1
|
Radisic V, Grevskott DH, Junghardt N, Øvreås L, Marathe NP. Multidrug-resistant Enterococcus faecium strains enter the Norwegian marine environment through treated sewage. Microbiologyopen 2024; 13:e1397. [PMID: 38441345 PMCID: PMC10913173 DOI: 10.1002/mbo3.1397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/07/2024] Open
Abstract
This study aimed to understand the antibiotic resistance prevalence among Enterococcus spp. from raw and treated sewage in Bergen city, Norway. In total, 517 Enterococcus spp. isolates were obtained from raw and treated sewage from five sewage treatment plants (STPs) over three sampling occasions, with Enterococcus faecium as the most prevalent (n = 492) species. E. faecium strains (n = 307) obtained from the influent samples, showed the highest resistance against quinupristin/dalfopristin (67.8%). We observed reduced susceptibility to erythromycin (30.6%) and tetracycline (6.2%) in these strains. E. faecium strains (n = 185) obtained from the effluent samples showed highest resistance against quinupristin/dalfopristin (68.1%) and reduced susceptibility to erythromycin (24.9%) and tetracycline (8.6%). We did not detect resistance against last-resort antibiotics, such as linezolid, vancomycin, and tigecycline in any of the strains. Multidrug-resistant (MDR) E. faecium strains were detected in both influent (2.3%) and effluent (2.2%) samples. Whole genome sequencing of the Enterococcus spp. strains (n = 25) showed the presence of several antibiotic resistance genes, conferring resistance against aminoglycosides, tetracyclines, and macrolides, as well as several virulence genes and plasmid replicons. Two sequenced MDR strains from the effluents belonged to the hospital-associated clonal complex 17 and carried multiple virulence genes. Our study demonstrates that clinically relevant MDR Enterococcus spp. strains are entering the marine environment through treated sewage.
Collapse
Affiliation(s)
- Vera Radisic
- Department of Contaminants and BiohazardsInstitute of Marine Research (IMR)BergenNorway
- Department of Biological SciencesUniversity of Bergen (UiB)BergenNorway
| | - Didrik H. Grevskott
- Department of Contaminants and BiohazardsInstitute of Marine Research (IMR)BergenNorway
| | - Nadja Junghardt
- Department of Contaminants and BiohazardsInstitute of Marine Research (IMR)BergenNorway
| | - Lise Øvreås
- Department of Biological SciencesUniversity of Bergen (UiB)BergenNorway
| | - Nachiket P. Marathe
- Department of Contaminants and BiohazardsInstitute of Marine Research (IMR)BergenNorway
| |
Collapse
|
2
|
Morawska LP, Kuipers OP. Cell-to-cell non-conjugative plasmid transfer between Bacillus subtilis and lactic acid bacteria. Microb Biotechnol 2023; 16:784-798. [PMID: 36547214 PMCID: PMC10034627 DOI: 10.1111/1751-7915.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Bacillus subtilis is a soil-dwelling bacterium that can interact with a plethora of other microorganisms in its natural habitat. Due to the versatile interactions and its ability to form nanotubes, i.e., recently described membrane structures that trade cytoplasmic content between neighbouring cells, we investigated the potential of HGT from B. subtilis to industrially-relevant members of lactic acid bacteria (LAB). To explore the interspecies HGT events, we developed a co-culturing protocol and provided proof of transfer of a small high copy non-conjugative plasmid from B. subtilis to LABs. Interestingly, the plasmid transfer did not involve conjugation nor activation of the competent state by B. subtilis. Moreover, our study shows for the first time non-conjugative cell-to-cell intraspecies plasmid transfer for non-competent Lactococcus lactis sp. cremoris strains. Our study indicates that cell-to-cell transformation is a ubiquitous form of HGT and can be potentially utilized as an alternative tool for natural (non-GMO) strain improvement.
Collapse
Affiliation(s)
- Luiza P Morawska
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Cell-surface protein YwfG of Lactococcus lactis binds to α-1,2-linked mannose. PLoS One 2023; 18:e0273955. [PMID: 36602978 DOI: 10.1371/journal.pone.0273955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Lactococcus lactis strains are used as starter cultures in the production of fermented dairy and vegetable foods, but the species also occurs in other niches such as plant material. Lactococcus lactis subsp. lactis G50 (G50) is a plant-derived strain and potential candidate probiotics. Western blotting of cell-wall proteins using antibodies generated against whole G50 cells detected a 120-kDa protein. MALDI-TOF MS analysis identified it as YwfG, a Leu-Pro-any-Thr-Gly cell-wall-anchor-domain-containing protein. Based on a predicted domain structure, a recombinant YwfG variant covering the N-terminal half (aa 28-511) of YwfG (YwfG28-511) was crystallized and the crystal structure was determined. The structure consisted of an L-type lectin domain, a mucin-binding protein domain, and a mucus-binding protein repeat. Recombinant YwfG variants containing combinations of these domains (YwfG28-270, YwfG28-336, YwfG28-511, MubR4) were prepared and their interactions with monosaccharides were examined by isothermal titration calorimetry; the only interaction observed was between YwfG28-270, which contained the L-type lectin domain, and d-mannose. Among four mannobioses, α-1,2-mannobiose had the highest affinity for YwfG28-270 (dissociation constant = 34 μM). YwfG28-270 also interacted with yeast mannoproteins and yeast mannan. Soaking of the crystals of YwfG28-511 with mannose or α-1,2-mannobiose revealed that both sugars bound to the L-type lectin domain in a similar manner, although the presence of the mucin-binding protein domain and the mucus-binding protein repeat within the recombinant protein inhibited the interaction between the L-type lectin domain and mannose residues. Three of the YwfG variants (except MubR4) induced aggregation of yeast cells. Strain G50 also induced aggregation of yeast cells, which was abolished by deletion of ywfG from G50, suggesting that surface YwfG contributes to the interaction with yeast cells. These findings provide new structural and functional insights into the interaction between L. lactis and its ecological niche via binding of the cell-surface protein YwfG with mannose.
Collapse
|
4
|
Esteban-Torres M, Ruiz L, Rossini V, Nally K, van Sinderen D. Intracellular glycogen accumulation by human gut commensals as a niche adaptation trait. Gut Microbes 2023; 15:2235067. [PMID: 37526383 PMCID: PMC10395257 DOI: 10.1080/19490976.2023.2235067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023] Open
Abstract
The human gut microbiota is a key contributor to host metabolism and physiology, thereby impacting in various ways on host health. This complex microbial community has developed many metabolic strategies to colonize, persist and survive in the gastrointestinal environment. In this regard, intracellular glycogen accumulation has been associated with important physiological functions in several bacterial species, including gut commensals. However, the role of glycogen storage in shaping the composition and functionality of the gut microbiota offers a novel perspective in gut microbiome research. Here, we review what is known about the enzymatic machinery and regulation of glycogen metabolism in selected enteric bacteria, while we also discuss its potential impact on colonization and adaptation to the gastrointestinal tract. Furthermore, we survey the presence of such glycogen biosynthesis pathways in gut metagenomic data to highlight the relevance of this metabolic trait in enhancing survival in the highly competitive and dynamic gut ecosystem.
Collapse
Affiliation(s)
- Maria Esteban-Torres
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Villaviciosa, Spain
- Functionality and Ecology of Benefitial Microbes (MicroHealth Group), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Guéneau V, Plateau-Gonthier J, Arnaud L, Piard JC, Castex M, Briandet R. Positive biofilms to guide surface microbial ecology in livestock buildings. Biofilm 2022; 4:100075. [PMID: 35494622 PMCID: PMC9039864 DOI: 10.1016/j.bioflm.2022.100075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022] Open
Abstract
The increase in human consumption of animal proteins implies changes in the management of meat production. This is followed by increasingly restrictive regulations on antimicrobial products such as chemical biocides and antibiotics, used in particular to control pathogens that can spread zoonotic diseases. Aligned with the One Health concept, alternative biological solutions are under development and are starting to be used in animal production. Beneficial bacteria able to form positive biofilms and guide surface microbial ecology to limit microbial pathogen settlement are promising tools that could complement existing biosecurity practices to maintain the hygiene of livestock buildings. Although the benefits of positive biofilms have already been documented, the associated fundamental mechanisms and the rationale of the microbial composition of these new products are still sparce. This review provides an overview of the envisioned modes of action of positive biofilms used on livestock building surfaces and the resulting criteria for the selection of the appropriate microorganisms for this specific application. Limits and advantages of this biosecurity approach are discussed as well as the impact of such practices along the food chain, from farm to fork.
Collapse
Affiliation(s)
- Virgile Guéneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lallemand SAS, 31702, Blagnac, France
| | | | | | - Jean-Christophe Piard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
6
|
de Almeida OGG, Pereira MG, Oxaran V, De Martinis ECP, Alves VF. In silico metatranscriptomic approach for tracking biofilm-related effectors in dairies and its importance for improving food safety. Front Microbiol 2022; 13:928480. [PMID: 36147852 PMCID: PMC9487997 DOI: 10.3389/fmicb.2022.928480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Sessile microorganisms are usually recalcitrant to antimicrobial treatments, and it is possible that finding biofilm-related effectors in metatranscriptomics datasets helps to understand mechanisms for bacterial persistence in diverse environments, by revealing protein-encoding genes that are expressed in situ. For this research, selected dairy-associated metatranscriptomics bioprojects were downloaded from the public databases JGI GOLD and NCBI (eight milk and 45 cheese samples), to screen for sequences encoding biofilm-related effectors. Based on the literature, the selected genetic determinants were related to adhesins, BAP, flagellum-related, intraspecific QS (AHL, HK, and RR), interspecific QS (LuxS), and QQ (AHL-acylases, AHL-lactonases). To search for the mRNA sequences encoding for those effector proteins, a custom database was built from UniprotKB, yielding 1,154,446 de-replicated sequences that were indexed in DIAMOND for alignment. The results revealed that in all the dairy-associated metatranscriptomic datasets obtained, there were reads assigned to genes involved with flagella, adhesion, and QS/QQ, but BAP-reads were found only for milk. Significant Pearson correlations (p < 0.05) were observed for transcripts encoding for flagella, RR, histidine kinases, adhesins, and LuxS, although no other significant correlations were found. In conclusion, the rationale used in this study was useful to demonstrate the presence of biofilm-associated effectors in metatranscriptomics datasets, pointing out to possible regulatory mechanisms in action in dairy-related biofilms, which could be targeted in the future to improve food safety.
Collapse
Affiliation(s)
| | - Marita Gimenez Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Virginie Oxaran
- Department of Biological Sciences, University of Texas, El Paso, El Paso, TX, United States
| | | | | |
Collapse
|
7
|
Kumar V, Murmu S, Krishnan V. Deciphering the substrate specificity of housekeeping sortase A and pilus-specific sortase C of probiotic bacterium Lactococcus lactis. Biochimie 2022; 200:140-152. [PMID: 35654243 DOI: 10.1016/j.biochi.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Several strains and species of lactic acid bacteria (LAB) are widely used in fermented foods, including dairy products and also as probiotics, because of their contribution to various health benefits in humans. Sortase enzymes decorate the bacterial cell wall with different surface proteins and pili for facilitating the interactions with host and environment for the colonization and beneficial effects. While the sortases and sortase anchored proteins from pathogens have been the prime focus of the research in the past, sortases from many non-pathogenic bacteria, including LAB strains, have attracted attention for their potential applications in vaccine delivery and other clinical interventions. Here, we report the purification and functional characterization of two sortases (housekeeping SrtA and pilus-specific SrtC) from a probiotic Lactococcus lactis. The purified sortases were found to be active against the putative LPXTG motif-based peptide substrates, albeit with differences. The in-silico analysis provides insights into the residues involved in substrate binding and specificity. Overall, this study sheds new light on the aspects of structure, substrate specificity, and function of sortases from non-pathogenic bacteria, which may have physiological ramifications as well as their applications in sortase-mediated protein bioconjugation.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, Haryana (NCR Delhi), India
| | - Sumit Murmu
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, Haryana (NCR Delhi), India
| | - Vengadesan Krishnan
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, Haryana (NCR Delhi), India.
| |
Collapse
|
8
|
Yu Y, Zong M, Lao L, Wen J, Pan D, Wu Z. Adhesion properties of the cell surface proteins in Lactobacillus strains under the GIT environment. Food Funct 2022; 13:3098-3109. [DOI: 10.1039/d1fo04328e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lactic acid bacteria (LAB) play an essential role in the epithelial barrier and the gut immune system. It can antagonize pathogens by producing antimicrobial substances like bacteriocins, and compete with...
Collapse
|
9
|
Gorreja F, Walker WA. The potential role of adherence factors in probiotic function in the gastrointestinal tract of adults and pediatrics: a narrative review of experimental and human studies. Gut Microbes 2022; 14:2149214. [PMID: 36469568 PMCID: PMC9728474 DOI: 10.1080/19490976.2022.2149214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Numerous studies point to the important role of probiotic bacteria in gastrointestinal health. Probiotics act through mechanisms affecting enteric pathogens, epithelial barrier function, immune signaling, and conditioning of indigenous microbiota. Once administered, probiotics reach the gastrointestinal tract and interact with the host through bacterial surface molecules, here called adhesion factors, which are either strain- or specie-specific. Probiotic adhesion, through structural adhesion factors, is a mechanism that facilitates persistence within the gastrointestinal tract and triggers the initial host responses. Thus, an understanding of specific probiotic adhesion mechanisms could predict how specific probiotic strains elicit benefits and the potential of adherence factors as a proxy to predict probiotic function. This review summarizes the present understanding of probiotic adherence in the gastrointestinal tract. It highlights the bacterial adhesion structure types, their molecular communication with the host and the consequent impact on intestinal diseases in both adult and pediatric populations. Finally, we discuss knockout/isolation studies as direct evidence for adhesion factors conferring anti-inflammatory and pathogen inhibition properties to a probiotic.What is known: Probiotics can be used to treat clinical conditions.Probiotics improve dysbiosis and symptoms.Clinical trials may not confirm in vitro and animal studies.What is new: Adhesion structures may be important for probiotic function.Need to systematically determine physical characteristics of probiotics before selecting for clinical trials.Probiotics may be genetically engineered to add to clinical efficacy.
Collapse
Affiliation(s)
- Frida Gorreja
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - W. Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Three Distinct Proteases Are Responsible for Overall Cell Surface Proteolysis in Streptococcus thermophilus. Appl Environ Microbiol 2021; 87:e0129221. [PMID: 34550764 DOI: 10.1128/aem.01292-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The lactic acid bacterium Streptococcus thermophilus was believed to display only two distinct proteases at the cell surface, namely, the cell envelope protease PrtS and the housekeeping protease HtrA. Using peptidomics, we demonstrate here the existence of an additional active cell surface protease, which shares significant homology with the SepM protease of Streptococcus mutans. Although all three proteases-PrtS, HtrA, and SepM-are involved in the turnover of surface proteins, they demonstrate distinct substrate specificities. In particular, SepM cleaves proteins involved in cell wall metabolism and cell elongation, and its inactivation has consequences for cell morphology. When all three proteases are inactivated, the residual cell-surface proteolysis of S. thermophilus is approximately 5% of that of the wild-type strain. IMPORTANCE Streptococcus thermophilus is a lactic acid bacterium used widely as a starter in the dairy industry. Due to its "generally recognized as safe" status and its weak cell surface proteolytic activity, it is also considered a potential bacterial vector for heterologous protein production. Our identification of a new cell surface protease made it possible to construct a mutant strain with a 95% reduction in surface proteolysis, which could be useful in numerous biotechnological applications.
Collapse
|
11
|
Shahin K, Veek T, Heckman TI, Littman E, Mukkatira K, Adkison M, Welch TJ, Imai DM, Pastenkos G, Camus A, Soto E. Isolation and characterization of Lactococcus garvieae from rainbow trout, Onchorhyncus mykiss, from California, USA. Transbound Emerg Dis 2021; 69:2326-2343. [PMID: 34328271 DOI: 10.1111/tbed.14250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/17/2021] [Indexed: 11/26/2022]
Abstract
Lactococcus garvieae is an emergent bacterial pathogen of salmonid fish in North America that causes acute infections particularly at water temperatures above 15°C. During 2020, L. garvieae was detected in rainbow trout, Onchorhyncus mykiss, cultured in Southern California and the Eastern Sierras. Infected fish exhibited high mortalities and nonspecific clinical signs of lethargy, erratic swimming, dark skin pigmentation, and exophthalmia. Macroscopic changes included external and internal hemorrhages, mainly in the eyes, liver, coelomic fat, intestine, and brain. Histological examination revealed splenitis, branchitis, panophthalmitis, hepatitis, enteritis, and coelomitis, with variable degrees of tissue damage among evaluated fish. Pure colonies of L. garvieae were isolated from infected trout and specific PCR primers for L. garvieae confirmed the preliminary diagnosis. Multilocus sequence analysis showed that the strains recovered from diseased trout represent a novel genetic group. Isolates were able to form biofilms within 24 h that increased their resistance to disinfection by hydrogen peroxide. Laboratory challenge methods for inducing lactococcosis in steelhead trout, O. mykiss, were evaluated by intracoelomic injection with serial dilutions of L. garvieae. The median lethal dose 21 days post challenge was ∼20 colony-forming units/fish. Experimentally infected trout presented similar clinical signs, gross changes, and microscopic lesions as those with natural disease, fulfilling Koch's postulates and demonstrating the high virulence of the recovered strains.
Collapse
Affiliation(s)
- Khalid Shahin
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA.,Aquatic Animal Diseases Laboratory, Aquaculture Department, National Institute of Oceanography and Fisheries, Suez, Egypt
| | - Tresa Veek
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Taylor I Heckman
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Eric Littman
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | | | - Mark Adkison
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Timothy J Welch
- National Center for Cool and Coldwater Aquaculture, Kearneysville, West Virginia, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Gabrielle Pastenkos
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Alvin Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
12
|
Kleerebezem M, Bachmann H, van Pelt-KleinJan E, Douwenga S, Smid EJ, Teusink B, van Mastrigt O. Lifestyle, metabolism and environmental adaptation in Lactococcus lactis. FEMS Microbiol Rev 2021; 44:804-820. [PMID: 32990728 DOI: 10.1093/femsre/fuaa033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Lactococcus lactis serves as a paradigm organism for the lactic acid bacteria (LAB). Extensive research into the molecular biology, metabolism and physiology of several model strains of this species has been fundamental for our understanding of the LAB. Genomic studies have provided new insights into the species L. lactis, including the resolution of the genetic basis of its subspecies division, as well as the control mechanisms involved in the fine-tuning of growth rate and energy metabolism. In addition, it has enabled novel approaches to study lactococcal lifestyle adaptations to the dairy application environment, including its adjustment to near-zero growth rates that are particularly relevant in the context of cheese ripening. This review highlights various insights in these areas and exemplifies the strength of combining experimental evolution with functional genomics and bacterial physiology research to expand our fundamental understanding of the L. lactis lifestyle under different environmental conditions.
Collapse
Affiliation(s)
- Michiel Kleerebezem
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Herwig Bachmann
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,NIZO food research, Kernhemseweg 2, 6718 ZB Ede, the Netherlands
| | - Eunice van Pelt-KleinJan
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,TiFN Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands
| | - Sieze Douwenga
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,TiFN Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands
| | - Eddy J Smid
- Laboratory of Food Microbiology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Bas Teusink
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Oscar van Mastrigt
- Laboratory of Food Microbiology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
13
|
Pili and other surface proteins influence the structure and the nanomechanical properties of Lactococcus lactis biofilms. Sci Rep 2021; 11:4846. [PMID: 33649417 PMCID: PMC7921122 DOI: 10.1038/s41598-021-84030-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/09/2021] [Indexed: 11/08/2022] Open
Abstract
Lactic acid bacteria, in particular Lactococcus lactis, are widely used in the food industry, for the control and/or the protection of the manufacturing processes of fermented food. While L. lactis has been reported to form compact and uniform biofilms it was recently shown that certain strains able to display pili at their surface form more complex biofilms exhibiting heterogeneous and aerial structures. As the impact of those biofilm structures on the biomechanical properties of the biofilms is poorly understood, these were investigated using AFM force spectroscopy and imaging. Three types of strains were used i.e., a control strain devoid of pili and surface mucus-binding protein, a strain displaying pili but no mucus-binding proteins and a strain displaying both pili and a mucus-binding protein. To identify potential correlations between the nanomechanical measurements and the biofilm architecture, 24-h old biofilms were characterized by confocal laser scanning microscopy. Globally the strains devoid of pili displayed smoother and stiffer biofilms (Young Modulus of 4-100 kPa) than those of piliated strains (Young Modulus around 0.04-0.1 kPa). Additional display of a mucus-binding protein did not affect the biofilm stiffness but made the biofilm smoother and more compact. Finally, we demonstrated the role of pili in the biofilm cohesiveness by monitoring the homotypic adhesion of bacteria to the biofilm surface. These results will help to understand the role of pili and mucus-binding proteins withstanding external forces.
Collapse
|
14
|
Chodorski J, Hauth J, Strieth D, Wirsen A, Ulber R. Diffusion profiles in L. lactis biofilms under different conditions. Eng Life Sci 2021; 21:29-36. [PMID: 33531888 PMCID: PMC7837298 DOI: 10.1002/elsc.202000059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023] Open
Abstract
Despite being an important topic in biofilm research, we still know little about diffusion in biofilms. Emerging biofilms of Lactococcus lactis growing in custom-made flow-cells were monitored and diffusion constants across the height of the biofilms recorded. The biofilms showed different diffusional behavior with regard to flow rate and pH variations, despite growing to similar thickness. At a higher flow rate, the biofilm exhibits slower diffusion compared to the reference cultivation at lower flow rate. By increasing pH, the biofilm exhibited fast growth and little difference in diffusion compared to the reference cultivation. Furthermore, the diffusion inside of the biofilms differed depending on the position in the flow-cell. The present study reveals new insights in how external factors can affect structure and density of biofilms. The method can be reliably used for L. lactis biofilms with a thickness up to 120 μm.
Collapse
Affiliation(s)
- Jonas Chodorski
- Institute of Bioprocess Engineering, Department of Mechanical and Process EngineeringTU KaiserslauternKaiserslauternGermany
| | - Jan Hauth
- Fraunhofer ITWMKaiserslauternGermany
| | - Dorina Strieth
- Institute of Bioprocess Engineering, Department of Mechanical and Process EngineeringTU KaiserslauternKaiserslauternGermany
| | | | - Roland Ulber
- Institute of Bioprocess Engineering, Department of Mechanical and Process EngineeringTU KaiserslauternKaiserslauternGermany
| |
Collapse
|
15
|
Shirakawa D, Wakinaka T, Watanabe J. Identification of the putative N-acetylglucosaminidase CseA associated with daughter cell separation in Tetragenococcus halophilus. Biosci Biotechnol Biochem 2020; 84:1724-1735. [PMID: 32448081 DOI: 10.1080/09168451.2020.1764329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lactic acid bacterium Tetragenococcus halophilus, which is used as a starter to brew soy sauce, comprises both cluster-forming strains and dispersed strains. The cluster-forming strains are industrially useful for obtaining clear soy sauce, because the cell clusters are trapped by filter cloth when the soy sauce mash is pressed. However, the molecular mechanism underlying cell cluster formation is unknown. Whole genome sequence analysis and subsequent target sequence analysis revealed that the cluster-forming strains commonly have functional defects in N-acetylglucosaminidase CseA, a peptidoglycan hydrolase. CseA is a multimodular protein that harbors a GH73 domain and six peptidoglycan-binding LysM domains. Recombinant CseA hydrolyzed peptidoglycan and promoted cell separation. Functional analysis of truncated CseA derivatives revealed that the LysM domains play an important role in efficient peptidoglycan degradation and cell separation. Taken together, the results of this study identify CseA as a factor that greatly affects the cluster formation in T. halophilus.
Collapse
Affiliation(s)
| | | | - Jun Watanabe
- Manufacturing Division, Yamasa Corporation , Chiba, Japan
| |
Collapse
|
16
|
Dramé I, Formosa-Dague C, Lafforgue C, Chapot-Chartier MP, Piard JC, Castelain M, Dague E. Analysis of Homotypic Interactions of Lactococcus lactis Pili Using Single-Cell Force Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21411-21423. [PMID: 32314572 DOI: 10.1021/acsami.0c03069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell surface proteins of Gram-positive bacteria play crucial roles in their adhesion to abiotic and biotic surfaces. Pili are long and flexible proteinaceous filaments known to enhance bacterial initial adhesion. They promote surface colonization and are thus considered as essential factors in biofilm cohesion. Our hypothesis is that pili mediate interactions between cells and may thereby directly affect biofilm formation. In this study, we use single-cell force spectroscopy (SCFS) to quantify the force of the homotypic pili interactions between individual bacterial cells, using different Lactococcus lactis strains producing pili or not as model bacteria. Moreover the force-distance curves were analyzed to determine the physical and nanomechanical properties of L. lactis pili. The results for pili-devoided strains showed a weak adhesion between cells (adhesion forces and work in the range of 100 pN and 7 × 10-18 J, respectively). On the contrary, the piliated strains showed high adhesion levels with adhesion forces and adhesion work over 200 pN and 50 × 10-18 J, respectively. The force-extension curves showed multiple adhesion events, typical of the unfolding of macromolecules. These unfolding force peaks were fitted using the physical worm-like chain model to get fundamental knowledge on the pili nanomechanical properties. In addition, SCFS applied to a L. lactis isolate expressing both pili and mucus-binding protein at its surface and two derivative mutants revealed the capacity of pili to interact with other surface proteins including mucus-binding proteins. This study demonstrates that pili are involved in L. lactis homotypic interactions and thus can influence biofilm structuring.
Collapse
Affiliation(s)
- Ibrahima Dramé
- TBI, Université de Toulouse, INSA, INRAE, CNRS, 31000 Toulouse, France
- LAAS-CNRS, Université de Toulouse, CNRS, 31000 Toulouse, France
| | | | | | | | - Jean-Christophe Piard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Mickaël Castelain
- TBI, Université de Toulouse, INSA, INRAE, CNRS, 31000 Toulouse, France
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31000 Toulouse, France
| |
Collapse
|
17
|
Gaudu P, Yamamoto Y, Jensen PR, Hammer K, Lechardeur D, Gruss A. Genetics of Lactococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0035-2018. [PMID: 31298208 PMCID: PMC10957224 DOI: 10.1128/microbiolspec.gpp3-0035-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is the best characterized species among the lactococci, and among the most consumed food-fermenting bacteria worldwide. Thanks to their importance in industrialized food production, lactococci are among the lead bacteria understood for fundamental metabolic pathways that dictate growth and survival properties. Interestingly, lactococci belong to the Streptococcaceae family, which includes food, commensal and virulent species. As basic metabolic pathways (e.g., respiration, metal homeostasis, nucleotide metabolism) are now understood to underlie virulence, processes elucidated in lactococci could be important for understanding pathogen fitness and synergy between bacteria. This chapter highlights major findings in lactococci and related bacteria, and covers five themes: distinguishing features of lactococci, metabolic capacities including the less known respiration metabolism in Streptococcaceae, factors and pathways modulating stress response and fitness, interbacterial dialogue via metabolites, and novel applications in health and biotechnology.
Collapse
Affiliation(s)
| | - Yuji Yamamoto
- Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Aomori Japan
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Karin Hammer
- DTU Bioengineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | |
Collapse
|
18
|
Wang B, Tan X, Du R, Zhao F, Zhang L, Han Y, Zhou Z. Bacterial composition of biofilms formed on dairy-processing equipment. Prep Biochem Biotechnol 2019; 49:477-484. [DOI: 10.1080/10826068.2019.1587623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Binbin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Xiqian Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Renpeng Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Fangkun Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Lixia Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| |
Collapse
|
19
|
Emerging nano-biosensing with suspended MNP microbial extraction and EANP labeling. Biosens Bioelectron 2018; 117:781-793. [PMID: 30029200 DOI: 10.1016/j.bios.2018.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 02/08/2023]
Abstract
Emerging nano-biosensing with suspended MNP microbial extraction and EANP labeling may ensure a secure microbe-free food supply, as rapid response detection of microbial contamination is of utmost importance. Many biosensor designs have been proposed over the past two decades, covering a broad range of binding ligands, signal amplification, and detection mechanisms. These designs may consist of self-contained test strips developed from the base up with complicated nanoparticle chemistry and intricate ligand immobilization. Other methods use multiple step-wise additions, many based upon ELISA 96-well plate technology with fluorescent detection. In addition, many biosensors use expensive antibody receptors or DNA ligands. But many of these proposed designs are impracticable for most applications or users, since they don't FIRST address the broad goals of any biosensor: Field operability, Inexpensive, with Real-time detection that is both Sensitive and Specific to target, while being as Trouble-free as possible. Described in this review are applications that utilize versatile magnetic nanoparticles (MNP) extraction, electrically active nanoparticles (EANP) labeling, and carbohydrate-based ligand chemistry. MNP provide rapid pathogen extraction from liquid samples. EANP labeling improves signal amplification and expands signaling options to include optical and electrical detection. Carbohydrate ligands are inexpensive, robust structures that are increasingly synthesized for higher selectivity. Used in conjunction with optical or electrical detection of gold nanoparticles (AuNP), carbohydrate-functionalized MNP-cell-AuNP nano-biosensing advances the goal of being the FIRST biosensor of choice in detecting microbial pathogens throughout our food supply chain.
Collapse
|
20
|
Tarazanova M, Huppertz T, Kok J, Bachmann H. Altering textural properties of fermented milk by using surface-engineered Lactococcus lactis. Microb Biotechnol 2018; 11:770-780. [PMID: 29745037 PMCID: PMC6011991 DOI: 10.1111/1751-7915.13278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/20/2018] [Accepted: 03/30/2018] [Indexed: 01/23/2023] Open
Abstract
Lactic acid bacteria are widely used for the fermentation of dairy products. While bacterial acidification rates, proteolytic activity and the production of exopolysaccharides are known to influence textural properties of fermented milk products, little is known about the role of the microbial surface on microbe-matrix interactions in dairy products. To investigate how alterations of the bacterial cell surface affect fermented milk properties, 25 isogenic Lactococcus lactis strains that differed with respect to surface charge, hydrophobicity, cell chaining, cell-clumping, attachment to milk proteins, pili expression and EPS production were used to produce fermented milk. We show that overexpression of pili increases surface hydrophobicity of various strains from 3-19% to 94-99%. A profound effect of different cell surface properties was an altered spatial distribution of the cells in the fermented product. Aggregated cells tightly fill the cavities of the protein matrix, while chaining cells seem to be localized randomly. A positive correlation was found between pili overexpression and viscosity and gel hardness of fermented milk. Gel hardness also positively correlated with clumping of cells in the fermented milk. Viscosity of fermented milk was also higher when it was produced with cells with a chaining phenotype or with cells that overexpress exopolysaccharides. Our results show that alteration of cell surface morphology affects textural parameters of fermented milk and cell localization in the product. This is indicative of a cell surface-dependent potential of bacterial cells as structure elements in fermented foods.
Collapse
Affiliation(s)
- Mariya Tarazanova
- NIZO B.V.P.O. Box 206710 BAEdeThe Netherlands
- TiFNP.O. Box 5576700 ANWageningenThe Netherlands
- Molecular GeneticsUniversity of GroningenNijenborgh 79747AGGroningenThe Netherlands
| | - Thom Huppertz
- NIZO B.V.P.O. Box 206710 BAEdeThe Netherlands
- TiFNP.O. Box 5576700 ANWageningenThe Netherlands
- Present address:
FrieslandCampinaStationsplein 43818 LE AmersfoortThe Netherlands
| | - Jan Kok
- TiFNP.O. Box 5576700 ANWageningenThe Netherlands
- Molecular GeneticsUniversity of GroningenNijenborgh 79747AGGroningenThe Netherlands
| | - Herwig Bachmann
- NIZO B.V.P.O. Box 206710 BAEdeThe Netherlands
- TiFNP.O. Box 5576700 ANWageningenThe Netherlands
| |
Collapse
|
21
|
Muruzović MŽ, Mladenović KG, Čomić LR. In vitro evaluation of resistance to environmental stress by planktonic and biofilm form of lactic acid bacteria isolated from traditionally made cheese from Serbia. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
23
|
Mercier-Bonin M, Chapot-Chartier MP. Surface Proteins of Lactococcus lactis: Bacterial Resources for Muco-adhesion in the Gastrointestinal Tract. Front Microbiol 2017; 8:2247. [PMID: 29218032 PMCID: PMC5703838 DOI: 10.3389/fmicb.2017.02247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/31/2017] [Indexed: 01/13/2023] Open
Abstract
Food and probiotic bacteria, in particular lactic acid bacteria, are ingested in large amounts by humans and are part of the transient microbiota which is increasingly considered to be able to impact the resident microbiota and thus possibly the host health. The lactic acid bacterium Lactococcus lactis is extensively used in starter cultures to produce dairy fermented food. Also because of a generally recognized as safe status, L. lactis has been considered as a possible vehicle to deliver in vivo therapeutic molecules with anti-inflammatory properties in the gastrointestinal tract. One of the key factors that may favor health effects of beneficial bacteria to the host is their capacity to colonize transiently the gut, notably through close interactions with mucus, which covers and protects the intestinal epithelium. Several L. lactis strains have been shown to exhibit mucus-binding properties and bacterial surface proteins have been identified as key determinants of such capacity. In this review, we describe the different types of surface proteins found in L. lactis, with a special focus on mucus-binding proteins and pili. We also review the different approaches used to investigate the adhesion of L. lactis to mucus, and particularly to mucins, one of its major components, and we present how these approaches allowed revealing the role of surface proteins in muco-adhesion.
Collapse
Affiliation(s)
- Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | |
Collapse
|
24
|
Tarazanova M, Huppertz T, Beerthuyzen M, van Schalkwijk S, Janssen P, Wels M, Kok J, Bachmann H. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates. Front Microbiol 2017; 8:1691. [PMID: 28936202 PMCID: PMC5594101 DOI: 10.3389/fmicb.2017.01691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities.
Collapse
Affiliation(s)
- Mariya Tarazanova
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
- Molecular Genetics, University of GroningenGroningen, Netherlands
| | - Thom Huppertz
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
| | | | | | - Patrick Janssen
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
| | - Michiel Wels
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
| | - Jan Kok
- TI Food and NutritionWageningen, Netherlands
- Molecular Genetics, University of GroningenGroningen, Netherlands
| | - Herwig Bachmann
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
| |
Collapse
|
25
|
Couvigny B, Lapaque N, Rigottier-Gois L, Guillot A, Chat S, Meylheuc T, Kulakauskas S, Rohde M, Mistou MY, Renault P, Doré J, Briandet R, Serror P, Guédon E. Three glycosylated serine-rich repeat proteins play a pivotal role in adhesion and colonization of the pioneer commensal bacterium,Streptococcus salivarius. Environ Microbiol 2017; 19:3579-3594. [DOI: 10.1111/1462-2920.13853] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Benoit Couvigny
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Nicolas Lapaque
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Lionel Rigottier-Gois
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Alain Guillot
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Sophie Chat
- INRA, Plateforme MIMA2; Jouy-en-josas France
| | - Thierry Meylheuc
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
- INRA, Plateforme MIMA2; Jouy-en-josas France
| | - Saulius Kulakauskas
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Manfred Rohde
- HZI, Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Michel-Yves Mistou
- Laboratory for Food Safety; Université Paris-Est, ANSES; Maisons-Alfort France
| | - Pierre Renault
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Joel Doré
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Romain Briandet
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Pascale Serror
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Eric Guédon
- STLO, UMR1253, INRA, Agrocampus Ouest; Rennes France
| |
Collapse
|
26
|
Arena MP, Capozzi V, Spano G, Fiocco D. The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms. Appl Microbiol Biotechnol 2017; 101:2641-2657. [PMID: 28213732 DOI: 10.1007/s00253-017-8182-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 12/23/2022]
Abstract
Lactic acid bacteria (LAB) are a heterogeneous group of Gram-positive bacteria that comprise several species which have evolved in close association with humans (food and lifestyle). While their use to ferment food dates back to very ancient times, in the last decades, LAB have attracted much attention for their documented beneficial properties and for potential biomedical applications. Some LAB are commensal that colonize, stably or transiently, host mucosal surfaces, inlcuding the gut, where they may contribute to host health. In this review, we present and discuss the main factors enabling LAB adaptation to such lifestyle, including the gene reprogramming accompanying gut colonization, the specific bacterial components involved in adhesion and interaction with host, and how the gut niche has shaped the genome of intestine-adapted species. Moreover, the capacity of LAB to colonize abiotic surfaces by forming structured communities, i.e., biofilms, is briefly discussed, taking into account the main bacterial and environmental factors involved, particularly in relation to food-related environments. The vast spread of LAB surface-associated communities and the ability to control their occurrence hold great potentials for human health and food safety biotechnologies.
Collapse
Affiliation(s)
- Mattia Pia Arena
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122, Foggia, Italy.
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy
| |
Collapse
|
27
|
Tarazanova M, Beerthuyzen M, Siezen R, Fernandez-Gutierrez MM, de Jong A, van der Meulen S, Kok J, Bachmann H. Plasmid Complement of Lactococcus lactis NCDO712 Reveals a Novel Pilus Gene Cluster. PLoS One 2016; 11:e0167970. [PMID: 27941999 PMCID: PMC5152845 DOI: 10.1371/journal.pone.0167970] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022] Open
Abstract
Lactococcus lactis MG1363 is an important gram-positive model organism. It is a plasmid-free and phage-cured derivative of strain NCDO712. Plasmid-cured strains facilitate studies on molecular biological aspects, but many properties which make L. lactis an important organism in the dairy industry are plasmid encoded. We sequenced the total DNA of strain NCDO712 and, contrary to earlier reports, revealed that the strain carries 6 rather than 5 plasmids. A new 50-kb plasmid, designated pNZ712, encodes functional nisin immunity (nisCIP) and copper resistance (lcoRSABC). The copper resistance could be used as a marker for the conjugation of pNZ712 to L. lactis MG1614. A genome comparison with the plasmid cured daughter strain MG1363 showed that the number of single nucleotide polymorphisms that accumulated in the laboratory since the strains diverted more than 30 years ago is limited to 11 of which only 5 lead to amino acid changes. The 16-kb plasmid pSH74 was found to contain a novel 8-kb pilus gene cluster spaCB-spaA-srtC1-srtC2, which is predicted to encode a pilin tip protein SpaC, a pilus basal subunit SpaB, and a pilus backbone protein SpaA. The sortases SrtC1/SrtC2 are most likely involved in pilus polymerization while the chromosomally encoded SrtA could act to anchor the pilus to peptidoglycan in the cell wall. Overexpression of the pilus gene cluster from a multi-copy plasmid in L. lactis MG1363 resulted in cell chaining, aggregation, rapid sedimentation and increased conjugation efficiency of the cells. Electron microscopy showed that the over-expression of the pilus gene cluster leads to appendices on the cell surfaces. A deletion of the gene encoding the putative basal protein spaB, by truncating spaCB, led to more pilus-like structures on the cell surface, but cell aggregation and cell chaining were no longer observed. This is consistent with the prediction that spaB is involved in the anchoring of the pili to the cell.
Collapse
Affiliation(s)
- Mariya Tarazanova
- NIZO food research B.V., Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Marke Beerthuyzen
- NIZO food research B.V., Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
| | - Roland Siezen
- TI Food and Nutrition, Wageningen, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud UMC, Nijmegen, The Netherlands
- Microbial Bioinformatics, Ede, The Netherlands
| | - Marcela M. Fernandez-Gutierrez
- TI Food and Nutrition, Wageningen, The Netherlands
- Host-Microbe Interactomics Group, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Anne de Jong
- TI Food and Nutrition, Wageningen, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Sjoerd van der Meulen
- TI Food and Nutrition, Wageningen, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Jan Kok
- TI Food and Nutrition, Wageningen, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Herwig Bachmann
- NIZO food research B.V., Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
28
|
Castelain M, Duviau MP, Oxaran V, Schmitz P, Cocaign-Bousquet M, Loubière P, Piard JC, Mercier-Bonin M. Oligomerized backbone pilin helps piliated Lactococcus lactis to withstand shear flow. BIOFOULING 2016; 32:911-923. [PMID: 27472256 DOI: 10.1080/08927014.2016.1213817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
The present work focuses on the role of pili present at the cell surface of Lactococcus lactis in bacterial adhesion to abiotic (hydrophobic polystyrene) and biotic (mucin-coated polystyrene) surfaces. Native pili-displaying strains and isogenic derivatives in which pilins or sortase C structural genes had been modified were used. Surface physico-chemistry, morphology and shear-flow-induced detachment of lactococcal cells were evaluated. The involvement of pili in L. lactis adhesion was clearly demonstrated, irrespective of the surface characteristics (hydrophobic/hydrophilic, presence or not of specific binding sites). The accessory pilin, PilC, and the backbone pilin, PilB, were revealed to play a major role in adhesion, provided that the PilB was present in its polymerized form. Within the population fraction that remained attached to the surface under increasing shear flow, different association behaviors were observed, showing that pili could serve as anchoring sites thus hampering the effect of shear flow on cell orientation and detachment.
Collapse
Affiliation(s)
- Mickaël Castelain
- a LISBP, Université de Toulouse, CNRS, INRA, INSA , Toulouse , France
| | | | - Virginie Oxaran
- b Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay , Jouy-en-Josas , France
| | - Philippe Schmitz
- a LISBP, Université de Toulouse, CNRS, INRA, INSA , Toulouse , France
| | | | - Pascal Loubière
- a LISBP, Université de Toulouse, CNRS, INRA, INSA , Toulouse , France
| | - Jean-Christophe Piard
- b Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay , Jouy-en-Josas , France
| | | |
Collapse
|
29
|
Diaz M, Ladero V, Del Rio B, Redruello B, Fernández M, Martin MC, Alvarez MA. Biofilm-Forming Capacity in Biogenic Amine-Producing Bacteria Isolated from Dairy Products. Front Microbiol 2016; 7:591. [PMID: 27242675 PMCID: PMC4864664 DOI: 10.3389/fmicb.2016.00591] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Biofilms on the surface of food industry equipment are reservoirs of potentially food-contaminating bacteria—both spoilage and pathogenic. However, the capacity of biogenic amine (BA)-producers to form biofilms has remained largely unexamined. BAs are low molecular weight, biologically active compounds that in food can reach concentrations high enough to be a toxicological hazard. Fermented foods, especially some types of cheese, accumulate the highest BA concentrations of all. The present work examines the biofilm-forming capacity of 56 BA-producing strains belonging to three genera and 10 species (12 Enterococcus faecalis, 6 Enterococcus faecium, 6 Enterococcus durans, 1 Enterococcus hirae, 12 Lactococcus lactis, 7 Lactobacillus vaginalis, 2 Lactobacillus curvatus, 2 Lactobacillus brevis, 1 Lactobacillus reuteri, and 7 Lactobacillus parabuchneri), all isolated from dairy products. Strains of all the tested species - except for L. vaginalis—were able to produce biofilms on polystyrene and adhered to stainless steel. However, the biomass produced in biofilms was strain-dependent. These results suggest that biofilms may provide a route via which fermented foods can become contaminated by BA-producing microorganisms.
Collapse
Affiliation(s)
- Maria Diaz
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) Villaviciosa, Spain
| | - Victor Ladero
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) Villaviciosa, Spain
| | - Beatriz Del Rio
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) Villaviciosa, Spain
| | - Begoña Redruello
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) Villaviciosa, Spain
| | - María Fernández
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) Villaviciosa, Spain
| | - M Cruz Martin
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) Villaviciosa, Spain
| | - Miguel A Alvarez
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) Villaviciosa, Spain
| |
Collapse
|
30
|
Douillard FP, Rasinkangas P, Bhattacharjee A, Palva A, de Vos WM. The N-Terminal GYPSY Motif Is Required for Pilin-Specific Sortase SrtC1 Functionality in Lactobacillus rhamnosus Strain GG. PLoS One 2016; 11:e0153373. [PMID: 27070897 PMCID: PMC4829219 DOI: 10.1371/journal.pone.0153373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/29/2016] [Indexed: 12/31/2022] Open
Abstract
Predominantly identified in pathogenic Gram-positive bacteria, sortase-dependent pili are also found in commensal species, such as the probiotic-marketed strain Lactobacillus rhamnosus strain GG. Pili are typically associated with host colonization, immune signalling and biofilm formation. Comparative analysis of the N-terminal domains of pilin-specific sortases from various piliated Gram-positive bacteria identified a conserved motif, called GYPSY, within the signal sequence. We investigated the function and role of the GYPSY residues by directed mutagenesis in homologous (rod-shaped) and heterologous (coccoid-shaped) expression systems for pilus formation. Substitutions of some of the GYPSY residues, and more specifically the proline residue, were found to have a direct impact on the degree of piliation of Lb. rhamnosus GG. The present findings uncover a new signalling element involved in the functionality of pilin-specific sortases controlling the pilus biogenesis of Lb. rhamnosus GG and related piliated Gram-positive species.
Collapse
Affiliation(s)
- François P. Douillard
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail: (FPD); (WMdV)
| | - Pia Rasinkangas
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Arnab Bhattacharjee
- Research Programs Unit Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Willem M. de Vos
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- * E-mail: (FPD); (WMdV)
| |
Collapse
|
31
|
Castelain M, Duviau MP, Canette A, Schmitz P, Loubière P, Cocaign-Bousquet M, Piard JC, Mercier-Bonin M. The Nanomechanical Properties of Lactococcus lactis Pili Are Conditioned by the Polymerized Backbone Pilin. PLoS One 2016; 11:e0152053. [PMID: 27010408 PMCID: PMC4806873 DOI: 10.1371/journal.pone.0152053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/08/2016] [Indexed: 12/16/2022] Open
Abstract
Pili produced by Lactococcus lactis subsp. lactis are putative linear structures consisting of repetitive subunits of the major pilin PilB that forms the backbone, pilin PilA situated at the distal end of the pilus, and an anchoring pilin PilC that tethers the pilus to the peptidoglycan. We determined the nanomechanical properties of pili using optical-tweezers force spectroscopy. Single pili were exposed to optical forces that yielded force-versus-extension spectra fitted using the Worm-Like Chain model. Native pili subjected to a force of 0–200 pN exhibit an inextensible, but highly flexible ultrastructure, reflected by their short persistence length. We tested a panel of derived strains to understand the functional role of the different pilins. First, we found that both the major pilin PilB and sortase C organize the backbone into a full-length organelle and dictate the nanomechanical properties of the pili. Second, we found that both PilA tip pilin and PilC anchoring pilin were not essential for the nanomechanical properties of pili. However, PilC maintains the pilus on the bacterial surface and may play a crucial role in the adhesion- and biofilm-forming properties of L. lactis.
Collapse
Affiliation(s)
- Mickaël Castelain
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France
- CNRS, UMR5504, F-31400, Toulouse, France
- * E-mail:
| | - Marie-Pierre Duviau
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France
- CNRS, UMR5504, F-31400, Toulouse, France
| | - Alexis Canette
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Philippe Schmitz
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France
- CNRS, UMR5504, F-31400, Toulouse, France
| | - Pascal Loubière
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France
- CNRS, UMR5504, F-31400, Toulouse, France
| | - Muriel Cocaign-Bousquet
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France
- CNRS, UMR5504, F-31400, Toulouse, France
| | - Jean-Christophe Piard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Muriel Mercier-Bonin
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400, Toulouse, France
- CNRS, UMR5504, F-31400, Toulouse, France
| |
Collapse
|
32
|
Yu X, Jaatinen A, Rintahaka J, Hynönen U, Lyytinen O, Kant R, Åvall-Jääskeläinen S, von Ossowski I, Palva A. Human Gut-Commensalic Lactobacillus ruminis ATCC 25644 Displays Sortase-Assembled Surface Piliation: Phenotypic Characterization of Its Fimbrial Operon through In Silico Predictive Analysis and Recombinant Expression in Lactococcus lactis. PLoS One 2015; 10:e0145718. [PMID: 26709916 PMCID: PMC4692528 DOI: 10.1371/journal.pone.0145718] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 12/08/2015] [Indexed: 02/08/2023] Open
Abstract
Sortase-dependent surface pili (or fimbriae) in Gram-positive bacteria are well documented as a key virulence factor for certain harmful opportunistic pathogens. However, it is only recently known that these multi-subunit protein appendages are also belonging to the “friendly” commensals and now, with this new perspective, they have come to be categorized as a niche-adaptation factor as well. In this regard, it was shown earlier that sortase-assembled piliation is a native fixture of two human intestinal commensalics (i.e., Lactobacillus rhamnosus and Bifidobacterium bifidum), and correspondingly where the pili involved have a significant role in cellular adhesion and immunomodulation processes. We now reveal that intestinal indigenous (or autochthonous) Lactobacillus ruminis is another surface-piliated commensal lactobacillar species. Heeding to in silico expectations, the predicted loci for the LrpCBA-called pili are organized tandemly in the L. ruminis genome as a canonical fimbrial operon, which then encodes for three pilin-proteins and a single C-type sortase enzyme. Through electron microscopic means, we showed that these pilus formations are a surface assemblage of tip, basal, and backbone pilin subunits (respectively named LrpC, LrpB, and LrpA) in L. ruminis, and also when expressed recombinantly in Lactococcus lactis. As well, by using the recombinant-piliated lactococci, we could define certain ecologically relevant phenotypic traits, such as the ability to adhere to extracellular matrix proteins and gut epithelial cells, but also to effectuate an induced dampening on Toll-like receptor 2 signaling and interleukin-8 responsiveness in immune-related cells. Within the context of the intestinal microcosm, by wielding such niche-advantageous cell-surface properties the LrpCBA pilus would undoubtedly have a requisite functional role in the colonization dynamics of L. ruminis indigeneity. Our study provides only the second description of a native-piliated Lactobacillus species, but at the same time also involves the structural and functional characterization of a third type of lactobacillar pilus.
Collapse
Affiliation(s)
- Xia Yu
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Annukka Jaatinen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Rintahaka
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ulla Hynönen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Outi Lyytinen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Silja Åvall-Jääskeläinen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ingemar von Ossowski
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- * E-mail: (IvO); (AP)
| | - Airi Palva
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- * E-mail: (IvO); (AP)
| |
Collapse
|
33
|
Cortes-Perez NG, Dumoulin R, Gaubert S, Lacoux C, Bugli F, Martin R, Chat S, Piquand K, Meylheuc T, Langella P, Sanguinetti M, Posteraro B, Rigottier-Gois L, Serror P. Overexpression of Enterococcus faecalis elr operon protects from phagocytosis. BMC Microbiol 2015; 15:112. [PMID: 26003173 PMCID: PMC4522977 DOI: 10.1186/s12866-015-0448-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/14/2015] [Indexed: 11/17/2022] Open
Abstract
Background Mechanisms underlying the transition from commensalism to virulence in Enterococcus faecalis are not fully understood. We previously identified the enterococcal leucine-rich protein A (ElrA) as a virulence factor of E. faecalis. The elrA gene is part of an operon that comprises four other ORFs encoding putative surface proteins of unknown function. Results In this work, we compared the susceptibility to phagocytosis of three E. faecalis strains, including a wild-type (WT), a ΔelrA strain, and a strain overexpressing the whole elr operon in order to understand the role of this operon in E. faecalis virulence. While both WT and ΔelrA strains were efficiently phagocytized by RAW 264.7 mouse macrophages, the elr operon-overexpressing strain showed a decreased capability to be internalized by the phagocytic cells. Consistently, the strain overexpressing elr operon was less adherent to macrophages than the WT strain, suggesting that overexpression of the elr operon could confer E. faecalis with additional anti-adhesion properties. In addition, increased virulence of the elr operon-overexpressing strain was shown in a mouse peritonitis model. Conclusions Altogether, our results indicate that overexpression of the elr operon facilitates the E. faecalis escape from host immune defenses. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0448-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naima G Cortes-Perez
- INRA, UMR1319 Micalis, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, Jouy-en-Josas, France. .,Current address: INRA, Unité d'Immuno-Allergie Alimentaire, iBiTecS/SPI, Gif-sur-Yvette, France.
| | - Romain Dumoulin
- INRA, UMR1319 Micalis, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, Jouy-en-Josas, France.
| | - Stéphane Gaubert
- INRA, UMR1319 Micalis, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, Jouy-en-Josas, France.
| | - Caroline Lacoux
- INRA, UMR1319 Micalis, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, Jouy-en-Josas, France.
| | - Francesca Bugli
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Rebeca Martin
- INRA, UMR1319 Micalis, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, Jouy-en-Josas, France.
| | - Sophie Chat
- INRA, UMR1319 Micalis, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, Jouy-en-Josas, France.
| | - Kevin Piquand
- INRA, UMR1319 Micalis, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, Jouy-en-Josas, France.
| | - Thierry Meylheuc
- INRA, UMR1319 Micalis, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, Jouy-en-Josas, France.
| | - Philippe Langella
- INRA, UMR1319 Micalis, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, Jouy-en-Josas, France.
| | | | - Brunella Posteraro
- Institute of Public Health (Section of Hygiene), Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Lionel Rigottier-Gois
- INRA, UMR1319 Micalis, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, Jouy-en-Josas, France.
| | - Pascale Serror
- INRA, UMR1319 Micalis, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, Jouy-en-Josas, France.
| |
Collapse
|
34
|
Abstract
Pili of Gram-positive bacteria are unique structures on the bacterial surface, assembled from covalently linked polypeptide subunits. Pilus assembly proceeds by transpeptidation reactions catalyzed by sortases, followed by covalent anchoring of the filament in the peptidoglycan layer. Another distinctive property is the presence of intramolecular isopeptide bonds, conferring extraordinary chemical and mechanical stability to these elongated structures. Besides their function in cell adhesion and biofilm formation, this section discusses possible application of pilus constituents as vaccine components against Gram-positive pathogens.
Collapse
|
35
|
Rintahaka J, Yu X, Kant R, Palva A, von Ossowski I. Phenotypical analysis of the Lactobacillus rhamnosus GG fimbrial spaFED operon: surface expression and functional characterization of recombinant SpaFED pili in Lactococcus lactis. PLoS One 2014; 9:e113922. [PMID: 25415357 PMCID: PMC4240662 DOI: 10.1371/journal.pone.0113922] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/31/2014] [Indexed: 12/24/2022] Open
Abstract
A noticeable genomic feature of many piliated Gram-positive bacterial species is the presence of more than one pilus-encoding operon. Paradigmatically, the gut-adapted Lactobacillus rhamnosus GG strain contains two different fimbrial operons in its genome. However, whereas one of these operons (called spaCBA) is encoding for the functionally mucus-/collagen-binding SpaCBA pilus, for the other operon (called spaFED) any native expression of the SpaFED-called pili is still the subject of some uncertainty. Irrespective of such considerations, we decided it would be of relevance or interest to decipher the gross structure of this pilus type, and as well assess its functional capabilities for cellular adhesion and immunostimulation. For this, and by following the approach we had used previously to explicate the immuno-properties of SpaCBA pili, we constructed nisin-inducible expression clones producing either wild-type or SpaF pilin-deleted surface-assembled L. rhamnosus GG SpaFED pili on Lactococcus lactis cells. Using these piliated lactococcal constructs, we found that the pilin-polymerized architecture of a recombinant-produced SpaFED pilus coincides with sequence-based functional predictions of the related pilins, and in fact is prototypical of those other sortase-dependent pilus-like structures thus far characterized for piliated Gram-positive bacteria. Moreover, we confirmed that among the different pilin subunits encompassing spaFED operon-encoded pili, the SpaF pilin is a main adhesion determinant, and when present in the assembled structure can mediate pilus binding to mucus, certain extracellular matrix proteins, and different gut epithelial cell lines. However, somewhat unexpectedly, when recombinant SpaFED pili are surface-attached, we found that they could not potentiate the existing lactococcal cell-induced immune responses so elicited from intestinal- and immune-related cells, but rather instead, they could dampen them. Accordingly, we have now provided the first phenotypical description of a spaFED pilus operon, and with that furthered the functional understanding of surface piliation for a particular gut-commensalic genre of piliated Gram-positive bacteria.
Collapse
Affiliation(s)
- Johanna Rintahaka
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Xia Yu
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- * E-mail: (IvO); (AP)
| | - Ingemar von Ossowski
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- * E-mail: (IvO); (AP)
| |
Collapse
|
36
|
Lactococcus lactis metabolism and gene expression during growth on plant tissues. J Bacteriol 2014; 197:371-81. [PMID: 25384484 DOI: 10.1128/jb.02193-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations.
Collapse
|
37
|
Leccese Terraf MC, Mendoza LM, Juárez Tomás MS, Silva C, Nader-Macías MEF. Phenotypic surface properties (aggregation, adhesion and biofilm formation) and presence of related genes in beneficial vaginal lactobacilli. J Appl Microbiol 2014; 117:1761-72. [PMID: 25195810 DOI: 10.1111/jam.12642] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/02/2014] [Accepted: 08/30/2014] [Indexed: 11/28/2022]
Abstract
AIMS To evaluate the phenotypic expression of auto-aggregation, adhesion to mucin and biofilm formation of lactobacilli isolated from human vagina and the presence of related genes. METHODS AND RESULTS Seven different strains of three Lactobacillus species (Lactobacillus gasseri, Lactobacillus rhamnosus and Lactobacillus reuteri) were evaluated. The auto-aggregation property was determined by spectrophotometric assay and flow cytometry. Adhesion and biofilm formation were assayed by crystal violet staining. The presence of the genes encoding sortases, pilin subunits and surface proteins was evaluated by polymerase chain reactions. The two Lact. reuteri strains assayed showed high auto-aggregation, adhesion to mucin and biofilm formation ability. In these strains, the genes encoding three adhesion proteins were identified. In Lact. rhamnosus CRL (Centro de Referencia para Lactobacilos Culture Collection) 1332, pilus-encoding genes were detected. In all Lact. rhamnosus strains assayed, two genes encoding for other surface proteins related to adhesion and biofilm formation were detected. CONCLUSIONS The vaginal lactobacilli assayed exhibited phenotypic and genetic characteristics that were specific for each strain. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study on auto-aggregation, adhesion and biofilm formation of vaginal Lactobacillus strains by phenotypic and genetic assays.
Collapse
Affiliation(s)
- M C Leccese Terraf
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | | | | | | | | |
Collapse
|
38
|
Abstract
The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts.
Collapse
|
39
|
Abstract
Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.
Collapse
|
40
|
Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation. Sci Rep 2014; 4:5849. [PMID: 25068919 PMCID: PMC5376178 DOI: 10.1038/srep05849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/07/2014] [Indexed: 01/03/2023] Open
Abstract
Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications.
Collapse
|
41
|
Abstract
Bioorthogonal, chemoselective ligation methods are an essential part of the tools utilized to investigate biochemical pathways. Specifically enzymatic approaches are valuable methods in this context due to the inherent specificity of the deployed enzymes and the mild conditions of the modification reactions. One of the most common strategies is based on the transpeptidation catalyzed by sortase A derived from Staphylococcus aureus. The procedure is well established and a wide variety of applications have been published to date. Here, implementations of sortase A, which range from protein labeling using fluorescence dyes and the preparation of cyclic proteins to the modification of entire cells, are summarized. Furthermore, there is a focus on the optimization approaches established to solve the drawbacks of sortase-mediated transpeptidation.
Collapse
Affiliation(s)
- Markus Ritzefeld
- Bielefeld University, Department of Chemistry, Organic and Bioorganic Chemistry (OCIII), Universitätsstrasse 25, 33615 Bielefeld (Germany).
| |
Collapse
|
42
|
Shrestha PM, Rotaru AE. Plugging in or going wireless: strategies for interspecies electron transfer. Front Microbiol 2014; 5:237. [PMID: 24904551 PMCID: PMC4032928 DOI: 10.3389/fmicb.2014.00237] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/30/2014] [Indexed: 11/13/2022] Open
Abstract
Interspecies exchange of electrons enables a diversity of microbial communities to gain energy from reactions that no one microbe can catalyze. The first recognized strategies for interspecies electron transfer were those that relied on chemical intermediates that are recycled through oxidized and reduced forms. Well-studied examples are interspecies H2 transfer and the cycling of sulfur intermediates in anaerobic photosynthetic communities. Direct interspecies electron transfer (DIET) in which two species establish electrical contact is an alternative. Electrical contacts documented to date include electrically conductive pili, as well as conductive iron minerals and conductive carbon moieties such as activated carbon and biochar. Interspecies electron transfer is central to the functioning of methane-producing microbial communities. The importance of interspecies H2 transfer in many methanogenic communities is clear, but under some circumstances DIET predominates. It is expected that further mechanistic studies and broadening investigations to a wider range of environments will help elucidate the factors that favor specific forms of interspecies electron exchange under different environmental conditions.
Collapse
Affiliation(s)
- Pravin Malla Shrestha
- Department of Microbiology, University of MassachusettsAmherst, MA, USA
- Energy Biosciences Institute, University of CaliforniaBerkeley, CA, USA
| | - Amelia-Elena Rotaru
- Nordic Center for Earth Evolution, University of Southern DenmarkOdense, Denmark
| |
Collapse
|
43
|
Etzold S, MacKenzie DA, Jeffers F, Walshaw J, Roos S, Hemmings AM, Juge N. Structural and molecular insights into novel surface-exposed mucus adhesins from Lactobacillus reuteri human strains. Mol Microbiol 2014; 92:543-56. [PMID: 24593252 DOI: 10.1111/mmi.12574] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2014] [Indexed: 12/15/2022]
Abstract
The mucus layer covering the gastrointestinal tract is the first point of contact of the intestinal microbiota with the host. Cell surface macromolecules are critical for adherence of commensal bacteria to mucus but structural information is scarce. Here we report the first molecular and structural characterization of a novel cell-surface protein, Lar_0958 from Lactobacillus reuteri JCM 1112(T) , mediating adhesion of L. reuteri human strains to mucus. Lar_0958 is a modular protein of 133 kDa containing six repeat domains, an N-terminal signal sequence and a C-terminal anchoring motif (LPXTG). Lar_0958 homologues are expressed on the cell-surface of L. reuteri human strains, as shown by flow-cytometry and immunogold microscopy. Adhesion of human L. reuteri strains to mucus in vitro was significantly reduced in the presence of an anti-Lar_0958 antibody and Lar_0958 contribution to adhesion was further confirmed using a L. reuteri ATCC PTA 6475 lar_0958 KO mutant (6475-KO). The X-ray crystal structure of a single Lar_0958 repeat, determined at 1.5 Å resolution, revealed a divergent immunoglobulin (Ig)-like β-sandwich fold, sharing structural homology with the Ig-like inter-repeat domain of internalins of the food borne pathogen Listeria monocytogenes. These findings provide unique structural insights into cell-surface protein repeats involved in adhesion of Gram-positive bacteria to the intestine.
Collapse
Affiliation(s)
- Sabrina Etzold
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Etzold S, Kober OI, Mackenzie DA, Tailford LE, Gunning AP, Walshaw J, Hemmings AM, Juge N. Structural basis for adaptation of lactobacilli to gastrointestinal mucus. Environ Microbiol 2014; 16:888-903. [PMID: 24373178 DOI: 10.1111/1462-2920.12377] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 12/01/2022]
Abstract
The mucus layer covering the gastrointestinal (GI) epithelium is critical in selecting and maintaining homeostatic interactions with our gut bacteria. However, the underpinning mechanisms of these interactions are not understood. Here, we provide structural and functional insights into the canonical mucus-binding protein (MUB), a multi-repeat cell-surface adhesin found in Lactobacillus inhabitants of the GI tract. X-ray crystallography together with small-angle X-ray scattering demonstrated a 'beads on a string' arrangement of repeats, generating 174 nm long protein fibrils, as shown by atomic force microscopy. Each repeat consists of tandemly arranged Ig- and mucin-binding protein (MucBP) modules. The binding of full-length MUB was confined to mucus via multiple interactions involving terminal sialylated mucin glycans. While individual MUB domains showed structural similarity to fimbrial proteins from Gram-positive pathogens, the particular organization of MUB provides a structural explanation for the mechanisms in which lactobacilli have adapted to their host niche by maximizing interactions with the mucus receptors, potentiating the retention of bacteria within the mucus layer. Together, this study reveals functional and structural features which may affect tropism of microbes across mucus and along the GI tract, providing unique insights into the mechanisms adopted by commensals and probiotics to adapt to the mucosal environment.
Collapse
Affiliation(s)
- Sabrina Etzold
- Institute of Food Research, Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich, NR4 7UA, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Le DTL, Tran TL, Duviau MP, Meyrand M, Guérardel Y, Castelain M, Loubière P, Chapot-Chartier MP, Dague E, Mercier-Bonin M. Unraveling the role of surface mucus-binding protein and pili in muco-adhesion of Lactococcus lactis. PLoS One 2013; 8:e79850. [PMID: 24260308 PMCID: PMC3832589 DOI: 10.1371/journal.pone.0079850] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/25/2013] [Indexed: 11/19/2022] Open
Abstract
Adhesion of bacteria to mucus may favor their persistence within the gut and their beneficial effects to the host. Interactions between pig gastric mucin (PGM) and a natural isolate of Lactococcus lactis (TIL448) were measured at the single-cell scale and under static conditions, using atomic force microscopy (AFM). In parallel, these interactions were monitored at the bacterial population level and under shear flow. AFM experiments with a L. lactis cell-probe and a PGM-coated surface revealed a high proportion of specific adhesive events (60%) and a low level of non-adhesive ones (2%). The strain muco-adhesive properties were confirmed by the weak detachment of bacteria from the PGM-coated surface under shear flow. In AFM, rupture events were detected at short (100−200 nm) and long distances (up to 600−800 nm). AFM measurements on pili and mucus-binding protein defective mutants demonstrated the comparable role played by these two surface proteinaceous components in adhesion to PGM under static conditions. Under shear flow, a more important contribution of the mucus-binding protein than the pili one was observed. Both methods differ by the way of probing the adhesion force, i.e. negative force contact vs. sedimentation and normal-to-substratum retraction vs. tangential detachment conditions, using AFM and flow chamber, respectively. AFM blocking assays with free PGM or O-glycan fractions purified from PGM demonstrated that neutral oligosaccharides played a major role in adhesion of L. lactis TIL448 to PGM. This study dissects L. lactis muco-adhesive phenotype, in relation with the nature of the bacterial surface determinants.
Collapse
Affiliation(s)
- Doan Thanh Lam Le
- Université de Toulouse; INSA,UPS, INP; LISBP, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
- CNRS, LAAS, Toulouse, France
- CNRS, ITAV-UMS3039, Toulouse, France
- Université de Toulouse, LAAS, Toulouse, France
| | - Thi-Ly Tran
- Université de Toulouse; INSA,UPS, INP; LISBP, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - Marie-Pierre Duviau
- Université de Toulouse; INSA,UPS, INP; LISBP, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - Mickael Meyrand
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Yann Guérardel
- Université de Lille1, Unité de Glycobiologie Structurale et Fonctionnelle, UGSF, Villeneuve d'Ascq, France
- CNRS, UMR 8576, Villeneuve d'Ascq, France
| | - Mickaël Castelain
- Université de Toulouse; INSA,UPS, INP; LISBP, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - Pascal Loubière
- Université de Toulouse; INSA,UPS, INP; LISBP, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | | | - Etienne Dague
- CNRS, LAAS, Toulouse, France
- CNRS, ITAV-UMS3039, Toulouse, France
- Université de Toulouse, LAAS, Toulouse, France
- * E-mail: (MMB); (ED)
| | - Muriel Mercier-Bonin
- Université de Toulouse; INSA,UPS, INP; LISBP, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
- * E-mail: (MMB); (ED)
| |
Collapse
|
46
|
Vilcáez J, Li L, Hubbard SS. A new model for the biodegradation kinetics of oil droplets: application to the Deepwater Horizon oil spill in the Gulf of Mexico. GEOCHEMICAL TRANSACTIONS 2013; 14:4. [PMID: 24138161 PMCID: PMC4015121 DOI: 10.1186/1467-4866-14-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 10/09/2013] [Indexed: 05/22/2023]
Abstract
Oil biodegradation by native bacteria is one of the most important natural processes that can attenuate the environmental impacts of marine oil spills. Existing models for oil biodegradation kinetics are mostly for dissolved oil. This work developed a new mathematical model for the biodegradation of oil droplets and applied the model to estimate the time scale for oil biodegradation under conditions relevant to the Deepwater Horizon oil spill in the Gulf of Mexico. In the model, oil is composed of droplets of various sizes following the gamma function distribution. Each oil droplet shrinks during the microbe-mediated degradation at the oil-water interface. Using our developed model, we find that the degradation of oil droplets typically goes through two stages. The first stage is characterized by microbial activity unlimited by oil-water interface with higher biodegradation rates than that of the dissolved oil. The second stage is governed by the availability of the oil-water interface, which results in much slower rates than that of soluble oil. As a result, compared to that of the dissolved oil, the degradation of oil droplets typically starts faster and then quickly slows down, ultimately reaching a smaller percentage of degraded oil in longer time. The availability of the water-oil interface plays a key role in determining the rates and extent of degradation. We find that several parameters control biodegradation rates, including size distribution of oil droplets, initial microbial concentrations, initial oil concentration and composition. Under conditions relevant to the Deepwater Horizon spill, we find that the size distribution of oil droplets (mean and coefficient of variance) is the most important parameter because it determines the availability of the oil-water interface. Smaller oil droplets with larger variance leads to faster and larger extent of degradation. The developed model will be useful for evaluating transport and fate of spilled oil, different remediation strategies, and risk assessment.
Collapse
Affiliation(s)
- Javier Vilcáez
- John and Willie Leone Family Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA
- Currently at the University of Tokyo, Tokyo, Japan
| | - Li Li
- John and Willie Leone Family Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA
- Earth and Environmental Systems Institute (EESI), The Pennsylvania State University, University Park, PA 16802, USA
| | - Susan S Hubbard
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
47
|
Meyrand M, Guillot A, Goin M, Furlan S, Armalyte J, Kulakauskas S, Cortes-Perez NG, Thomas G, Chat S, Péchoux C, Dupres V, Hols P, Dufrêne YF, Trugnan G, Chapot-Chartier MP. Surface proteome analysis of a natural isolate of Lactococcus lactis reveals the presence of pili able to bind human intestinal epithelial cells. Mol Cell Proteomics 2013; 12:3935-47. [PMID: 24002364 DOI: 10.1074/mcp.m113.029066] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Surface proteins of Gram-positive bacteria play crucial roles in bacterial adhesion to host tissues. Regarding commensal or probiotic bacteria, adhesion to intestinal mucosa may promote their persistence in the gastro-intestinal tract and their beneficial effects to the host. In this study, seven Lactococcus lactis strains exhibiting variable surface physico-chemical properties were compared for their adhesion to Caco-2 intestinal epithelial cells. In this test, only one vegetal isolate TIL448 expressed a high-adhesion phenotype. A nonadhesive derivative was obtained by plasmid curing from TIL448, indicating that the adhesion determinants were plasmid-encoded. Surface-exposed proteins in TIL448 were analyzed by a proteomic approach consisting in shaving of the bacterial surface with trypsin and analysis of the released peptides by LC-MS/MS. As the TIL448 complete genome sequence was not available, the tryptic peptides were identified by a mass matching approach against a database including all Lactococcus protein sequences and the sequences deduced from partial DNA sequences of the TIL448 plasmids. Two surface proteins, encoded by plasmids in TIL448, were identified as candidate adhesins, the first one displaying pilin characteristics and the second one containing two mucus-binding domains. Inactivation of the pilin gene abolished adhesion to Caco-2 cells whereas inactivation of the mucus-binding protein gene had no effect on adhesion. The pilin gene is located inside a cluster of four genes encoding two other pilin-like proteins and one class-C sortase. Synthesis of pili was confirmed by immunoblotting detection of high molecular weight forms of pilins associated to the cell wall as well as by electron and atomic force microscopy observations. As a conclusion, surface proteome analysis allowed us to detect pilins at the surface of L. lactis TIL448. Moreover we showed that pili appendages are formed and involved in adhesion to Caco-2 intestinal epithelial cells.
Collapse
|
48
|
Dhahri S, Ramonda M, Marlière C. In-situ determination of the mechanical properties of gliding or non-motile bacteria by atomic force microscopy under physiological conditions without immobilization. PLoS One 2013; 8:e61663. [PMID: 23593493 PMCID: PMC3625152 DOI: 10.1371/journal.pone.0061663] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
We present a study about AFM imaging of living, moving or self-immobilized bacteria in their genuine physiological liquid medium. No external immobilization protocol, neither chemical nor mechanical, was needed. For the first time, the native gliding movements of Gram-negative Nostoc cyanobacteria upon the surface, at speeds up to 900 µm/h, were studied by AFM. This was possible thanks to an improved combination of a gentle sample preparation process and an AFM procedure based on fast and complete force-distance curves made at every pixel, drastically reducing lateral forces. No limitation in spatial resolution or imaging rate was detected. Gram-positive and non-motile Rhodococcus wratislaviensis bacteria were studied as well. From the approach curves, Young modulus and turgor pressure were measured for both strains at different gliding speeds and are ranging from 20±3 to 105±5 MPa and 40±5 to 310±30 kPa depending on the bacterium and the gliding speed. For Nostoc, spatially limited zones with higher values of stiffness were observed. The related spatial period is much higher than the mean length of Nostoc nodules. This was explained by an inhomogeneous mechanical activation of nodules in the cyanobacterium. We also observed the presence of a soft extra cellular matrix (ECM) around the Nostoc bacterium. Both strains left a track of polymeric slime with variable thicknesses. For Rhodococcus, it is equal to few hundreds of nanometers, likely to promote its adhesion to the sample. While gliding, the Nostoc secretes a slime layer the thickness of which is in the nanometer range and increases with the gliding speed. This result reinforces the hypothesis of a propulsion mechanism based, for Nostoc cyanobacteria, on ejection of slime. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions.
Collapse
Affiliation(s)
- Samia Dhahri
- Géosciences Montpellier, University Montpellier 2, CNRS, Montpellier, France
| | - Michel Ramonda
- Centrale de Technologie en Micro et nanoélectronique, Laboratoire de Microscopie en Champ Proche, University Montpellier 2, Montpellier, France
| | - Christian Marlière
- Géosciences Montpellier, University Montpellier 2, CNRS, Montpellier, France
- Institut des Sciences Moléculaires d'Orsay, University Paris-Sud, CNRS, Orsay, France
- * E-mail:
| |
Collapse
|
49
|
Call EK, Klaenhammer TR. Relevance and application of sortase and sortase-dependent proteins in lactic acid bacteria. Front Microbiol 2013; 4:73. [PMID: 23579319 PMCID: PMC3619620 DOI: 10.3389/fmicb.2013.00073] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/14/2013] [Indexed: 11/27/2022] Open
Abstract
Lactic acid bacteria (LAB) are a diverse group of Gram-positive bacteria found in a vast array of environments including dairy products and the human gastrointestinal tract (GIT). In both niches, surface proteins play a crucial role in mediating interactions with the surrounding environment. The sortase enzyme is responsible for covalently coupling a subset of sortase-dependent proteins (SDPs) to the cell wall of Gram-positive organisms through recognition of a conserved C-terminal LPXTG motif. Genomic sequencing of LAB and annotation has allowed for the identification of sortase and SDPs. Historically, sortase and SDPs were predominately investigated for their role in mediating pathogenesis. Identification of these proteins in LAB has shed light on their important roles in mediating nutrient acquisition through proteinase P as well as positive probiotic attributes including adhesion, mucus barrier function, and immune signaling. Furthermore, sortase expression signals in LAB have been exploited as a means to develop oral vaccines targeted to the GIT. In this review, we examine the collection of studies which evaluate sortase and SDPs in select species of dairy-associated and health promoting LAB.
Collapse
Affiliation(s)
- Emma K Call
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University Raleigh, NC, USA
| | | |
Collapse
|
50
|
Bridier A, Chalabaev S, Ghigo JM, Briandet R. Biofilms 5 International Conference: meeting report. Res Microbiol 2013; 164:490-6. [PMID: 23524185 DOI: 10.1016/j.resmic.2013.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Arnaud Bridier
- IRSTEA, HBAN, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France
| | | | | | | |
Collapse
|