1
|
Boismal F, Peltier S, Ly Ka So S, Chevreux G, Blondel L, Serror K, Setterblab N, Zuelgaray E, Boccara D, Mimoun M, Guere C, Benssussan A, Dorr M, Beauchef G, Vie K, Michel L. Proteomic and secretomic comparison of young and aged dermal fibroblasts highlights cytoskeleton as a key component during aging. Aging (Albany NY) 2024; 16:11776-11795. [PMID: 39197170 PMCID: PMC11386920 DOI: 10.18632/aging.206055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/29/2024] [Indexed: 08/30/2024]
Abstract
Crucial for skin homeostasis, synthesis and degradation of extracellular matrix components are orchestrated by dermal fibroblasts. During aging, alterations of component expression, such as collagens and enzymes, lead to reduction of the mechanical cutaneous tension and defects of skin wound healing. The aim of this study was to better understand the molecular alterations underwent by fibroblasts during aging by comparing secretomic and proteomic signatures of fibroblasts from young (<35years) and aged (>55years) skin donors, in quiescence or TGF-stimulated conditions, using HLPC/MS. The comparison of the secretome from young and aged fibroblasts revealed that 16 proteins in resting condition, and 11 proteins after a 24h-lasting TGF-β1-treatment, were expressed in significant different ways between the two cell groups (fold change>2, p-value <0.05), with a 77% decrease in the number of secreted proteins in aged cells. Proteome comparison between young and aged fibroblasts identified a significant change of 63 proteins in resting condition, and 73 proteins in TGF-β1-stimulated condition, with a 67% increase in the number of proteins in aged fibroblasts. The majority of the differentially-expressed molecules belongs to the cytoskeleton-associated proteins and aging was characterized by an increase in Coronin 1C (CORO1C), and Filamin B (FLNB) expression in fibroblasts together with a decrease in Cofilin (CFL1), and Actin alpha cardiac muscle 1 (ACTC1) detection in aged cells, these proteins being involved in actin-filament polymerization and sharing co-activity in cell motility. Our present data reinforce knowledge about an age-related alteration in the synthesis of major proteins linked to the migratory and contractile functions of dermal human fibroblasts.
Collapse
Affiliation(s)
- Françoise Boismal
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
| | - Sandy Peltier
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
| | - Sophie Ly Ka So
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
| | | | - Loïse Blondel
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
| | - Kévin Serror
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | | | | | - David Boccara
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | - Maurice Mimoun
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | | | - Armand Benssussan
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
| | | | | | | | - Laurence Michel
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
- Dermatology Department, Saint-Louis Hospital, Paris, France
| |
Collapse
|
2
|
Rahman E, Rao P, Philipp-Dormston W, Webb WR, Garcia PE, Ioannidis S, Kefalas N, Kajaia A, Friederich L, Yu N, Wang K, Parikh A, Almeida AR, Carruthers JD, Carruthers A, Mosahebi A, Wu W, Goodman G. Intradermal Botulinum Toxin A on Skin Quality and Facial Rejuvenation: A Systematic Review and Meta-analysis. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6084. [PMID: 39185380 PMCID: PMC11343530 DOI: 10.1097/gox.0000000000006084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/21/2024] [Indexed: 08/27/2024]
Abstract
Background Botulinum toxin A (BTxA) has gained popularity as a nonsurgical aesthetic treatment for skin rejuvenation. However, previous studies on intradermal BTxA have shown inconsistent results. This systematic review and meta-analysis with trial sequential analysis aimed to assess the efficacy and safety of intradermal BTxA for facial rejuvenation. Methods Following PRISMA guidelines, a comprehensive search was conducted in various databases from January 2008 to March 2023. Outcome measures included sebum production, pore size, skin hydration, skin texture, erythema index, facial wrinkles, and facelift. Eligible studies included human-based clinical trials and prospective cohort studies published in English, focusing on healthy populations requiring facial rejuvenation. Two authors independently screened the titles and abstracts, followed by a full-text review to determine study eligibility. Data extraction and quality assessment were performed by two authors using predefined criteria. Results Ten studies met the inclusion criteria, including five randomized controlled trials and five prospective cohort studies with 153 participants. Studies revealed positive effects of intradermal BTxA on various outcome measures related to facial rejuvenation. These effects included improvements in sebum production, pore size, erythema index, facial wrinkles, skin texture and elasticity, and overall facelift but not skin hydration. All failed to reach the required information size in the trial sequential analysis. Conclusions Findings suggest positive outcomes in multiple attributes of skin quality and facial rejuvenation. However, more high-quality research is needed to establish definitive conclusions. These findings contribute to the evidence base for nonsurgical aesthetic treatments, emphasizing the importance of ongoing research in this field.
Collapse
Affiliation(s)
- Eqram Rahman
- From the Department of Plastic and Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
- Research and Innovation Hub, Innovation Aesthetics, London, United Kingdom
| | | | | | | | | | | | - Nicola Kefalas
- Private Plastic, Reconstructive and Aesthetic Surgery, Turin, Italy
| | - Albina Kajaia
- Clinic of Plastic Surgery and Dermatology, Tbilisi, Georgia
| | | | - Nanze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Keming Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Beijing, China
| | | | - Ada R.T. Almeida
- Dermatologic Clinic, Hospital do Servidor Público Municipal de São Paulo, São Paulo, Brazil
| | - Jean D.A. Carruthers
- Department of Ophthalmology, University of British Columbia, Vancouver, BC, Canada
| | - Alastair Carruthers
- Department of Dermatology, University of British Columbia, Vancouver, BC, Canada
| | - Ash Mosahebi
- From the Department of Plastic and Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
- University College London, London, UK
| | - Woffles Wu
- Camden Medical Centre, Woffles Wu Aesthetic Surgery and Laser Centre, Singapore
| | - Greg Goodman
- University College London, London, UK
- Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Zouboulis CC, Dixon AJ, Steinman HK, Sladden M, Kyrgidis A. Age-associated metastatic potential of melanoma in lymph nodes: A preliminary gene association study. J Eur Acad Dermatol Venereol 2024; 38:e701-e707. [PMID: 38348914 DOI: 10.1111/jdv.19850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/23/2024] [Indexed: 07/26/2024]
Affiliation(s)
- C C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - A J Dixon
- Australasian College of Cutaneous Oncology, Melbourne, Victoria, Australia
| | - H K Steinman
- Campbell University, Buies Creek, North Carolina, USA
| | - M Sladden
- University of Tasmania, Launceston, Tasmania, Australia
| | - A Kyrgidis
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
4
|
Ogamino S, Yamamichi M, Sato K, Ishitani T. Dynamics of Wnt/β-catenin reporter activity throughout whole life in a naturally short-lived vertebrate. NPJ AGING 2024; 10:23. [PMID: 38684674 PMCID: PMC11059364 DOI: 10.1038/s41514-024-00149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Wnt/β-catenin signaling plays a major role in regulation of embryogenesis, organogenesis, and adult tissue homeostasis and regeneration. However, the roles played by Wnt/β-catenin and the spatiotemporal regulation of its activity throughout life, including during aging, are not fully understood. To address these issues, we introduced a Wnt/β-catenin signaling sensitive reporter into African turquoise killifish (Nothobranchius furzeri), a naturally ultra-short-lived fish that allows for the analysis of its whole life within a short period of time. Using this reporter killifish, we unraveled the previously unidentified dynamics of Wnt/β-catenin signaling during development and aging. Using the reporter strain, we detected Wnt/β-catenin activity in actively developing tissues as reported in previous reports, but also observed activation and attenuation of Wnt/β-catenin activity during embryonic reaggregation and diapause, respectively. During the aging process, the reporter was activated in the choroidal layer and liver, but its expression decreased in the kidneys. In addition, the reporter also revealed that aging disrupts the spatial regulation and intensity control of Wnt/β-catenin activity seen during fin regeneration, which interferes with precise regeneration. Thus, the employed reporter killifish is a highly useful model for investigating the dynamics of Wnt/β-catenin signaling during both the developmental and aging process.
Collapse
Affiliation(s)
- Shohei Ogamino
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Moeko Yamamichi
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ken Sato
- Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Wang Z, Wu L, Gerasimenko M, Gilliland T, Gunzler SA, Donadio V, Liguori R, Xu B, Zou WQ. Seeding Activity of Skin Misfolded Tau as a Biomarker for Tauopathies. RESEARCH SQUARE 2024:rs.3.rs-3968879. [PMID: 38496453 PMCID: PMC10942562 DOI: 10.21203/rs.3.rs-3968879/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Tauopathies are a group of age-related neurodegenerative diseases characterized by the accumulation of pathologically phosphorylated tau protein in the brain, leading to prion-like propagation and aggregation. They include Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Currently, reliable diagnostic biomarkers that directly reflect the capability of propagation and spreading of misfolded tau aggregates in peripheral tissues and body fluids are lacking. Methods We utilized the seed-amplification assay (SAA) employing ultrasensitive real-time quaking-induced conversion (RT-QuIC) to assess the prion-like seeding activity of pathological tau in the skin of cadavers with neuropathologically confirmed tauopathies, including AD, PSP, CBD, and PiD, compared to normal controls. Results We found that the skin prion-SAA demonstrated a significantly higher sensitivity (75-80%) and specificity (95-100%) for detecting tauopathy, depending on the tau substrates used. Moreover, increased tau-seeding activity was also observed in biopsy skin samples from living AD and PSP patients examined. Analysis of the end products of skin-tau SAA confirmed that the increased seeding activity was accompanied by the formation of tau aggregates with different physicochemical properties related to two different tau substrates used. Conclusions Overall, our study provides proof-of-concept that the skin tau-SAA can differentiate tauopathies from normal controls, suggesting that the seeding activity of misfolded tau in the skin could serve as a diagnostic biomarker for tauopathies.
Collapse
Affiliation(s)
- Zerui Wang
- Case Western Reserve University School of Medicine
| | - Ling Wu
- North Carolina Central University
| | | | | | - Steven A Gunzler
- University Hospitals Cleveland Medical Center: UH Cleveland Medical Center
| | - Vincenzo Donadio
- IRCCS Institute of Neurological Sciences of Bolgna: IRCCS Istituto Delle Scienze Neurologiche di Bologna
| | - Rocco Liguori
- IRCCS Institute of Neurological Sciences of Bologna: IRCCS Istituto Delle Scienze Neurologiche di Bologna
| | - Bin Xu
- North Carolina Central University
| | - Wen-Quan Zou
- First Affiliated Hospital of Nanchang University
| |
Collapse
|
6
|
Raja E, Clarin MTRDC, Yanagisawa H. Matricellular Proteins in the Homeostasis, Regeneration, and Aging of Skin. Int J Mol Sci 2023; 24:14274. [PMID: 37762584 PMCID: PMC10531864 DOI: 10.3390/ijms241814274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Matricellular proteins are secreted extracellular proteins that bear no primary structural functions but play crucial roles in tissue remodeling during development, homeostasis, and aging. Despite their low expression after birth, matricellular proteins within skin compartments support the structural function of many extracellular matrix proteins, such as collagens. In this review, we summarize the function of matricellular proteins in skin stem cell niches that influence stem cells' fate and self-renewal ability. In the epidermal stem cell niche, fibulin 7 promotes epidermal stem cells' heterogeneity and fitness into old age, and the transforming growth factor-β-induced protein ig-h3 (TGFBI)-enhances epidermal stem cell growth and wound healing. In the hair follicle stem cell niche, matricellular proteins such as periostin, tenascin C, SPARC, fibulin 1, CCN2, and R-Spondin 2 and 3 modulate stem cell activity during the hair cycle and may stabilize arrector pili muscle attachment to the hair follicle during piloerections (goosebumps). In skin wound healing, matricellular proteins are upregulated, and their functions have been examined in various gain-and-loss-of-function studies. However, much remains unknown concerning whether these proteins modulate skin stem cell behavior, plasticity, or cell-cell communications during wound healing and aging, leaving a new avenue for future studies.
Collapse
Affiliation(s)
- Erna Raja
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| | - Maria Thea Rane Dela Cruz Clarin
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
- Ph.D. Program in Humanics, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| |
Collapse
|
7
|
D’Arino A, Caputo S, Eibenschutz L, Piemonte P, Buccini P, Frascione P, Bellei B. Skin Cancer Microenvironment: What We Can Learn from Skin Aging? Int J Mol Sci 2023; 24:14043. [PMID: 37762344 PMCID: PMC10531546 DOI: 10.3390/ijms241814043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is a natural intrinsic process associated with the loss of fibrous tissue, a slower cell turnover, and a reduction in immune system competence. In the skin, the continuous exposition of environmental factors superimposes extrinsic damage, mainly due to ultraviolet radiation causing photoaging. Although not usually considered a pathogenic event, photoaging affects cutaneous biology, increasing the risk of skin carcinogenesis. At the cellular level, aging is typified by the rise of senescence cells a condition characterized by reduced or absent capacity to proliferate and aberrant hyper-secretory activity. Senescence has a double-edged sword in cancer biology given that senescence prevents the uncontrolled proliferation of damaged cells and favors their clearance by paracrine secretion. Nevertheless, the cumulative insults and the poor clearance of injured cells in the elderly increase cancer incidence. However, there are not conclusive data proving that aged skin represents a permissive milieu for tumor onset. On the other hand, tumor cells are capable of activating resident fibroblasts onto a pro-tumorigenic phenotype resembling those of senescent fibroblasts suggesting that aged fibroblasts might facilitate cancer progression. This review discusses changes that occur during aging that can prime neoplasm or increase the aggressiveness of melanoma and non-melanoma skin cancer.
Collapse
Affiliation(s)
- Andrea D’Arino
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Laura Eibenschutz
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Paolo Piemonte
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Pierluigi Buccini
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Pasquale Frascione
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| |
Collapse
|
8
|
Rocha S, Ratés SG, Moswete T, Kalleberg K, Villa A, Harcup JP, Greenfield SA. A novel peptide 'T14' reflects age and photo-aging in human skin. Aging (Albany NY) 2023; 15:5279-5289. [PMID: 37382595 PMCID: PMC10333063 DOI: 10.18632/aging.204844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
T14 is a 14mer peptide derived from the C-terminus of acetylcholinesterase (AChE). Once cleaved, it is independently bioactive of the parent molecule and enhances calcium influx in different cell types, in a range of scenarios: it binds to an allosteric site selectively on the alpha-7 receptor, where it modulates calcium influx and is thus a potential trophic agent, as already reported in a range of normal developmental scenarios. However, if inappropriately activated, this erstwhile beneficial effect converts to a toxic one, resulting in pathologies as disparate as Alzheimer's and various metastatic cancers. Given that epidermal keratinocyte cells have the same ectodermal origin as brain cells, as well as expressing AChE and the alpha-7 receptor, we have explored whether T14 plays a comparable role. Here we report that the T14 immunoreactivity is detectable in human keratinocytes with levels inversely related to age: this decrease is even more apparent with chronic photo-exposure and thus accelerated skin aging. We conclude that T14, an agent promoting cell growth and renewal in other parts of the body, also operates in skin, Moreover, monitoring of keratinocyte T14 levels might offer further insights into the now well reported link between degenerative diseases and epidermal cell profile.
Collapse
Affiliation(s)
- Sheila Rocha
- Unilever Research and Development, Trumbull, CT 06611, USA
| | - Sara Garcia Ratés
- Neuro-Bio Ltd, Culham Science Center, Abingdon, Oxfordshire OX14 3DB, UK
| | - Tumisang Moswete
- Neuro-Bio Ltd, Culham Science Center, Abingdon, Oxfordshire OX14 3DB, UK
| | | | - Anna Villa
- Unilever Research and Development, Trumbull, CT 06611, USA
| | | | | |
Collapse
|
9
|
Jay Sarkar T, Hermsmeier M, L. Ross J, Scott Herron G. Genetic and Epigenetic Influences on Cutaneous Cellular Senescence. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Skin is the largest human organ system, and its protective function is critical to survival. The epithelial, dermal, and subcutaneous compartments are heterogeneous mixtures of cell types, yet they all display age-related skin dysfunction through the accumulation of an altered phenotypic cellular state called senescence. Cellular senescence is triggered by complex and dynamic genetic and epigenetic processes. A senescence steady state is achieved in different cell types under various and overlapping conditions of chronological age, toxic injury, oxidative stress, replicative exhaustion, DNA damage, metabolic dysfunction, and chromosomal structural changes. These inputs lead to outputs of cell-cycle withdrawal and the appearance of a senescence-associated secretory phenotype, both of which accumulate as tissue pathology observed clinically in aged skin. This review details the influence of genetic and epigenetic factors that converge on normal cutaneous cellular processes to create the senescent state, thereby dictating the response of the skin to the forces of both intrinsic and extrinsic aging. From this work, it is clear that no single biomarker or process leads to senescence, but that it is a convergence of factors resulting in an overt aging phenotype.
Collapse
|
10
|
Lee A, Geoghegan L, Nolan G, Cooper K, Super J, Pearse M, Naique S, Hettiaratchy S, Jain A. Open tibia/fibula in the elderly: A retrospective cohort study. JPRAS Open 2022; 31:1-9. [PMID: 34805472 PMCID: PMC8585579 DOI: 10.1016/j.jpra.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of open tibia/fibula fractures in the elderly is increasing, but current national guidelines focus on the aggressive treatment of high-energy injuries in younger patients. There is conflicting evidence regarding whether older age affects treatment provision and outcomes in open fractures. The aim of this study was to determine if elderly patients are sustaining a different injury to younger patients and how their treatment and outcomes differ. This may have implications for future guidelines and verify their application in the elderly. In this retrospective single centre cohort study (December 2015-July 2018), we compared the injury characteristics, operative management and outcomes of elderly (≥65 years) and younger (18-65 years) patients with open tibia/fibula fractures. An extended cohort examined free flap reconstruction. In total, 157 patients were included. High-energy injuries were commoner in younger patients (88% vs 37%; p<0.001). Most were Gustilo-Anderson IIIb in both age groups. Elderly patients waited longer until debridement (21:19 vs 19:00 h) and had longer inpatient stays (23 vs 15 days). There was no difference in time to antibiotics, operative approach or post-operative complications. Despite the low-energy nature of elderly patients' injuries, the severity of soft tissue insult was equivalent to younger patients with high-energy injuries. Our data suggest that age and co-morbidities should not prohibit lower limb reconstruction. The current application of generic guidelines appears suitable in the elderly, particularly in the acute management. We suggest current management pathways and targets be reviewed to reflect the greater need for peri-operative optimisation and rehabilitation in elderly patients.
Collapse
Affiliation(s)
- Alice Lee
- Department of Plastic and Reconstructive Surgery, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Luke Geoghegan
- Department of Plastic and Reconstructive Surgery, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Grant Nolan
- Department of Plastic and Reconstructive Surgery, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Kerri Cooper
- Department of Plastic and Reconstructive Surgery, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Jonathan Super
- Department of Plastic and Reconstructive Surgery, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Michael Pearse
- Department of Orthopaedic Surgery, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Satyajit Naique
- Department of Orthopaedic Surgery, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Shehan Hettiaratchy
- Department of Plastic and Reconstructive Surgery, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Abhilash Jain
- Department of Plastic and Reconstructive Surgery, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
11
|
Sagerfors M, Jakobsson H, Thórdardóttir Á, Wretenberg P, Möller M. Distal radius fractures in the superelderly: an observational study of 8486 cases from the Swedish fracture register. BMC Geriatr 2022; 22:140. [PMID: 35183121 PMCID: PMC8857784 DOI: 10.1186/s12877-022-02825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background The distal radius fracture (DRF) is the most common fracture in adults. With an ageing population, the number of wrist fractures in the superelderly (≥ 80 years) is expected to rise. Optimal treatment for displaced DRFs remains controversial, especially in the superelderly group. In addition, basic knowledge of the outcome after a DRF in this heterogenic group is lacking. The aim of this study was to study injury characteristics, treatment and outcome of DRFs in superelderly patients using data from a large national register. Methods We used prospectively collected data from the Swedish Fracture Register. All distal radius fractures registered between April 2012 and December 2018 in patients ≥ 80 years of age were included. Data on epidemiology, fracture type, trauma mechanism and treatment are registered by the physician treating the patient. Patients are also sent a subjective outcome questionnaire including EQ-5D, EQ-VAS and Short Musculoskeletal Function Assessment questionnaire (SMFA-score) at the time of injury and after 12 months. The 12-month questionnaire was sent to those who had completed the questionnaire at the time of injury. A Mann–Whitney U-test was used to assess differences between treatment methods. Results Mean age for this population was 86 years (80–105 years), a majority of the patients were female (86.7%). The dominating injury mechanism was a simple fall (74.6%) in the patient’s residence. The majority of fractures were AO type A (70%) followed by AO type C (20.9%) and type B (8.6%). The incidence of open fractures was significantly higher in females (2.6%) compared to males (1.5%). A majority of the fractures were treated with a cast (87.5%) with volar locking plate as the second most common treatment method (6.6%). Patient-reported outcome measures (PROMs) EQ-5D, EQ-VAS and the Arm Hand Function Index of the SMFA-score deteriorated somewhat one year after injury compared to pre-injury. PROMs did not correlate to treatment with cast or a volar plate. Conclusions This nationwide register study provides detailed data on DRFs in the superelderly regarding epidemiology, treatment and self-reported outcome. A good self-reported outcome is possible, but many patients do not recover completely. PROMs did not correlate to type of treatment. The frequency of open fractures was significantly higher in females. The reason for this is unclear but different skin thickness in older males versus females may be one explanation.
Collapse
Affiliation(s)
- Marcus Sagerfors
- Department of Orthopedics and Hand Surgery, Faculty of Medicine and Health, Örebro University, 70182, Örebro, SE, Sweden.
| | - Hugo Jakobsson
- Department of Orthopedics and Hand Surgery, Faculty of Medicine and Health, Örebro University, 70182, Örebro, SE, Sweden
| | - Ásgerdur Thórdardóttir
- Department of Orthopedics and Hand Surgery, Faculty of Medicine and Health, Örebro University, 70182, Örebro, SE, Sweden
| | - Per Wretenberg
- Department of Orthopedics and Hand Surgery, Faculty of Medicine and Health, Örebro University, 70182, Örebro, SE, Sweden
| | - Michael Möller
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Department of Orthopedics, Sahlgrenska University Hospital, Gothenburg/Mölndal, Sweden
| |
Collapse
|
12
|
Xiaoli L, Fengbin H, Shihui H, Xi N, Sheng L, Zhou W, Xueqin R, Jiafu W. Detection of genomic structure variants associated with wrinkled skin in Xiang pig by next generation sequencing. Aging (Albany NY) 2021; 13:24710-24739. [PMID: 34837693 PMCID: PMC8660620 DOI: 10.18632/aging.203711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
Wrinkling is prominent manifestation of aging skin. A mutant phenotype characterized by systemic wrinkles and thickened skin was discovered in Xiang pig populations with incidence about 1-3%. The feature in histological structure was epidermal hyperplasia and thickening, collagen fibers disorder. To uncover genetic mechanisms for the mutant phenotype of Xiang pigs with systemic wrinkle (WXP), a genome-wide of structural variations (SVs) in WXP was described by next generation resequencing, taking Xiang pigs (XP) and European pigs (EUP) as compares. Total of 32,308 SVs were detected from three pig groups and 965 SVs were identified specifically from WXP, involving 481 protein-coding genes. These genes were mainly enriched in nuclear structure, ECM components and immunomodulatory pathways. According to gene function and enrichment analysis, we found that 65 candidate SVs in 59 protein genes were probably related with the systemic wrinkle of WXP. Of these, several genes are reported to be associate with aging, such as EIF4G2, NOLC1, XYLT1, FUT8, MDM2 and so on. The insertion/deletion and duplication variations of SVs in these genes resulted in the loss of stop-codon or frameshift mutation, and aberrant alternative splicing of transcripts. These genes are involved in cell lamin filament, intermediate filament cytoskeleton, supramolecular complex, cell differentiation and regulation of macromolecule metabolic process etc. Our study suggested that the loss of function or aberrant expression of these genes lead to structural disorder of nuclear and the extracellular matrix (ECM) in skin cells, which probably was the genetic mechanisms for the mutant phenotype of systemic skin wrinkle of Xiang pig.
Collapse
Affiliation(s)
- Liu Xiaoli
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Hu Fengbin
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Huang Shihui
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Niu Xi
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Li Sheng
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wang Zhou
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Ran Xueqin
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wang Jiafu
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
13
|
Transcriptomic analysis of human skin wound healing and rejuvenation following ablative fractional laser treatment. PLoS One 2021; 16:e0260095. [PMID: 34843523 PMCID: PMC8629261 DOI: 10.1371/journal.pone.0260095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022] Open
Abstract
Ablative fractional laser treatment is considered the gold standard for skin rejuvenation. In order to understand how fractional laser works to rejuvenate skin, we performed microarray profiling on skin biopsies to identify temporal and dose-response changes in gene expression following fractional laser treatment. The backs of 14 women were treated with ablative fractional laser (Fraxel®) and 4 mm punch biopsies were collected from an untreated site and at the treated sites 1, 3, 7, 14, 21 and 28 days after the single treatment. In addition, in order to understand the effect that multiple fractional laser treatments have on skin rejuvenation, several sites were treated sequentially with either 1, 2, 3, or 4 treatments (with 28 days between treatments) followed by the collection of 4 mm punch biopsies. RNA was extracted from the biopsies, analyzed using Affymetrix U219 chips and gene expression was compared between untreated and treated sites. We observed dramatic changes in gene expression as early as 1 day after fractional laser treatment with changes remaining elevated even after 1 month. Analysis of individual genes demonstrated significant and time related changes in inflammatory, epidermal, and dermal genes, with dermal genes linked to extracellular matrix formation changing at later time points following fractional laser treatment. When comparing the age-related changes in skin gene expression to those induced by fractional laser, it was observed that fractional laser treatment reverses many of the changes in the aging gene expression. Finally, multiple fractional laser treatments, which cover different regions of a treatment area, resulted in a sustained or increased dermal remodeling response, with many genes either differentially regulated or continuously upregulated, supporting previous observations that maximal skin rejuvenation requires multiple fractional laser treatments. In conclusion, fractional laser treatment of human skin activates a number of biological processes involved in wound healing and tissue regeneration.
Collapse
|
14
|
Rho NK, Gil YC. Botulinum Neurotoxin Type A in the Treatment of Facial Seborrhea and Acne: Evidence and a Proposed Mechanism. Toxins (Basel) 2021; 13:817. [PMID: 34822601 PMCID: PMC8626011 DOI: 10.3390/toxins13110817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Intradermal injection of botulinum neurotoxin is a frequently performed procedure in aesthetic dermatology to improve facial skin tone, texture, fine wrinkles, and enlarged pores. In practice, botulinum neurotoxin type A is also used to reduce skin oiliness of the face. There is increasing evidence that acetylcholine plays specific roles in sebum production, suggesting that botulinum neurotoxin type A may reduce sebum production by interfering with cholinergic transmission between sebaceous glands and autonomic nerve terminals. Botulinum neurotoxins can also inhibit several pathogenetic components of acne development, suggesting that botulinum neurotoxins can be used as a safe and effective treatment modality for acne and other skin disorders related to overactivity of sebaceous glands. This review aims to explore the current evidence behind the treatment of facial seborrhea and acne with botulinum neurotoxin type A.
Collapse
Affiliation(s)
- Nark-Kyoung Rho
- Department of Dermatology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea;
- Leaders Aesthetic Laser & Cosmetic Surgery Center, Seoul 06014, Korea
| | - Young-Chun Gil
- Department of Anatomy, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| |
Collapse
|
15
|
Nurcahyanti ADR, Jap A, Lady J, Prismawan D, Sharopov F, Daoud R, Wink M, Sobeh M. Function of selected natural antidiabetic compounds with potential against cancer via modulation of the PI3K/AKT/mTOR cascade. Biomed Pharmacother 2021; 144:112138. [PMID: 34750026 DOI: 10.1016/j.biopha.2021.112138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with growing global incidence, as 387 million people were diagnosed in 2014 with an expected projection of 642 million in 2040. Several complications are associated with DM including heart attack, stroke, kidney failure, blindness, and cancer. The latter is the second leading cause of death worldwide accounting for one in every six deaths, with liver, pancreas, and endometrium cancers are the most abundant among patients with diabetes. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a vital role in developing a wide array of pathological disorders, among them diabetes and cancer. Natural secondary metabolites that counteract the deleterious effects of reactive oxygen species (ROS) and modulate PI3K/Akt/mTOR pathway could be a promising approach in cancer therapy. Here, 717 medicinal plants with antidiabetic activities were highlighted along with 357 bioactive compounds responsible for the antidiabetic activity. Also, 43 individual plant compounds with potential antidiabetic activities against cancer via the modulation of PI3K/Akt/mTOR cascade were identified. Taken together, the available data give an insight of the potential of repurposing medicinal plants and/or the individual secondary metabolites with antidiabetic activities for cancer therapy.
Collapse
Affiliation(s)
- Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia.
| | - Adeline Jap
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Jullietta Lady
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Deka Prismawan
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Farukh Sharopov
- Chinese-Tajik Innovation Center for Natural Products, National Academy of Sciences of Tajikistan, Ayni str. 299/2, 734063, Dushanbe, Tajikistan
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mansour Sobeh
- AgroBiosciences Research, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| |
Collapse
|
16
|
The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen Med 2021; 6:43. [PMID: 34376677 PMCID: PMC8355260 DOI: 10.1038/s41536-021-00153-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a pathologic process characterized by the replacement of parenchymal tissue by large amounts of extracellular matrix, which may lead to organ dysfunction and even death. Fibroblasts are classically associated to fibrosis and tissue repair, and seldom to regeneration. However, accumulating evidence supports a pro-regenerative role of fibroblasts in different organs. While some organs rely on fibroblasts for maintaining stem cell niches, others depend on fibroblast activity, particularly on secreted molecules that promote cell adhesion, migration, and proliferation, to guide the regenerative process. Herein we provide an up-to-date overview of fibroblast-derived regenerative signaling across different organs and discuss how this capacity may become compromised with aging. We further introduce a new paradigm for regenerative therapies based on reverting adult fibroblasts to a fetal/neonatal-like phenotype.
Collapse
|
17
|
Furukawa K, Kono M, Kataoka T, Hasebe Y, Jia H, Kato H. Effects of Eggshell Membrane on Keratinocyte Differentiation and Skin Aging In Vitro and In Vivo. Nutrients 2021; 13:nu13072144. [PMID: 34206704 PMCID: PMC8308305 DOI: 10.3390/nu13072144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/23/2022] Open
Abstract
Skin aging is one of the hallmarks of the aging process that causes physiological and morphological changes. Recently, several nutritional studies were conducted to delay or suppress the aging process. This study investigated whether nutritional supplementation of the eggshell membrane (ESM) has a beneficial effect on maintaining skin health and improving the skin aging process in vitro using neonatal normal human epidermal keratinocytes (NHEK-Neo) and in vivo using interleukin-10 knockout (IL-10 KO) mice. In NHEK-Neo cells, 1 mg/mL of enzymatically hydrolyzed ESM (eESM) upregulated the expression of keratinocyte differentiation markers, including keratin 1, filaggrin and involucrin, and changed the keratinocyte morphology. In IL-10 KO mice, oral supplementation of 8% powdered-ESM (pESM) upregulated the expression of growth factors, including transforming growth factor β1, platelet-derived growth factor-β and connective tissue growth factor, and suppressed skin thinning. Furthermore, voltage-gated calcium channel, transient receptor potential cation channel subfamily V members were upregulated by eESM treatment in NHEK-Neo cells and pESM supplementation in IL-10 KO mice. Collectively, these data suggest that ESM has an important role in improving skin health and aging, possibly via upregulating calcium signaling.
Collapse
Affiliation(s)
- Kyohei Furukawa
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.K.); (T.K.)
| | - Masaya Kono
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.K.); (T.K.)
| | - Tetsuro Kataoka
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.K.); (T.K.)
| | | | - Huijuan Jia
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.K.); (T.K.)
- Correspondence: (H.J.); (H.K.); Tel.: +81-3-5841-5116 (H.J.); +81-3-5841-1607 (H.K.)
| | - Hisanori Kato
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.K.); (T.K.)
- Correspondence: (H.J.); (H.K.); Tel.: +81-3-5841-5116 (H.J.); +81-3-5841-1607 (H.K.)
| |
Collapse
|
18
|
Cho S. Pathogenesis and prevention of skin aging. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2021. [DOI: 10.5124/jkma.2021.64.6.438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: As global life expectancy increases, an interest in maintaining health and beauty in old age has increased. As a barrier organ, the skin is an ideal model for studying both genetically-programmed (intrinsic) and environmentallyinduced (extrinsic) aging.Current Concepts: Among the extrinsic aging factors, solar ultraviolet radiation is the most important, accounting for 80% of facial skin aging. Other nongenetic factors include air pollution, cigarette smoke, nutrition, temperature, sleep, and stress. Through complex interplay, genome, exposome and microbiome all contribute to skin aging. Intrinsic aging causes thinning of the skin and fine wrinkles, while extrinsic aging leads to thick rubbery skin texture, deep wrinkles and dyspigmentation in exposed areas. Fibroblast senescence is a fundamental mechanism of skin aging, with these cells persisting and exhibiting a senescence-associated secretory phenotype which secrets proinflammatory cytokines. Chronic low-level inflammation associated with aging, termed inflamm-aging, is exacerbated by oxidative damage caused by extrinsic factors.Discussion and Conclusion: Understanding the pathogenesis of skin aging may help in developing anti-aging strategies in general. In addition to applying sunscreen every morning and retinoic acid every night, taking antioxidant-rich foods and maintaining a healthy lifestyle are all important for preventing skin aging.
Collapse
|
19
|
Multiple-Molecule Drug Design Based on Systems Biology Approaches and Deep Neural Network to Mitigate Human Skin Aging. Molecules 2021; 26:molecules26113178. [PMID: 34073305 PMCID: PMC8197996 DOI: 10.3390/molecules26113178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/23/2023] Open
Abstract
Human skin aging is affected by various biological signaling pathways, microenvironment factors and epigenetic regulations. With the increasing demand for cosmetics and pharmaceuticals to prevent or reverse skin aging year by year, designing multiple-molecule drugs for mitigating skin aging is indispensable. In this study, we developed strategies for systems medicine design based on systems biology methods and deep neural networks. We constructed the candidate genomewide genetic and epigenetic network (GWGEN) via big database mining. After doing systems modeling and applying system identification, system order detection and principle network projection methods with real time-profile microarray data, we could obtain core signaling pathways and identify essential biomarkers based on the skin aging molecular progression mechanisms. Afterwards, we trained a deep neural network of drug–target interaction in advance and applied it to predict the potential candidate drugs based on our identified biomarkers. To narrow down the candidate drugs, we designed two filters considering drug regulation ability and drug sensitivity. With the proposed systems medicine design procedure, we not only shed the light on the skin aging molecular progression mechanisms but also suggested two multiple-molecule drugs for mitigating human skin aging from young adulthood to middle age and middle age to old age, respectively.
Collapse
|
20
|
Tiwari RL, Mishra P, Martin N, George NO, Sakk V, Soller K, Nalapareddy K, Nattamai K, Scharffetter-Kochanek K, Florian MC, Geiger H. A Wnt5a-Cdc42 axis controls aging and rejuvenation of hair-follicle stem cells. Aging (Albany NY) 2021; 13:4778-4793. [PMID: 33629967 PMCID: PMC7950224 DOI: 10.18632/aging.202694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022]
Abstract
Normal hair growth occurs in cycles, comprising growth (anagen), cessation (catagen) and rest (telogen). Upon aging, the initiation of anagen is significantly delayed, which results in impaired hair regeneration. Hair regeneration is driven by hair follicle stem cells (HFSCs). We show here that aged HFSCs present with a decrease in canonical Wnt signaling and a shift towards non-canonical Wnt5a driven signaling which antagonizes canonical Wnt signaling. Elevated expression of Wnt5a in HFSCs upon aging results in elevated activity of the small RhoGTPase Cdc42 as well as a change in the spatial distribution of Cdc42 within HFSCs. Treatment of aged HFSC with a specific pharmacological inhibitor of Cdc42 activity termed CASIN to suppress the aging-associated elevated activity of Cdc42 restored canonical Wnt signaling in aged HFSCs. Treatment of aged mice in vivo with CASIN induced anagen onset and increased the percentage of anagen skin areas. Aging-associated functional deficits of HFSCs are at least in part intrinsic to HFSCs and can be restored by rational pharmacological approaches.
Collapse
Affiliation(s)
- Rajiv L Tiwari
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| | - Pratibha Mishra
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| | - Nicola Martin
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| | | | - Vadim Sakk
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| | - Karin Soller
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| | - Kodandaramireddy Nalapareddy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Kalpana Nattamai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | | | | | - Hartmut Geiger
- Institute of Molecular Medicine, University of Ulm, Ulm 89081, Germany
| |
Collapse
|
21
|
Skin Mirrors Brain: A Chance for Alzheimer’s Disease Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1339:371-380. [DOI: 10.1007/978-3-030-78787-5_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Khmaladze I, Leonardi M, Fabre S, Messaraa C, Mavon A. The Skin Interactome: A Holistic "Genome-Microbiome-Exposome" Approach to Understand and Modulate Skin Health and Aging. Clin Cosmet Investig Dermatol 2021; 13:1021-1040. [PMID: 33380819 PMCID: PMC7769076 DOI: 10.2147/ccid.s239367] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
Higher demands on skin care cosmetic products for strong performance drive intense research to understand the mechanisms of skin aging and design strategies to improve overall skin health. Today we know that our needs and influencers of skin health and skin aging change throughout our life journey due to both extrinsic factors, such as environmental factors and lifestyle factors, as well as our intrinsic factors. Furthermore, we need to consider our microflora, a collection of micro-organisms such as bacteria, viruses, and fungi, which is a living ecosystem in our gut and on our skin, that can have a major impact on our health. Here, we are viewing a holistic approach to understand the collective effect of the key influencers of skin health and skin aging both reviewing how each of them impact the skin, but more importantly to identify molecular conjunction pathways of these different factors in order to get a better understanding of the integrated “genome-microbiome-exposome” effect. For this purpose and in order to translate molecularly the impact of the key influencers of skin health and skin aging, we built a digital model based on system biology using different bioinformatics tools. This model is considering both the positive and negative impact of our genome (genes, age/gender), exposome: external (sun, pollution, climate) and lifestyle factors (sleep, stress, exercise, nutrition, skin care routine), as well as the role of our skin microbiome, and allowed us in a first application to evaluate the effect of the genome in the synthesis of collagen in the skin and the determination of a suitable target for boosting pro-collagen synthesis. In conclusion, we have, through our digital holistic approach, defined the skin interactome concept, as an advanced tool to better understand the molecular genesis of skin aging and further develop a strategy to balance the influence of the exposome and microbiome to protect, prevent, and delay the appearance of skin aging signs and preserve good skin health condition. In addition, this model will aid in identifying and optimizing skin treatment options based on external triggers, as well as helping to design optimal treatments modulating the intrinsic pathways.
Collapse
Affiliation(s)
- Ia Khmaladze
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| | - Michele Leonardi
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| | - Susanne Fabre
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| | - Cyril Messaraa
- Research and Development, Oriflame Cosmetics Ltd, Bray, Ireland
| | - Alain Mavon
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| |
Collapse
|
23
|
Akerman SC, Hossain S, Shobo A, Zhong Y, Jourdain R, Hancock MA, George K, Breton L, Multhaup G. Neurodegenerative Disease-Related Proteins within the Epidermal Layer of the Human Skin. J Alzheimers Dis 2020; 69:463-478. [PMID: 31006686 DOI: 10.3233/jad-181191] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is increasing evidence suggesting that amyloidogenic proteins might form deposits in non-neuronal tissues in neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. However, the detection of these aggregation-prone proteins within the human skin has been controversial. Using immunohistochemistry (IHC) and mass spectrometry tissue imaging (MALDI-MSI), fresh frozen human skin samples were analyzed for the expression and localization of neurodegenerative disease-related proteins. While α-synuclein was detected throughout the epidermal layer of the auricular samples (IHC and MALDI-MSI), tau and Aβ34 were also localized to the epidermal layer (IHC). In addition to Aβ peptides of varying length (e.g., Aβ40, Aβ42, Aβ34), we also were able to detect inflammatory markers within the same sample sets (e.g., thymosin β-4, psoriasin). While previous literature has described α-synuclein in the nucleus of neurons (e.g., Parkinson's disease), our current detection of α-synuclein in the nucleus of skin cells is novel. Imaging of α-synuclein or tau revealed that their presence was similar between the young and old samples in our present study. Future work may reveal differences relevant for diagnosis between these proteins at the molecular level (e.g., age-dependent post-translational modifications). Our novel detection of Aβ34 in human skin suggests that, just like in the brain, it may represent a stable intermediate of the Aβ40 and Aβ42 degradation pathway.
Collapse
Affiliation(s)
- S Can Akerman
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Shireen Hossain
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Adeola Shobo
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Yifei Zhong
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | | | - Mark A Hancock
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| | - Kelly George
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - Lionel Breton
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France.,L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - Gerhard Multhaup
- Department of Pharmacology & Therapeutics, Life Sciences Complex, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Roy T, Bhattacharjee P. Performance analysis of melanoma classifier using electrical modeling technique. Med Biol Eng Comput 2020; 58:2443-2454. [PMID: 32770290 DOI: 10.1007/s11517-020-02241-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/27/2020] [Indexed: 11/25/2022]
Abstract
An efficient and novel modeling approach is proposed in this paper for identifying proteins or genes involved in melanoma skin cancer. Two types of classifiers are modeled, based on the chemical structure and hydropathy property of amino acids. These classifiers are further implemented using NI LabVIEW-based hardware kit to observe the real-time response for proper diagnosis. The phase responses, pole-zero diagrams, and transient responses are examined to screen out the genes related to melanoma from healthy genes. The performance of the proposed classifier is measured using various performance measurement metrics in terms of accuracy, sensitivity, specificity, etc. The classifier is experimented along with a color code scheme on skin genes and illustrates the superiority in comparison with traditional methods by achieving 94% of classification accuracy with 96% of sensitivity.Graphical abstract An equivalent electrical model is developed for designing melanoma classifier. Initially, each amino acid is modeled using the RC passive circuit depending on their physicochemical structure and hydropathy nature, to form a gene structure model. The melanoma-related genes are detected by phase, transient, and color code analysis.
Collapse
Affiliation(s)
- Tanusree Roy
- Department of Electrical and Electronics Engineering, University of Engineering and Management, Kolkata, 700135, India.
| | - Pranabesh Bhattacharjee
- Department of Electrical and Electronics Engineering, University of Engineering and Management, Kolkata, 700135, India
| |
Collapse
|
25
|
Russell-Goldman E, Murphy GF. The Pathobiology of Skin Aging: New Insights into an Old Dilemma. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1356-1369. [PMID: 32246919 PMCID: PMC7481755 DOI: 10.1016/j.ajpath.2020.03.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Long considered both physiologic and inevitable, skin aging is a degenerative phenomenon whereby both intrinsic and environmental factors conspire to produce an authentic disease. The consequences of this disorder are many and varied, ranging from atrophy and fragility to defective repair to deficient immunity and vulnerability to certain infections. The pathobiologic basis for skin aging remains poorly understood. At a cellular level, stem cell dysfunction and attrition appear to be key events, and both genetic and epigenetic factors are involved in a complex interplay that over time results in deterioration of our main protective interface with the external environment. Past and current understanding of the cellular and molecular intricacies of skin aging provide a foundation for future approaches designed to thwart the aging phenotype. Herein, the authors provide a review of current insights into skin aging, including the mechanisms of skin aging, the role of stem cells in skin aging and the implications of skin aging for the microbiome and for the development of cancer. Conquest of the oft overlooked disease of skin aging should have broad implications that transcend the integument and inform novel approaches to retarding aging and age-related dysfunction in those internal organs that youthful skin was designed to envelop and safeguard.
Collapse
Affiliation(s)
- Eleanor Russell-Goldman
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - George F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
26
|
Zouboulis CC, Nogueira da Costa A, Makrantonaki E, Hou XX, Almansouri D, Dudley JT, Edwards H, Readhead B, Balthasar O, Jemec GBE, Bonitsis NG, Nikolakis G, Trebing D, Zouboulis KC, Hossini AM. Alterations in innate immunity and epithelial cell differentiation are the molecular pillars of hidradenitis suppurativa. J Eur Acad Dermatol Venereol 2020; 34:846-861. [PMID: 31838778 DOI: 10.1111/jdv.16147] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The large unmet need of hidradenitis suppurativa/acne inversa (HS) therapy requires the elucidation of disease-driving mechanisms and tissue targeting. OBJECTIVE Robust characterization of the underlying HS mechanisms and detection of the involved skin compartments. METHODS Hidradenitis suppurativa/acne inversa molecular taxonomy and key signalling pathways were studied by whole transcriptome profiling. Dysregulated genes were detected by comparing lesional and non-lesional skin obtained from female HS patients and matched healthy controls using the Agilent array platform. The differential gene expression was confirmed by quantitative real-time PCR and targeted protein characterization via immunohistochemistry in another set of female patients. HS-involved skin compartments were also recognized by immunohistochemistry. RESULTS Alterations to key regulatory pathways involving glucocorticoid receptor, atherosclerosis, HIF1α and IL17A signalling as well as inhibition of matrix metalloproteases were detected. From a functional standpoint, cellular assembly, maintenance and movement, haematological system development and function, immune cell trafficking and antimicrobial response were key processes probably being affected in HS. Sixteen genes were found to characterize HS from a molecular standpoint (DEFB4, MMP1, GJB2, PI3, KRT16, MMP9, SERPINB4, SERPINB3, SPRR3, S100A8, S100A9, S100A12, S100A7A (15), KRT6A, TCN1, TMPRSS11D). Among the proteins strongly expressed in HS, calgranulin-A, calgranulin-B and serpin-B4 were detected in the hair root sheath, koebnerisin and connexin-32 in stratum granulosum, transcobalamin-1 in stratum spinosum/hair root sheath, small prolin-rich protein-3 in apocrine sweat gland ducts/sebaceous glands-ducts and matrix metallopeptidase-9 in resident monocytes. CONCLUSION Our findings highlight a panel of immune-related drivers in HS, which influence innate immunity and cell differentiation in follicular and epidermal keratinocytes as well as skin glands.
Collapse
Affiliation(s)
- C C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany.,European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany
| | | | - E Makrantonaki
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - X X Hou
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - D Almansouri
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - J T Dudley
- Department of Genetics and Genomic Sciences, Institute of Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Edwards
- Translational Medicine, UCB SA, Slough, UK
| | - B Readhead
- Department of Genetics and Genomic Sciences, Institute of Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - O Balthasar
- Institute of Pathology, Dessau Medical Center, Dessau, Germany
| | - G B E Jemec
- European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany.,Department of Dermatology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - N G Bonitsis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - G Nikolakis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany.,European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany
| | - D Trebing
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - K C Zouboulis
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - A M Hossini
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| |
Collapse
|
27
|
Foster AR, El Chami C, O'Neill CA, Watson REB. Osmolyte transporter expression is reduced in photoaged human skin: Implications for skin hydration in aging. Aging Cell 2020; 19:e13058. [PMID: 31769623 PMCID: PMC6974728 DOI: 10.1111/acel.13058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 09/17/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023] Open
Abstract
Aging is characterized by the deterioration of tissue structure and function. In skin, environmental factors, for example, ultraviolet radiation (UVR), can accelerate the effects of aging such as decline in barrier function and subsequent loss of hydration. Water homeostasis is vital for all cellular functions and it is known that organic osmolyte transport is critical to this process. Therefore, we hypothesized that as we age, these tightly controlled physiological mechanisms become disrupted, possibly due to loss of transporter expression. We investigated this in vivo, using human skin samples from photoprotected and photoexposed sites of young and aged volunteers. We show a reduction in keratinocyte cell size with age and a downregulation of osmolyte transporters SMIT and TAUT with both chronic and acute UVR exposure. Single‐cell live imaging demonstrated that aged keratinocytes lack efficient cell volume recovery mechanisms possessed by young keratinocytes following physiological stress. However, addition of exogenous taurine significantly rescued cell volume; this was corroborated by a reduction in TAUT mRNA and protein in aged, as compared to young, keratinocytes. Collectively, these novel data demonstrate that human epidermal keratinocytes possess osmolyte‐mediated cell volume regulatory mechanisms, which may be compromised in aging. Therefore, this suggests that organic osmolytes—especially taurine—play a critical role in cutaneous age‐related xerosis and highlights a fundamental mechanism, vital to our understanding of the pathophysiology of skin aging.
Collapse
Affiliation(s)
- April R. Foster
- Centre for Dermatology Research Faculty of Biology, Medicine and Health University of Manchester & Salford Royal NHS Foundation Trust Manchester Academic Health Science Centre Manchester UK
| | - Cecile El Chami
- Centre for Dermatology Research Faculty of Biology, Medicine and Health University of Manchester & Salford Royal NHS Foundation Trust Manchester Academic Health Science Centre Manchester UK
| | - Catherine A. O'Neill
- Centre for Dermatology Research Faculty of Biology, Medicine and Health University of Manchester & Salford Royal NHS Foundation Trust Manchester Academic Health Science Centre Manchester UK
| | - Rachel E. B. Watson
- Centre for Dermatology Research Faculty of Biology, Medicine and Health University of Manchester & Salford Royal NHS Foundation Trust Manchester Academic Health Science Centre Manchester UK
- NIHR Manchester Biomedical Research Centre Central Manchester University Hospitals NHS Foundation Trust Manchester UK
| |
Collapse
|
28
|
Bellei B, Picardo M. Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders. Ageing Res Rev 2020; 57:100981. [PMID: 31733332 DOI: 10.1016/j.arr.2019.100981] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023]
Abstract
Although senescence was originally described as an in vitro acquired cellular characteristic, it was recently recognized that senescence is physiologically and pathologically involved in aging and age-related diseases in vivo. The definition of cellular senescence has expanded to include the growth arrest caused by various cellular stresses, including DNA damage, inadequate mitochondria function, activated oncogene or tumor suppressor genes and oxidative stress. While senescence in normal aging involves various tissues over time and contributes to a decline in tissue function even with healthy aging, disease-induced premature senescence may be restricted to one or a few organs triggering a prolonged and more intense rate of accumulation of senescent cells than in normal aging. Organ-specific high senescence rate could lead to chronic diseases, especially in post-mitotic rich tissue. Recently, two opposite acquired pathological conditions related to skin pigmentation were described to be associated with premature senescence: vitiligo and melasma. In both cases, it was demonstrated that pathological dysfunctions are not restricted to melanocytes, the cell type responsible for melanin production and transport to surrounding keratinocytes. Similar to physiological melanogenesis, dermal and epidermal cells contribute directly and indirectly to deregulate skin pigmentation as a result of complex intercellular communication. Thus, despite senescence usually being reported as a uniform phenotype sharing the expression of characteristic markers, skin senescence involving mainly the dermal compartment and its paracrine function could be associated with the disappearance of melanocytes in vitiligo lesions and with the exacerbated activity of melanocytes in the hyperpigmentation spots of melasma. This suggests that the difference may arise in melanocyte intrinsic differences and/or in highly defined microenvironment peculiarities poorly explored at the current state of the art. A similar dualistic phenotype has been attributed to intratumoral stromal cells as cancer-associated fibroblasts presenting a senescent-like phenotype which influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. Here, we present a framework dissecting senescent-related molecular alterations shared by vitiligo and melasma patients and we also discuss disease-specific differences representing new challenges for treatment.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
29
|
Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals — A new bioactive approach. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101541] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
|
31
|
Zouboulis CC, Makrantonaki E, Nikolakis G. When the skin is in the center of interest: An aging issue. Clin Dermatol 2019; 37:296-305. [PMID: 31345316 DOI: 10.1016/j.clindermatol.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The skin represents the first bearer of marks of time as well as an easily accessible model for the assessment and determination of the involved molecular mechanisms. The deterioration of important skin functions due to intrinsic and extrinsic aging leads to clinical manifestations, which mirror several internal age-associated diseases, such as neurodegenerative, cardiovascular, skeletal, and endocrine/metabolic skin diseases. Current molecular data indicate that skin aging, especially intrinsic aging, mirrors age-related deficiencies in the entire human body. These data and the development of new biologic technologies highlight the importance of the skin in aging research and should enable future interdisciplinary projects on internal diseases, which could barely have been performed until recently due mainly to the lack of respective tissue.
Collapse
Affiliation(s)
- Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany.
| | - Eugenia Makrantonaki
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Georgios Nikolakis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| |
Collapse
|
32
|
Clinical and laboratory skin biomarkers of organ-specific diseases. Mech Ageing Dev 2019; 177:144-149. [DOI: 10.1016/j.mad.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/29/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022]
|
33
|
Dugger BN, Hoffman BR, Scroggins A, Serrano GE, Adler CH, Shill HA, Belden CM, Sabbagh MN, Caviness JN, Driver Dunckley E, Beach TG. Tau immunoreactivity in peripheral tissues of human aging and select tauopathies. Neurosci Lett 2018; 696:132-139. [PMID: 30579993 DOI: 10.1016/j.neulet.2018.12.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 11/18/2022]
Abstract
Many studies have been directed at understanding mechanisms of tau aggregation and therapeutics, nearly all focusing on the brain. It is critical to understand the presence of tau in peripheral tissues since this may provide new insights into disease progression and selective vulnerability. The current study sought to determine the presence of select tau species in peripheral tissues in elderly individuals and across an array of tauopathies. Using formalin fixed paraffin embedded sections, we examined abdominal skin, submandibular gland, and sigmoid colon among 69 clinicopathologically defined cases: 19 lacking a clinical neuropathological diagnosis (normal controls), 26 progressive supranuclear palsy (PSP), 21 Alzheimer's disease (AD), and 3 with corticobasal degeneration (CBD). Immunohistochemistry was performed using antibodies for "total" tau (HT7) and two phosphorylated tau species (AT8 and pT231). HT7 staining of abdominal skin revealed immunoreactivity of potential nerve elements in 5% of cases (1 AD, 1 AD/PSP, and 1 CBD out of 55 cases examined); skin sections lacked AT8 and pT231 immunoreactive nerve elements. Submandibular glands from all cases had HT7 immunoreactive nerve elements; while pT231 was present in 92% of cases, and AT8 in only 3 cases (2 AD and one AD/PSP case). In sigmoid colon, HT7 immunoreactivity was present in all but 2 cases (97%), pT231 in 54%, and AT8 was present in only 5/62 cases (8%). These data suggest select tau species in CNS tauopathies do not have a high propensity to spread to the periphery and this may hold clues for the understanding of CNS tau pathogenicity and vulnerability.
Collapse
Affiliation(s)
- Brittany N Dugger
- Department of Pathology and Laboratory Medicine University of California, Davis, Sacramento, CA, United States.
| | | | - Alex Scroggins
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Charles H Adler
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Mayo Clinic, Scottsdale, AZ, United States
| | - Holly A Shill
- Barrow Neurological Institute, Phoenix, AZ, United States
| | | | - Marwan N Sabbagh
- Barrow Neurological Institute, Phoenix, AZ, United States; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| | - John N Caviness
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Mayo Clinic, Scottsdale, AZ, United States
| | - Erika Driver Dunckley
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Mayo Clinic, Scottsdale, AZ, United States
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ, United States
| |
Collapse
|
34
|
Zouboulis CC, Elewa R, Ottaviani M, Fluhr J, Picardo M, Bernois A, Heusèle C, Camera E. Age influences the skin reaction pattern to mechanical stress and its repair level through skin care products. Mech Ageing Dev 2018; 170:98-105. [DOI: 10.1016/j.mad.2017.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 01/27/2023]
|
35
|
Alfego D, Rodeck U, Kriete A. Global mapping of transcription factor motifs in human aging. PLoS One 2018; 13:e0190457. [PMID: 29293662 PMCID: PMC5749797 DOI: 10.1371/journal.pone.0190457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022] Open
Abstract
Biological aging is a complex process dependent on the interplay of cell autonomous and tissue contextual changes which occur in response to cumulative molecular stress and manifest through adaptive transcriptional reprogramming. Here we describe a transcription factor (TF) meta-analysis of gene expression datasets accrued from 18 tissue sites collected at different biological ages and from 7 different in-vitro aging models. In-vitro aging platforms included replicative senescence and an energy restriction model in quiescence (ERiQ), in which ATP was transiently reduced. TF motifs in promoter regions of trimmed sets of target genes were scanned using JASPAR and TRANSFAC. TF signatures established a global mapping of agglomerating motifs with distinct clusters when ranked hierarchically. Remarkably, the ERiQ profile was shared with the majority of in-vivo aged tissues. Fitting motifs in a minimalistic protein-protein network allowed to probe for connectivity to distinct stress sensors. The DNA damage sensors ATM and ATR linked to the subnetwork associated with senescence. By contrast, the energy sensors PTEN and AMPK connected to the nodes in the ERiQ subnetwork. These data suggest that metabolic dysfunction may be linked to transcriptional patterns characteristic of many aged tissues and distinct from cumulative DNA damage associated with senescence.
Collapse
Affiliation(s)
- David Alfego
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Ulrich Rodeck
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Andres Kriete
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
36
|
Zouboulis CC. Is There a Need for Scientific Education in the Aging Field? Rejuvenation Res 2017; 20:365-366. [PMID: 28954593 DOI: 10.1089/rej.2017.2028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Christos C Zouboulis
- 1 Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center , Brandenburg Medical School Theodore Fontane, Dessau, Germany .,2 ESAAM Honorary President
| |
Collapse
|
37
|
García-Velázquez L, Arias C. The emerging role of Wnt signaling dysregulation in the understanding and modification of age-associated diseases. Ageing Res Rev 2017. [PMID: 28624530 DOI: 10.1016/j.arr.2017.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wnt signaling is a highly conserved pathway that participates in multiple aspects of cellular function during development and in adults. In particular, this pathway has been implicated in cell fate determination, proliferation and cell polarity establishment. In the brain, it contributes to synapse formation, axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. The expression and distribution of Wnt components in different organs vary with age, which may have important implications for preserving tissue homeostasis. The dysregulation of Wnt signaling has been implicated in age-associated diseases, such as cancer and some neurodegenerative conditions. This is a relevant research topic, as an important research avenue for therapeutic targeting of the Wnt pathway in regenerative medicine has recently been opened. In this review, we discuss the recent findings on the regulation of Wnt components during aging, particularly in brain functioning, and the implications of Wnt signaling in age-related diseases.
Collapse
|
38
|
Tubulin Beta-3 Chain as a New Candidate Protein Biomarker of Human Skin Aging: A Preliminary Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28626498 PMCID: PMC5463169 DOI: 10.1155/2017/5140360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skin aging is a complex process, and a lot of efforts have been made to identify new and specific targets that could help to diagnose, prevent, and treat skin aging. Several studies concerning skin aging have analyzed the changes in gene expression, and very few investigations have been performed at the protein level. Moreover, none of these proteomic studies has used a global quantitative labeled proteomic offgel approach that allows a more accurate description of aging phenotype. We applied such an approach on human primary keratinocytes obtained from sun-nonexposed skin biopsies of young and elderly women. A total of 517 unique proteins were identified, and 58 proteins were significantly differentially expressed with 40 that were downregulated and 18 upregulated with aging. Gene ontology and pathway analysis performed on these 58 putative biomarkers of skin aging evidenced that these dysregulated proteins were mostly involved in metabolism and cellular processes such as cell cycle and signaling pathways. Change of expression of tubulin beta-3 chain was confirmed by western blot on samples originated from several donors. Thus, this study suggested the tubulin beta-3 chain has a promising biomarker in skin aging.
Collapse
|
39
|
Kuehne A, Hildebrand J, Soehle J, Wenck H, Terstegen L, Gallinat S, Knott A, Winnefeld M, Zamboni N. An integrative metabolomics and transcriptomics study to identify metabolic alterations in aged skin of humans in vivo. BMC Genomics 2017; 18:169. [PMID: 28201987 PMCID: PMC5312537 DOI: 10.1186/s12864-017-3547-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/02/2017] [Indexed: 11/12/2022] Open
Abstract
Background Aging human skin undergoes significant morphological and functional changes such as wrinkle formation, reduced wound healing capacity, and altered epidermal barrier function. Besides known age-related alterations like DNA-methylation changes, metabolic adaptations have been recently linked to impaired skin function in elder humans. Understanding of these metabolic adaptations in aged skin is of special interest to devise topical treatments that potentially reverse or alleviate age-dependent skin deterioration and the occurrence of skin disorders. Results We investigated the global metabolic adaptions in human skin during aging with a combined transcriptomic and metabolomic approach applied to epidermal tissue samples of young and old human volunteers. Our analysis confirmed known age-dependent metabolic alterations, e.g. reduction of coenzyme Q10 levels, and also revealed novel age effects that are seemingly important for skin maintenance. Integration of donor-matched transcriptome and metabolome data highlighted transcriptionally-driven alterations of metabolism during aging such as altered activity in upper glycolysis and glycerolipid biosynthesis or decreased protein and polyamine biosynthesis. Together, we identified several age-dependent metabolic alterations that might affect cellular signaling, epidermal barrier function, and skin structure and morphology. Conclusions Our study provides a global resource on the metabolic adaptations and its transcriptional regulation during aging of human skin. Thus, it represents a first step towards an understanding of the impact of metabolism on impaired skin function in aged humans and therefore will potentially lead to improved treatments of age related skin disorders. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3547-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Kuehne
- Institute of Molecular Systems Biology, ETH Zurich, Auguste-Piccard-Hof 1, 8093, Zürich, Switzerland.,PhD Program Systems Biology, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Janosch Hildebrand
- Coburg University of Applied Sciences and Arts, Friedrich-Streib-Straße 2, Coburg, 96450, Germany
| | - Joern Soehle
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany
| | - Horst Wenck
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany
| | - Lara Terstegen
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany
| | - Stefan Gallinat
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany
| | - Anja Knott
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany
| | - Marc Winnefeld
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany.
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Auguste-Piccard-Hof 1, 8093, Zürich, Switzerland.
| |
Collapse
|
40
|
Dugger BN, Whiteside CM, Maarouf CL, Walker DG, Beach TG, Sue LI, Garcia A, Dunckley T, Meechoovet B, Reiman EM, Roher AE. The Presence of Select Tau Species in Human Peripheral Tissues and Their Relation to Alzheimer's Disease. J Alzheimers Dis 2016; 51:345-56. [PMID: 26890756 DOI: 10.3233/jad-150859] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tau becomes excessively phosphorylated in Alzheimer's disease (AD) and is widely studied within the brain. Further examination of the extent and types of tau present in peripheral tissues and their relation to AD is warranted given recent publications on pathologic spreading. Cases were selected based on the presence of pathological tau spinal cord deposits (n = 18). Tissue samples from sigmoid colon, scalp, abdominal skin, liver, and submandibular gland were analyzed by western blot and enzyme-linked immunosorbent assays (ELISAs) for certain tau species; frontal cortex gray matter was used for comparison. ELISAs revealed brain to have the highest total tau levels, followed by submandibular gland, sigmoid colon, liver, scalp, and abdominal skin. Western blots with antibodies recognizing tau phosphorylated at threonine 231(pT231), serine 396 and 404 (PHF-1), and an unmodified total human tau between residues 159 and 163 (HT7) revealed multiple banding patterns, some of which predominated in peripheral tissues. As submandibular gland had the highest levels of peripheral tau, a second set of submandibular gland samples were analyzed (n = 36; 19 AD, 17 non-demented controls). ELISAs revealed significantly lower levels of pS396 (p = 0.009) and pT231 (p = 0.005) in AD cases but not total tau (p = 0.18). Furthermore, pT231 levels in submandibular gland inversely correlated with Braak neurofibrillary tangle stage (p = 0.04), after adjusting for age at death, gender, and postmortem interval. These results provide evidence that certain tau species are present in peripheral tissues. Of potential importance, submandibular gland pT231 is progressively less abundant with increasing Braak neurofibrillary tangle stage.
Collapse
Affiliation(s)
- Brittany N Dugger
- Banner Sun Health Research Institute, Sun City, AZ, USA.,Arizona Alzheimer's Consortium
| | - Charisse M Whiteside
- Banner Sun Health Research Institute, Sun City, AZ, USA.,Arizona Alzheimer's Consortium
| | - Chera L Maarouf
- Banner Sun Health Research Institute, Sun City, AZ, USA.,Arizona Alzheimer's Consortium
| | - Douglas G Walker
- Banner Sun Health Research Institute, Sun City, AZ, USA.,Arizona Alzheimer's Consortium
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ, USA.,Arizona Alzheimer's Consortium
| | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ, USA.,Arizona Alzheimer's Consortium
| | - Angelica Garcia
- Banner Sun Health Research Institute, Sun City, AZ, USA.,Arizona Alzheimer's Consortium
| | - Travis Dunckley
- Translational Genomics Research Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium
| | - Bessie Meechoovet
- Translational Genomics Research Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium
| | - Alex E Roher
- Banner Sun Health Research Institute, Sun City, AZ, USA.,Arizona Alzheimer's Consortium
| |
Collapse
|
41
|
Tanaka M, Yamamoto Y, Misawa E, Nabeshima K, Saito M, Yamauchi K, Abe F, Furukawa F. Aloe sterol supplementation improves skin elasticity in Japanese men with sunlight-exposed skin: a 12-week double-blind, randomized controlled trial. Clin Cosmet Investig Dermatol 2016; 9:435-442. [PMID: 27877061 PMCID: PMC5108477 DOI: 10.2147/ccid.s118947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background/objective Recently, it was confirmed that the daily oral intake of plant sterols of Aloe vera gel (Aloe sterol) significantly increases the skin barrier function, moisture, and elasticity in photoprotected skin. This study aimed to investigate whether Aloe sterol intake affected skin conditions following sunlight exposure in Japanese men. Methods We performed a 12-week, randomized, double-blind, placebo-controlled study to evaluate the effects of oral Aloe sterol supplementation on skin conditions in 48 apparently healthy men (age range: 30–59 years; average: 45 years). The subjects were instructed to expose the measurement position of the arms to the sunlight outdoors every day for 12 weeks. The skin parameters were measured at 0 (baseline), 4, 8, and 12 weeks. Results Depending on the time for the revelation of the sunlight, the b* value and melanin index increased and the skin moisture decreased. After taking an Aloe sterol tablet daily for 12 weeks, the skin elasticity index (R2, R5, and R7) levels were significantly higher than the baseline value. There were no differences between the groups in these skin elasticity values. In the subgroup analysis of subjects aged <46 years, the change in the R5 and R7 was significantly higher in the Aloe group than in the placebo group at 8 weeks (P=0.0412 and P=0.0410, respectively). There was a difference in the quantity of sun exposure between each subject, and an additional clinical study that standardizes the amount of ultraviolet rays is warranted. No Aloe sterol intake-dependent harmful phenomenon was observed during the intake period. Conclusion Aloe sterol ingestion increased skin elasticity in the photodamaged skin of men aged <46 years.
Collapse
Affiliation(s)
- Miyuki Tanaka
- Functional Food Ingredients Department, Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa
| | - Yuki Yamamoto
- Department of Dermatology, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Eriko Misawa
- Functional Food Ingredients Department, Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa
| | - Kazumi Nabeshima
- Functional Food Ingredients Department, Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa
| | - Marie Saito
- Functional Food Ingredients Department, Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa
| | - Koji Yamauchi
- Functional Food Ingredients Department, Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa
| | - Fumiaki Abe
- Functional Food Ingredients Department, Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa
| | - Fukumi Furukawa
- Department of Dermatology, Wakayama Medical University, Kimiidera, Wakayama, Japan
| |
Collapse
|
42
|
The Effects of Dietary Macronutrient Balance on Skin Structure in Aging Male and Female Mice. PLoS One 2016; 11:e0166175. [PMID: 27832138 PMCID: PMC5104383 DOI: 10.1371/journal.pone.0166175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/23/2016] [Indexed: 12/16/2022] Open
Abstract
Nutrition influences skin structure; however, a systematic investigation into how energy and macronutrients (protein, carbohydrate and fat) affects the skin has yet to be conducted. We evaluated the associations between macronutrients, energy intake and skin structure in mice fed 25 experimental diets and a control diet for 15 months using the Geometric Framework, a novel method of nutritional analysis. Skin structure was associated with the ratio of dietary macronutrients eaten, not energy intake, and the nature of the effect differed between the sexes. In males, skin structure was primarily associated with protein intake, whereas in females carbohydrate intake was the primary correlate. In both sexes, the dermis and subcutaneous fat thicknesses were inversely proportional. Subcutaneous fat thickness varied positively with fat intake, due to enlarged adipocytes rather than increased adipocyte number. We therefore demonstrated clear interactions between skin structure and macronutrient intakes, with the associations being sex-specific and dependent on dietary macronutrient balance.
Collapse
|
43
|
Kaur A, Webster MR, Weeraratna AT. In the Wnt-er of life: Wnt signalling in melanoma and ageing. Br J Cancer 2016; 115:1273-1279. [PMID: 27764844 PMCID: PMC5129830 DOI: 10.1038/bjc.2016.332] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/10/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022] Open
Abstract
Although the clinical landscape of melanoma is improving rapidly, metastatic melanoma remains a deadly disease. Age remains one of the greatest risk factors for melanoma, and patients older than 55 have a much poorer prognosis than younger individuals, even when the data are controlled for grade and stage. The reasons for this disparity have not been fully uncovered, but there is some recent evidence that Wnt signalling may have a role. Wnt signalling is known to have roles both in cancer progression as well as in organismal ageing. In melanoma, the interplay of Wnt signalling pathways is complex, with different members of the Wnt family guiding different aspects of invasion and proliferation. Here, we will briefly review the current literature addressing the roles of different Wnt pathways in melanoma pathogenesis, provide an overview of Wnt signalling during ageing, and discuss the intersection between melanoma and ageing in terms of Wnt signalling.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA.,University of the Sciences, Philadelphia, PA, USA
| | - Marie R Webster
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Ashani T Weeraratna
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
44
|
Abstract
Aging is a complex process not only influenced by inherited but also by several environmental factors. It is characterized by a progressive loss of function in multiple tissues, which leads to an increased probability of death. On the other hand, several morphological and histological changes are registered in aged skin that is mostly dependent on the cumulative exposure in environmental aging promoters, such as ultraviolet radiation. Understanding of individual pathogenesis and introduction of preventive measurements require objective assessment, i.e., the administration of biomarkers. Because of the complexity of skin aging, the exact definition of biomarkers is a major research challenge. In this article, we summarize the basic knowledge involving skin aging and its biomarkers.
Collapse
Affiliation(s)
- Theodora Kanaki
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany
| | - Evgenia Makrantonaki
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany
- Department of Dermatology and Allergology, University Ulm, Ulm, Germany
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany.
| |
Collapse
|
45
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
46
|
Differential Matrix Metalloprotease (MMP) Expression Profiles Found in Aged Gingiva. PLoS One 2016; 11:e0158777. [PMID: 27391467 PMCID: PMC4938517 DOI: 10.1371/journal.pone.0158777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/21/2016] [Indexed: 11/19/2022] Open
Abstract
The periodontium undergoes age-related cellular and clinical changes, but the involved genes are not yet known. Here, we investigated age-related genetic changes in gingiva at the transcriptomic level. Genes that were differentially expressed between young and old human gingiva were identified by RNA sequencing and verified by real-time PCR. A total of 1939 mRNA transcripts showed significantly differential expression between young and old gingival tissues. Matrix metalloprotease (MMP) regulation was the top pathway involved in gingival aging. MMP3, MMP9, MMP12, and MMP13 were upregulated in old gingival tissues, concomitantly with interleukin-1 beta (IL1B) expression. In vitro experiments using human gingival fibroblasts (hGFs) showed that MMP12 was upregulated in old hGFs compared to young hGFs. Moreover, the MMP3, MMP9 and IL1B levels were more highly stimulated by infection with the oral bacterium, Fusobacterium nucleatum, in old hGFs compared to young hGFs. Collectively, these findings suggest that, in gingiva, the upregulation of MMP12 may be a molecular hallmark of natural aging, while the upregulations of MMP3, MMM9, and IL1B may indicate externally (e.g., infection)-induced aging. These findings contribute to our understanding of the molecular targets involved in gingival aging.
Collapse
|
47
|
Makrantonaki E, Steinhagen-Thiessen E, Nieczaj R, Zouboulis CC, Eckardt R. Prevalence of skin diseases in hospitalized geriatric patients. Z Gerontol Geriatr 2016; 50:524-531. [DOI: 10.1007/s00391-016-1084-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 12/22/2022]
|
48
|
[Experimental models of human skin aging]. Hautarzt 2016; 67:93-8. [PMID: 26743051 DOI: 10.1007/s00105-015-3747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The skin is a representative model for the study of human aging. Despite the high regenerative capacity of the skin, skin physiology changes over the course of life. Medical and cosmetic research is trying to prevent aging, to slow, to stop, or to reverse it. Effects of age-related DNA damage and of changing skin structure on pharmacological parameters are largely unknown. This review article summarizes the state of scientific knowledge in the field of experimental models of human skin aging and shows approaches to improve organotypic skin models, to develop predictive models of aging, and improve aging research.
Collapse
|
49
|
|
50
|
Castanedo-Cazares JP, Rodriguez-Leyva I. Skin biomarkers for neurodegenerative disease: a future perspective. Neurodegener Dis Manag 2015; 5:465-7. [PMID: 26619251 DOI: 10.2217/nmt.15.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Juan Pablo Castanedo-Cazares
- Hospital Central Dr. Ignacio Morones Prieto, Dermatology Department, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Idelfonso Rodriguez-Leyva
- Hospital Central Dr. Ignacio Morones Prieto, Neurology Department, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| |
Collapse
|