = 0.0003) and FC (p = 7.9 x 10−10) subjects. We identified this peak as a novel truncated form of serum amyloid A with N-terminal at Lys-34 of the circulating form and validated its identity using a hybrid mass spectrum immunoassay technique. The truncated form of serum amyloid A was present in plasma of KD subjects when blood was collected in tubes containing protease inhibitors. This peak disappeared when the patients were examined after their symptoms resolved. Intensities of this peptide did not correlate with KD-associated laboratory values or with other mass spectrum peaks from the plasma of these KD subjects. Conclusions Using SELDI mass spectrometry, we have discovered a novel truncated form of serum amyloid A that is elevated in the plasma of KD when compared with FC subjects. Future studies will evaluate its relevance as a diagnostic biomarker and its potential role in the pathophysiology of KD.
Collapse
Affiliation(s)
- John C. Whitin
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
| | - Tom To-Sang Yu
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
| | - Xuefeng Bruce Ling
- Department of Surgery, Stanford University, Stanford, California, United States of America
| | - John T. Kanegaye
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America, and Rady Children’s Hospital–San Diego, San Diego, California, United States of America
| | - Jane C. Burns
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America, and Rady Children’s Hospital–San Diego, San Diego, California, United States of America
| | - Harvey J. Cohen
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Hendricks BK, Cohen-Gadol AA, Miller JC. Novel delivery methods bypassing the blood-brain and blood-tumor barriers. Neurosurg Focus 2015; 38:E10. [PMID: 25727219 DOI: 10.3171/2015.1.focus14767] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor and carries a grave prognosis. Despite years of research investigating potentially new therapies for GBM, the median survival rate of individuals with this disease has remained fairly stagnant. Delivery of drugs to the tumor site is hampered by various barriers posed by the GBM pathological process and by the complex physiology of the blood-brain and blood-cerebrospinal fluid barriers. These anatomical and physiological barriers serve as a natural protection for the brain and preserve brain homeostasis, but they also have significantly limited the reach of intraparenchymal treatments in patients with GBM. In this article, the authors review the functional capabilities of the physical and physiological barriers that impede chemotherapy for GBM, with a specific focus on the pathological alterations of the blood-brain barrier (BBB) in this disease. They also provide an overview of current and future methods for circumventing these barriers in therapeutic interventions. Although ongoing research has yielded some potential options for future GBM therapies, delivery of chemotherapy medications across the BBB remains elusive and has limited the efficacy of these medications.
Collapse
Affiliation(s)
- Benjamin K Hendricks
- Goodman Campbell Brain and Spine, Indiana University Department of Neurological Surgery; and
| | | | | |
Collapse
|
11
|
Tan Z, Liu R, Zheng L, Hao S, Fu C, Li Z, Deng X, Jang T, Merchant M, Whitin JC, Guo M, Cohen HJ, Recht L, Ling XB. Cerebrospinal fluid protein dynamic driver network: At the crossroads of brain tumorigenesis. Methods 2015; 83:36-43. [PMID: 25982164 DOI: 10.1016/j.ymeth.2015.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 11/25/2022] Open
Abstract
To get a better understanding of the ongoing in situ environmental changes preceding the brain tumorigenesis, we assessed cerebrospinal fluid (CSF) proteome profile changes in a glioma rat model in which brain tumor invariably developed after a single in utero exposure to the neurocarcinogen ethylnitrosourea (ENU). Computationally, the CSF proteome profile dynamics during the tumorigenesis can be modeled as non-smooth or even abrupt state changes. Such brain tumor environment transition analysis, correlating the CSF composition changes with the development of early cellular hyperplasia, can reveal the pathogenesis process at network level during a time before the image detection of the tumors. In our controlled rat model study, matched ENU- and saline-exposed rats' CSF proteomics changes were quantified at approximately 30, 60, 90, 120, 150 days of age (P30, P60, P90, P120, P150). We applied our transition-based network entropy (TNE) method to compute the CSF proteome changes in the ENU rat model and test the hypothesis of the critical transition state prior to impending hyperplasia. Our analysis identified a dynamic driver network (DDN) of CSF proteins related with the emerging tumorigenesis progressing from the non-hyperplasia state. The DDN associated leading network CSF proteins can allow the early detection of such dynamics before the catastrophic shift to the clear clinical landmarks in gliomas. Future characterization of the critical transition state (P60) during the brain tumor progression may reveal the underlying pathophysiology to device novel therapeutics preventing tumor formation. More detailed method and information are accessible through our website at http://translationalmedicine.stanford.edu.
Collapse
Affiliation(s)
- Zhou Tan
- Hangzhou Normal University, Zhejiang 311121, China; Stanford University, Stanford, CA 94305, USA
| | - Rui Liu
- Stanford University, Stanford, CA 94305, USA; South China University of Technology, Guangzhou 510640, China
| | - Le Zheng
- Stanford University, Stanford, CA 94305, USA; Tsinghua University, Beijing 100084, China
| | - Shiying Hao
- Stanford University, Stanford, CA 94305, USA
| | - Changlin Fu
- Stanford University, Stanford, CA 94305, USA; Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Li
- Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | - Minyi Guo
- Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | |
Collapse
|
12
|
Shen F, Zhang Y, Yao Y, Hua W, Zhang HS, Wu JS, Zhong P, Zhou LF. Proteomic analysis of cerebrospinal fluid: toward the identification of biomarkers for gliomas. Neurosurg Rev 2014; 37:367-80; discussion 380. [PMID: 24781189 DOI: 10.1007/s10143-014-0539-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/23/2013] [Accepted: 01/19/2014] [Indexed: 11/29/2022]
Abstract
Gliomas are the most common primary brain tumors in adults and, despite advances in the understandings of glioma pathogenesis in the genetic era, they are still ineradicable, justifying the need to develop more reliable diagnostic and prognostic biomarkers for this malignancy. Because changes in cerebrospinal fluid (CSF) are suggested to be capable of sensitively reflecting pathological processes, e.g., neoplastic conditions, in the central nervous system, CSF has been deemed a valuable source for potential biomarkers screening in this era of proteomics. This systematic review focused on the proteomic analysis of glioma CSF that has been published to date and identified a total of 19 differentially expressed proteins. Further functional and protein-protein interaction assessments were performed by using Protein Analysis Through Evolutionary Relationships (PANTHER) website and Ingenuity Pathway Analysis (IPA) software, which revealed several important protein networks (e.g., IL-6/STAT-3) and four novel focus proteins (IL-6, galanin (GAL), HSPA5, and WNT4) that might be involved in glioma pathogenesis. The concentrations of these focus proteins were subsequently determined by enzyme-linked immunosorbent assay (ELISA) in an independent set of CSF and tumor cyst fluid (CF) samples. Specifically, glioblastoma (GBM) CF had significantly lower GAL, HSPA5, and WNT4 levels than CSF from different grades of glioma. In contrast, IL-6 level was significantly higher in GBM CF when compared with CSF and, among different CSF groups, was highest in GBM CSF. Therefore, these candidate protein biomarkers, identified from both the literatures and in silico analysis, may have potentials in clinical diagnosis, prognosis evaluation, treatment response monitoring, and novel therapeutic targets identification for patients with glioma.
Collapse
Affiliation(s)
- Fang Shen
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wurumuqi Road Middle, Shanghai, 200040, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Samuel N, Remke M, Rutka JT, Raught B, Malkin D. Proteomic analyses of CSF aimed at biomarker development for pediatric brain tumors. J Neurooncol 2014; 118:225-238. [PMID: 24771250 DOI: 10.1007/s11060-014-1432-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/31/2014] [Indexed: 11/29/2022]
Abstract
Primary brain tumors cumulatively represent the most common solid tumors of childhood and are the leading cause of cancer related death in this age group. Traditionally, molecular findings and histological analyses from biopsies of resected tumor tissue have been used for diagnosis and classification of these diseases. However, there is a dearth of useful biomarkers that have been validated and clinically implemented for pediatric brain tumors. Notably, diseases of the central nervous system (CNS) can be assayed through analysis of cerebrospinal fluid (CSF) and as such, CSF represents an appropriate medium to obtain liquid biopsies that can be informative for diagnosis, disease classification and risk stratification. Proteomic profiling of pediatric CNS malignancies has identified putative protein markers of disease, yet few effective biomarkers have been clinically validated or implemented. Advances in protein quantification techniques have made it possible to conduct such investigations rapidly and accurately through proteome-wide analyses. This review summarizes the current literature on proteomics in pediatric neuro-oncology and discusses the implications for clinical applications of proteomics research. We also outline strategies for translating effective CSF proteomic studies into clinical applications to optimize the care of this patient population.
Collapse
Affiliation(s)
- Nardin Samuel
- MD/PhD Program, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,The Hospital for Sick Children, Toronto, ON, Canada
| | - Marc Remke
- The Hospital for Sick Children, Toronto, ON, Canada
| | - James T Rutka
- The Hospital for Sick Children, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - David Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Pediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Jha MK, Suk K. Glia-based biomarkers and their functional role in the CNS. Expert Rev Proteomics 2014; 10:43-63. [DOI: 10.1586/epr.12.70] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Whitin JC, Rangan S, Cohen HJ. Identifying technical aliases in SELDI mass spectra of complex mixtures of proteins. BMC Res Notes 2013; 6:358. [PMID: 24010718 PMCID: PMC3847147 DOI: 10.1186/1756-0500-6-358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 09/04/2013] [Indexed: 01/05/2023] Open
Abstract
Background Biomarker discovery datasets created using mass spectrum protein profiling of complex mixtures of proteins contain many peaks that represent the same protein with different charge states. Correlated variables such as these can confound the statistical analyses of proteomic data. Previously we developed an algorithm that clustered mass spectrum peaks that were biologically or technically correlated. Here we demonstrate an algorithm that clusters correlated technical aliases only. Results In this paper, we propose a preprocessing algorithm that can be used for grouping technical aliases in mass spectrometry protein profiling data. The stringency of the variance allowed for clustering is customizable, thereby affecting the number of peaks that are clustered. Subsequent analysis of the clusters, instead of individual peaks, helps reduce difficulties associated with technically-correlated data, and can aid more efficient biomarker identification. Conclusions This software can be used to pre-process and thereby decrease the complexity of protein profiling proteomics data, thus simplifying the subsequent analysis of biomarkers by decreasing the number of tests. The software is also a practical tool for identifying which features to investigate further by purification, identification and confirmation.
Collapse
Affiliation(s)
- John C Whitin
- Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA USA.
| | | | | |
Collapse
|