1
|
Ilyas M, Ali I, Nasser Binjawhar D, Ullah S, Eldin SM, Ali B, Iqbal R, Bokhari SHA, Mahmood T. Molecular Characterization of Germin-like Protein Genes in Zea mays ( ZmGLPs) Using Various In Silico Approaches. ACS OMEGA 2023; 8:16327-16344. [PMID: 37179620 PMCID: PMC10173433 DOI: 10.1021/acsomega.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
Germin (GER) and germin-like proteins (GLPs) play an important role in various plant processes. Zea mays contains 26 germin-like protein genes (ZmGLPs) located on chromosomes 2, 4, and 10; most of which are functionally unexplored. The present study aimed to characterize all ZmGLPs using the latest computational tools. All of them were studied at a physicochemical, subcellular, structural, and functional level, and their expression was predicted in plant development, against biotic and abiotic stresses using various in silico approaches. Overall, ZmGLPs showed greater similarity in their physicochemical properties, domain architecture, and structure, mostly localized in the cytoplasmic or extracellular regions. Phylogenetically, they have a narrow genetic background with a recent history of gene duplication events on chromosome 4. Functional analysis revealed novel enzymatic activities of phosphoglycolate phosphatase, adenosylhomocysteinase, phosphoglycolate phosphatase-like, osmotin/thaumatin-like, and acetohydroxy acid isomeroreductase largely mediated by disulfide bonding. Expression analysis revealed their crucial role in the root, root tips, crown root, elongation and maturation zones, radicle, and cortex with the highest expression being observed during germination and at the maturity levels. Further, ZmGLPs showed strong expression against biotic (Aspergillus flavus, Colletotrichum graminicola, Cercospora zeina, Fusarium verticillioides, and Fusarium virguliforme) while limited expression was noted against abiotic stresses. Concisely, our results provide a platform for additional functional exploration of the ZmGLP genes against various environmental stresses.
Collapse
Affiliation(s)
- Muhammad Ilyas
- Department
of Botany, Kohsar University Murree, Murree 19679, Punjab, Pakistan
| | - Iftikhar Ali
- Centre
for Plant Science and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
- Department
of Genetics and Development, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Dalal Nasser Binjawhar
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sami Ullah
- Department
of Forestry & Range Management, Kohsar
University Murree, Murree 19679, Pakistan
| | - Sayed M Eldin
- Center
of
Research, Faculty of Engineering, Future
University in Egypt, New Cairo 11835, Egypt
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Syed Habib Ali Bokhari
- Department
of Biosciences, CUI, Islamabad, Pakistan; Faculty of Biomedical and
Life Sciences, Kohsar University Murree, Murree 19679, Pakistan
| | - Tariq Mahmood
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
2
|
Wheat germin-like protein: Studies on chitin/chitosan matrix for tissue engineering applications. J Biosci Bioeng 2021; 131:549-556. [PMID: 33558135 DOI: 10.1016/j.jbiosc.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022]
Abstract
Advances in tissue engineering require the development of new biomaterials with adequate properties of cell attachment and growth. The properties of biomaterials can be improved by incorporation of bioactive molecules to enhance in vitro and/or in vivo functions. In this work, we study the role of a wheat germin-like protease inhibitor (GLPI), free or immobilized in biocompatible matrices to improve cell-attachment ability on different mammalian cell lines. The phylogenetic relationships and functional diversity of the GLPI were analyzed among diverse genera to get insights into sequence motif conservations. The cytocompatibility effect of free GLPI on C2C12 premyoblastic cells and B16 cells as tumoral model has been tested. GLPI promoted proliferation and metabolic activity of both cell types on in vitro models, not showing cytotoxic effects. Furthermore, GLPI was immobilized in chitin microparticles and in chitosan films; we demonstrated an accelerated cell adhesion process in both biomaterials.
Collapse
|
3
|
Nesa J, Sadat A, Buccini DF, Kati A, Mandal AK, Franco OL. Antimicrobial peptides fromBombyx mori: a splendid immune defense response in silkworms. RSC Adv 2020; 10:512-523. [PMID: 35492565 PMCID: PMC9047522 DOI: 10.1039/c9ra06864c] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/15/2019] [Indexed: 01/27/2023] Open
Abstract
Bombyx mori L., a primary producer of silk, is the main tool in the sericulture industry and provides the means of livelihood to a large number of people. Silk cocoon crop losses due to bacterial infection pose a major threat to the sericulture industry. Bombyx mori L., a silkworm of the mulberry type, has a sophisticated inherent innate immune mechanism to combat such invasive pathogens. Among all the components in this defense system, antimicrobial peptides (AMPs) are notable due to their specificity towards the invading pathogens without harming the normal host cells. Bombyx mori L. so far has had AMPs identified that belong to six different families, namely cecropin, defensin, moricin, gloverin, attacin and lebocin, which are produced by the Toll and immune deficiency (IMD) pathways. Their diverse modes of action depend on microbial pathogens and are still under investigation. This review examines the recent progress in understanding the immune defense mechanism of Bombyx mori based on AMPs. AMPs produced by B. mori induced by microbial challenge in the fat body.![]()
Collapse
Affiliation(s)
- Jannatun Nesa
- Chemical Biology Laboratory
- Department of Sericulture
- Raiganj University
- India
| | - Abdul Sadat
- Insect Ecology and Conservation Biology Laboratory
- Department of Sericulture
- Raiganj University
- India
| | - Danieli F. Buccini
- S-INOVA Biotech, Post-Graduate Program in Biotechnology
- Catholic University Dom Bosco
- Campo Grande
- Brazil
| | - Ahmet Kati
- Biotechnology Department
- Institution of Health Science
- University of Health Science
- Istanbul
- Turkey
| | - Amit K. Mandal
- Chemical Biology Laboratory
- Department of Sericulture
- Raiganj University
- India
- Centre for Nanotechnology Sciences
| | - Octavio L. Franco
- S-INOVA Biotech, Post-Graduate Program in Biotechnology
- Catholic University Dom Bosco
- Campo Grande
- Brazil
- Center of Proteomic and Biochemical Analysis
| |
Collapse
|
4
|
Mittal A, Tandon S, Singla SK, Tandon C. Mechanistic Insights into the Antilithiatic Proteins from Terminalia arjuna: A Proteomic Approach in Urolithiasis. PLoS One 2016; 11:e0162600. [PMID: 27649531 PMCID: PMC5029924 DOI: 10.1371/journal.pone.0162600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/25/2016] [Indexed: 11/23/2022] Open
Abstract
Kidney stone formation during hyperoxaluric condition is inherently dependent on the interaction between renal epithelial cells and calcium oxalate (CaOx) crystals. Although modern medicine has progressed in terms of removal of these stones, recurrence and persistent side effects restricts their use. Strategies involving plant based agents which could be used as adjunct therapy is an area which needs to be explored. Plant proteins having antilithiatic activity is a hitherto unexplored area and therefore, we conducted a detailed identification and characterization of antilithiatic proteins from Terminalia arjuna (T. arjuna). Proteins were isolated from the dried bark of T. arjuna and those having molecular weights > 3 kDa were subjected to anion exchange chromatography followed by gel filtration chromatography. Four proteins were identified exhibiting inhibitory activity against CaOx crystallization and crystal growth kinetics The cytoprotective and anti-apoptotic efficacy of these purified proteins was further investigated on oxalate injured renal epithelial cells (MDCK and NRK-52E) wherein, injury due to oxalate was significantly attenuated and led to a dose dependent increase in viability of these cells. These proteins also prevented the interaction of the CaOx crystals to the cell surface and reduced the number of apoptotic cells. Identification of these 4 anionic proteins from the bark of T. arjuna was carried out by Matrix-assisted laser desorption/ionization-time of flight Mass spectrometry (MALDI-TOF MS). This was followed by database search with the MASCOT server and sequence similarity was found with Nuclear pore anchor, DEAD Box ATP-dependent RNA helicase 45, Lon protease homolog 1 and Heat shock protein 90–3. These novel proteins isolated from T. arjuna have the potential to inhibit CaOx crystallization and promote cell survival and therefore, offer novel avenues which need to be explored further for the medical management of urolithiasis.
Collapse
Affiliation(s)
- Amisha Mittal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | | | - Chanderdeep Tandon
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
5
|
Beracochea VC, Almasia NI, Peluffo L, Nahirñak V, Hopp EH, Paniego N, Heinz RA, Vazquez-Rovere C, Lia VV. Sunflower germin-like protein HaGLP1 promotes ROS accumulation and enhances protection against fungal pathogens in transgenic Arabidopsis thaliana. PLANT CELL REPORTS 2015; 34:1717-33. [PMID: 26070410 DOI: 10.1007/s00299-015-1819-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 05/20/2015] [Accepted: 06/02/2015] [Indexed: 05/21/2023]
Abstract
The novel sunflower gene HaGLP1 is the first germin-like protein characterized from the family Asteraceae. It alters the host redox status and confers protection against Sclerotinia sclerotiorum and Rhizoctonia solani. Germin-like proteins (GLPs) are a large, diverse and ubiquitous family of plant glycoproteins belonging to the Cupin super family. These proteins have been widely studied because of their diverse roles in important plant processes, including defence. The novel sunflower gene HaGLP1 encodes the first germin-like protein characterized from the family Asteraceae. To analyse whether constitutive in vivo expression of the HaGLP1 gene may lead to disease tolerance, we developed transgenic Arabidopsis plants that were molecularly characterized and biologically assessed after inoculation with Sclerotinia sclerotiorum or Rhizoctonia solani. HaGLP1 expression in Arabidopsis plants conferred tolerance to S. sclerotiorum at the first stages of disease and interfered with R. solani infection, thus giving rise to significant protection against the latter. Furthermore, HaGLP1 expression in Arabidopsis plants elevated endogenous ROS levels. HaGLP1-induced tolerance does not appear to be related to a constitutive induction of the plant defence or the ROS-related genes examined here. In conclusion, our data suggest that HaGLP1 is an interesting candidate for the engineering of plants with increased fungal tolerance and that this gene could also be useful for the selection of naturally overexpressing sunflower genotypes for conventional breeding purposes.
Collapse
Affiliation(s)
- V C Beracochea
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Dr. Nicolás Repetto y De Los Reseros S/Nº (B1686IGC) Hurlingham, Buenos Aires, Provincia De Buenos Aires, Argentina
| | - N I Almasia
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Dr. Nicolás Repetto y De Los Reseros S/Nº (B1686IGC) Hurlingham, Buenos Aires, Provincia De Buenos Aires, Argentina
| | - L Peluffo
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Dr. Nicolás Repetto y De Los Reseros S/Nº (B1686IGC) Hurlingham, Buenos Aires, Provincia De Buenos Aires, Argentina
| | - V Nahirñak
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Dr. Nicolás Repetto y De Los Reseros S/Nº (B1686IGC) Hurlingham, Buenos Aires, Provincia De Buenos Aires, Argentina
| | - E H Hopp
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Dr. Nicolás Repetto y De Los Reseros S/Nº (B1686IGC) Hurlingham, Buenos Aires, Provincia De Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, (EHA1428), Buenos Aires, Argentina
| | - N Paniego
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Dr. Nicolás Repetto y De Los Reseros S/Nº (B1686IGC) Hurlingham, Buenos Aires, Provincia De Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma De Buenos Aires, Buenos Aires, Argentina
| | - R A Heinz
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Dr. Nicolás Repetto y De Los Reseros S/Nº (B1686IGC) Hurlingham, Buenos Aires, Provincia De Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, (EHA1428), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma De Buenos Aires, Buenos Aires, Argentina
| | - C Vazquez-Rovere
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Dr. Nicolás Repetto y De Los Reseros S/Nº (B1686IGC) Hurlingham, Buenos Aires, Provincia De Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma De Buenos Aires, Buenos Aires, Argentina
| | - V V Lia
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Dr. Nicolás Repetto y De Los Reseros S/Nº (B1686IGC) Hurlingham, Buenos Aires, Provincia De Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, (EHA1428), Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma De Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|