1
|
Baker C, Willis A, Milestone W, Baker M, Garner AL, Joshi RP. Numerical assessments of geometry, proximity and multi-electrode effects on electroporation in mitochondria and the endoplasmic reticulum to nanosecond electric pulses. Sci Rep 2024; 14:23854. [PMID: 39394381 PMCID: PMC11470013 DOI: 10.1038/s41598-024-74659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
Most simulations of electric field driven bioeffects have considered spherical cellular geometries or probed symmetrical structures for simplicity. This work assesses cellular transmembrane potential build-up and electroporation in a Jurkat cell that includes the endoplasmic reticulum (ER) and mitochondria, both of which have complex shapes, in response to external nanosecond electric pulses. The simulations are based on a time-domain nodal analysis that incorporates membrane poration utilizing the Smoluchowski model with angular-dependent changes in membrane conductivity. Consistent with prior experimental reports, the simulations show that the ER requires the largest electric field for electroporation, while the inner mitochondrial membrane (IMM) is the easiest membrane to porate. Our results suggest that the experimentally observed increase in intracellular calcium could be due to a calcium induced calcium release (CICR) process that is initiated by outer cell membrane breakdown. Repeated pulsing and/or using multiple electrodes are shown to create a stronger poration. The role of mutual coupling, screening, and proximity effects in bringing about electric field modifications is also probed. Finally, while including greater geometric details might refine predictions, the qualitative trends are expected to remain.
Collapse
Affiliation(s)
- C Baker
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - A Willis
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
- Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - W Milestone
- Nanohmics, Inc, 6201 E Oltorf St, Austin, TX, 78717, USA
| | - M Baker
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - A L Garner
- School of Nuclear Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Elmore Family School of Electrical and Computer Engineering, West Lafayette, IN, 47907, USA
| | - R P Joshi
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
2
|
Malakauskaitė P, Želvys A, Zinkevičienė A, Mickevičiūtė E, Radzevičiūtė-Valčiukė E, Malyško-Ptašinskė V, Lekešytė B, Novickij J, Kašėta V, Novickij V. Mitochondrial depolarization and ATP loss during high frequency nanosecond and microsecond electroporation. Bioelectrochemistry 2024; 159:108742. [PMID: 38776865 DOI: 10.1016/j.bioelechem.2024.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
It is predicted that ultra-short electric field pulses (nanosecond) can selectively permeabilize intracellular structures (e.g., mitochondria) without significant effects on the outer cell plasma membrane. Such a phenomenon would have high applicability in cancer treatment and could be employed to modulate cell death type or immunogenic response. Therefore, in this study, we compare the effects of 100 µs x 8 pulses (ESOPE - European Standard Operating Procedures on Electrochemotherapy) and bursts of 100 ns pulses for modulation of the mitochondria membrane potential. We characterize the efficacies of various protocols to trigger permeabilization, depolarize mitochondria (evaluated 1 h after treatment), the extent of ATP depletion and generation of reactive oxygen species (ROS). Finally, we employ the most prominent protocols in the context of Ca2+ electrochemotherapy in vitro. We provide experimental proof that 7.5-12.5 kV/cm x 100 ns pulses can be used to modulate mitochondrial potential, however, the permeabilization of the outer membrane is still a prerequisite for depolarization. Similar to 100 µs x 8 pulses, the higher the permeabilization rate, the higher the mitochondrial depolarization. Nevertheless, 100 ns pulses result in lesser ROS generation when compared to ESOPE, even when the energy input is several-fold higher than for the microsecond procedure. At the same time, it shows that even the short 100 ns pulses can be successfully used for Ca2+ electrochemotherapy, ensuring excellent cytotoxic efficacy.
Collapse
Affiliation(s)
- Paulina Malakauskaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania
| | - Augustinas Želvys
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Eglė Mickevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania
| | - Eivina Radzevičiūtė-Valčiukė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania
| | | | - Barbora Lekešytė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania
| | - Jurij Novickij
- Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania
| | - Vytautas Kašėta
- State Research Institute Centre for Innovative Medicine, Department of Stem Cell Biology, Vilnius, Lithuania
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania.
| |
Collapse
|
3
|
Ma R, Wang Y, Wang Z, Yin S, Liu Z, Yan K. Enhanced Cellular Doxorubicin Uptake via Delayed Exposure Following Nanosecond Pulsed Electric Field Treatment: An In Vitro Study. Pharmaceutics 2024; 16:851. [PMID: 39065548 PMCID: PMC11280291 DOI: 10.3390/pharmaceutics16070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The combination of nanosecond Pulsed Electric Field (nsPEF) with pharmaceuticals is a pioneering therapeutic method capable of enhancing drug uptake efficacy in cells. Utilizing nsPEFs configured at 400 pulses, an electric field strength of 15 kV/cm, a pulse duration of 100 ns, and a repetition rate of 10 pulses per second (PPS), we combined the nsPEF with a low dose of doxorubicin (DOX) at 0.5 μM. Upon verifying that cells could continuously internalize DOX from the surrounding medium within 1 h post nsPEF exposure, we set the DOX exposure period to 10 min and contrasted the outcomes of varying sequences of DOX and nsPEF administration: pulsing followed by DOX, DOX followed by pulsing, and DOX applied 40 min after pulsing. Flow cytometry, CCK-8 assays, and transmission electron microscopy (TEM) were employed to examine intracellular DOX accumulation, cell viability, apoptosis, cell cycle, and ultrastructural transformations. Our findings demonstrate that exposing cells to DOX 40 min subsequent to nsPEF treatment can effectively elevate intracellular DOX levels, decrease cell viability, and inhibit the cell cycle. This research work presents a novel approach to enhance DOX uptake efficiency with moderate conditions of both DOX and nsPEF.
Collapse
Affiliation(s)
- Rongwei Ma
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310003, China; (R.M.); (Z.W.); (K.Y.)
| | - Yubo Wang
- Key Laboratory of Multi-Organ Transplantation Research, Ministry of Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; (Y.W.); (S.Y.)
| | - Zhihao Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310003, China; (R.M.); (Z.W.); (K.Y.)
| | - Shengyong Yin
- Key Laboratory of Multi-Organ Transplantation Research, Ministry of Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; (Y.W.); (S.Y.)
| | - Zhen Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310003, China; (R.M.); (Z.W.); (K.Y.)
| | - Keping Yan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310003, China; (R.M.); (Z.W.); (K.Y.)
| |
Collapse
|
4
|
Urbanskas E, Jakštys B, Venckus J, Malakauskaitė P, Šatkauskienė I, Morkvėnaitė-Vilkončienė I, Šatkauskas S. Interplay between Electric Field Strength and Number of Short-Duration Pulses for Efficient Gene Electrotransfer. Pharmaceuticals (Basel) 2024; 17:825. [PMID: 39065676 PMCID: PMC11279932 DOI: 10.3390/ph17070825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Electroporation is a method that shows great promise as a non-viral approach for delivering genes by using high-voltage electric pulses to introduce DNA into cells to induce transient gene expression. This research aimed to evaluate the interplay between electric pulse intensity and 100 µs-duration pulse numbers as an outcome of gene electrotransfer efficacy and cell viability. Our results indicated a close relationship between pulse number and electric field strength regarding gene electrotransfer efficacy; higher electric pulse intensity resulted in fewer pulses needed to achieve the same gene electrotransfer efficacy. Subsequently, an increase in pulse number had a more negative impact on overall gene electrotransfer by significantly reducing cell viability. Based on our data, the best pulse parameters to transfect CHO cells with the pMax-GFP plasmid were using 5 HV square wave pulses of 1000 V/cm and 2 HV of 1600 V/cm, correspondingly resulting in 55 and 71% of transfected cells and maintaining 79 and 54% proliferating cells. This shows ESOPE-like 100 µs-duration pulse protocols can be used simultaneously to deliver cytotoxic drugs as well as immune response regulating genetically encoded cytokines.
Collapse
Affiliation(s)
- Ernestas Urbanskas
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
| | - Baltramiejus Jakštys
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania;
| | - Justinas Venckus
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
| | - Paulina Malakauskaitė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Ingrida Šatkauskienė
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
| | - Inga Morkvėnaitė-Vilkončienė
- Department of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, 02300 Vilnius, Lithuania;
| | - Saulius Šatkauskas
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
| |
Collapse
|
5
|
Polajžer T, Peng W, Yao C, Miklavčič D. Changes in Mitochondrial Membrane Potential in In Vitro Electroporation with Nano- and Microsecond Pulses. Bioelectricity 2024; 6:97-107. [PMID: 39119574 PMCID: PMC11305006 DOI: 10.1089/bioe.2024.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
With the introduction of nanosecond (ns) pulses, it was suggested that such pulses could be used to permeabilize intracellular membranes, including the mitochondrial membrane. The results presented thus far, however, are not conclusive. Interestingly, the effect of longer microsecond (μs) pulses on changes in mitochondria has never been investigated. We, therefore, investigated the changes in mitochondrial membrane permeability through changes in mitochondrial membrane potential (MMP) in CHO and H9c2 cells after electroporation with 4 ns, 200 ns, and 100 μs pulses. In the range of reversible electroporation, the decrease in MMP generally depended on the cell line. In CHO, ns pulses decreased MMP at lower electroporation intensities than μs. In H9c2, ns and μs were equally effective. In the range of irreversible electroporation, MMP decreased even further, regardless of pulse duration and cell type. The analysis at different time points showed that the changes in MMP within the first hour after pulse treatment are dynamic. Our results on the efficacy of ns pulses are consistent with published data, but with this study we show that μs pulses cause similar changes in MMP as ns pulses, demonstrating that electroporation affects MMP regardless of pulse duration. At the same time, however, differences in MMP changes were observed between different cell lines, indicating some dependence of MMP changes on cell type.
Collapse
Affiliation(s)
- Tamara Polajžer
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Wencheng Peng
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, Republic of China
| | - Chenguo Yao
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, Republic of China
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Asadipour K, Hani MB, Potter L, Ruedlinger BL, Lai N, Beebe SJ. Nanosecond Pulsed Electric Fields (nsPEFs) Modulate Electron Transport in the Plasma Membrane and the Mitochondria. Bioelectrochemistry 2024; 155:108568. [PMID: 37738861 DOI: 10.1016/j.bioelechem.2023.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
Nanosecond pulsed electric fields (nsPEFs) are a pulsed power technology known for ablating tumors, but they also modulate diverse biological mechanisms. Here we show that nsPEFs regulate trans-plasma membrane electron transport (tPMET) rates in the plasma membrane redox system (PMRS) shown as a reduction of the cell-impermeable, WST-8 tetrazolium dye. At lower charging conditions, nsPEFs enhance, and at higher charging conditions inhibit tPMET in H9c2 non-cancerous cardiac myoblasts and 4T1-luc breast cancer cells. This biphasic nsPEF-induced modulation of tPMET is typical of a hormetic stimulus that is beneficial and stress-adaptive at lower levels and damaging at higher levels. NsPEFs also attenuated mitochondrial electron transport system (ETS) activity (O2 consumption) at Complex I when coupled and uncoupled to oxidative phosphorylation. NsPEFs generated more reactive oxygen species (ROS) in mitochondria (mROS) than in the cytosol (cROS) in non-cancer H9c2 heart cells but more cROS than mROS in 4T1-luc cancer cells. Under lower charging conditions, nsPEFs support glycolysis while under higher charging conditions, nsPEFs inhibit electron transport in the PMRS and the mitochondrial ETS producing ROS, ultimately causing cell death. The impact of nsPEF on ETS presents a new paradigm for considering nsPEF modulation of redox functions, including redox homeostasis and metabolism.
Collapse
Affiliation(s)
- Kamal Asadipour
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk Virginia, USA
| | - Maisoun Bani Hani
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA
| | - Lucas Potter
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk Virginia, USA
| | | | - Nicola Lai
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk Virginia, USA
| | - Stephen J Beebe
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA.
| |
Collapse
|
7
|
Batista Napotnik T, Kos B, Jarm T, Miklavčič D, O'Connor RP, Rems L. Genetically engineered HEK cells as a valuable tool for studying electroporation in excitable cells. Sci Rep 2024; 14:720. [PMID: 38184741 PMCID: PMC10771480 DOI: 10.1038/s41598-023-51073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024] Open
Abstract
Electric pulses used in electroporation-based treatments have been shown to affect the excitability of muscle and neuronal cells. However, understanding the interplay between electroporation and electrophysiological response of excitable cells is complex, since both ion channel gating and electroporation depend on dynamic changes in the transmembrane voltage (TMV). In this study, a genetically engineered human embryonic kidney cells expressing NaV1.5 and Kir2.1, a minimal complementary channels required for excitability (named S-HEK), was characterized as a simple cell model used for studying the effects of electroporation in excitable cells. S-HEK cells and their non-excitable counterparts (NS-HEK) were exposed to 100 µs pulses of increasing electric field strength. Changes in TMV, plasma membrane permeability, and intracellular Ca2+ were monitored with fluorescence microscopy. We found that a very mild electroporation, undetectable with the classical propidium assay but associated with a transient increase in intracellular Ca2+, can already have a profound effect on excitability close to the electrostimulation threshold, as corroborated by multiscale computational modelling. These results are of great relevance for understanding the effects of pulse delivery on cell excitability observed in context of the rapidly developing cardiac pulsed field ablation as well as other electroporation-based treatments in excitable tissues.
Collapse
Affiliation(s)
- Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Bor Kos
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Tomaž Jarm
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Rodney P O'Connor
- École des Mines de Saint-Étienne, Department of Bioelectronics, Georges Charpak Campus, Centre Microélectronique de Provence, 880 Route de Mimet, 13120, Gardanne, France
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Porcher A, Wilmot N, Bonnet P, Procaccio V, Vian A. Changes in Gene Expression After Exposing Arabidopsis thaliana Plants to Nanosecond High Amplitude Electromagnetic Field Pulses. Bioelectromagnetics 2024; 45:4-15. [PMID: 37408527 DOI: 10.1002/bem.22475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/17/2023] [Accepted: 05/23/2023] [Indexed: 07/07/2023]
Abstract
The biological effects of exposure to electromagnetic fields due to wireless technologies and connected devices are a subject of particular research interest. Ultrashort high-amplitude electromagnetic field pulses delivered to biological samples using immersed electrodes in a dedicated cuvette have widely demonstrated their effectiveness in triggering several cell responses including increased cytosolic calcium concentration and reactive oxygen species (ROS) production. In contrast, the effects of these pulses are poorly documented when electromagnetic pulses are delivered through an antenna. Here we exposed Arabidopsis thaliana plants to 30,000 pulses (237 kV m-1 , 280 ps rise-time, duration of 500 ps) emitted through a Koshelev antenna and monitored the consequences of electromagnetic fields exposure on the expression levels of several key genes involved in calcium metabolism, signal transduction, ROS, and energy status. We found that this treatment was mostly unable to trigger significant changes in the messenger RNA accumulation of calmodulin, Zinc-Finger protein ZAT12, NADPH oxidase/respiratory burst oxidase homolog (RBOH) isoforms D and F, Catalase (CAT2), glutamate-cystein ligase (GSH1), glutathione synthetase (GSH2), Sucrose non-fermenting-related Kinase 1 (SnRK1) and Target of rapamycin (TOR). In contrast, Ascorbate peroxidases APX-1 and APX-6 were significantly induced 3 h after the exposure. These results suggest that this treatment, although quite strong in amplitude, is mostly ineffective in inducing biological effects at the transcriptional level when delivered by an antenna. © 2023 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Alexis Porcher
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, Clermont-Ferrand, France
| | - Nancy Wilmot
- Univ Angers, CHU Angers, INSERM, CNRS, MITOVASC, SFR ICAT, Angers, France
| | - Pierre Bonnet
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, Clermont-Ferrand, France
| | - Vincent Procaccio
- Univ Angers, CHU Angers, INSERM, CNRS, MITOVASC, SFR ICAT, Angers, France
| | - Alain Vian
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| |
Collapse
|
9
|
Asadipour K, Zhou C, Yi V, Beebe SJ, Xiao S. Ultra-Low Intensity Post-Pulse Affects Cellular Responses Caused by Nanosecond Pulsed Electric Fields. Bioengineering (Basel) 2023; 10:1069. [PMID: 37760171 PMCID: PMC10525734 DOI: 10.3390/bioengineering10091069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
High-intensity nanosecond pulse electric fields (nsPEF) can preferentially induce various effects, most notably regulated cell death and tumor elimination. These effects have almost exclusively been shown to be associated with nsPEF waveforms defined by pulse duration, rise time, amplitude (electric field), and pulse number. Other factors, such as low-intensity post-pulse waveform, have been completely overlooked. In this study, we show that post-pulse waveforms can alter the cell responses produced by the primary pulse waveform and can even elicit unique cellular responses, despite the primary pulse waveform being nearly identical. We employed two commonly used pulse generator designs, namely the Blumlein line (BL) and the pulse forming line (PFL), both featuring nearly identical 100 ns pulse durations, to investigate various cellular effects. Although the primary pulse waveforms were nearly identical in electric field and frequency distribution, the post-pulses differed between the two designs. The BL's post-pulse was relatively long-lasting (~50 µs) and had an opposite polarity to the main pulse, whereas the PFL's post-pulse was much shorter (~2 µs) and had the same polarity as the main pulse. Both post-pulse amplitudes were less than 5% of the main pulse, but the different post-pulses caused distinctly different cellular responses. The thresholds for dissipation of the mitochondrial membrane potential, loss of viability, and increase in plasma membrane PI permeability all occurred at lower pulsing numbers for the PFL than the BL, while mitochondrial reactive oxygen species generation occurred at similar pulsing numbers for both pulser designs. The PFL decreased spare respiratory capacity (SRC), whereas the BL increased SRC. Only the PFL caused a biphasic effect on trans-plasma membrane electron transport (tPMET). These studies demonstrate, for the first time, that conditions resulting from low post-pulse intensity charging have a significant impact on cell responses and should be considered when comparing the results from similar pulse waveforms.
Collapse
Affiliation(s)
- Kamal Asadipour
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA;
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23529, USA; (C.Z.); (S.J.B.)
| | - Carol Zhou
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23529, USA; (C.Z.); (S.J.B.)
| | - Vincent Yi
- Ocean Lakes High School, Virginia Beach, VA 23454, USA;
| | - Stephen J. Beebe
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23529, USA; (C.Z.); (S.J.B.)
| | - Shu Xiao
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA;
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23529, USA; (C.Z.); (S.J.B.)
| |
Collapse
|
10
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
11
|
Li QG, Liu ZG, Dong G, Sun Y, Zou YW, Chen XL, Wu B, Chen XH, Ren ZG. Nanosecond pulsed electric field ablates rabbit VX2 liver tumors in a non-thermal manner. PLoS One 2023; 18:e0273754. [PMID: 36920938 PMCID: PMC10016630 DOI: 10.1371/journal.pone.0273754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/27/2022] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Liver tumor remains an important cause of cancer-related death. Nanosecond pulsed electric fields (nsPEFs) are advantageous in the treatment of melanoma and pancreatic cancer, but their therapeutic application on liver tumors need to be further studied. METHODS Hep3B cells were treated with nsPEFs. The biological behaviors of cells were detected by Cell Counting Kit-8, 5-ethynyl-20-deoxyuridine, and transmission electron microscopy (TEM) assays. In vivo, rabbit VX2 liver tumor models were ablated by ultrasound-guided nsPEFs and radiofrequency ablation (RFA). Contrast-enhanced ultrasound (CEUS) was used to evaluate the ablation effect. HE staining and Masson staining were used to evaluate the tissue morphology after ablation. Immunohistochemistry was performed to determine the expression of Ki67, proliferating cell nuclear antigen, and α-smooth muscle actin at different time points after ablation. RESULTS The cell viability of Hep3B cells was continuously lower than that of the control group within 3 days after pulse treatment. The proliferation of Hep3B cells was significantly affected by nsPEFs. TEM showed that Hep3B cells underwent significant morphological changes after pulse treatment. In vivo, CEUS imaging showed that nsPEFs could completely ablate model rabbit VX2 liver tumors. After nsPEFs ablation, the area of tumor fibrosis and the expression of Ki67, proliferating cell nuclear antigen, and α-smooth muscle actin were decreased. However, after RFA, rabbit VX2 liver tumor tissue showed complete necrosis, but the expression of PCNA and α-smooth muscle actin did not decrease compared to the tumor group. CONCLUSIONS nsPEFs can induce Hep3B cells apoptosis and ablate rabbit VX2 liver tumors in a non-thermal manner versus RFA. The ultrasound contrast agent can monitor immediate effect of nsPEF ablation. This study provides a basis for the clinical study of nsPEFs ablation of liver cancer.
Collapse
Affiliation(s)
- Qing-Gang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen-Guo Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Gang Dong
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya-Wen Zou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Long Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Wu
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Xin-Hua Chen
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Gang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- * E-mail:
| |
Collapse
|
12
|
Wang Y, Jiang T, Xie L, Wang H, Zhao J, Xu L, Fang C. Effect of pulsed field ablation on solid tumor cells and microenvironment. Front Oncol 2022; 12:899722. [PMID: 36081554 PMCID: PMC9447365 DOI: 10.3389/fonc.2022.899722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Pulsed field ablation can increase membrane permeability and is an emerging non-thermal ablation. While ablating tumor tissues, electrical pulses not only act on the membrane structure of cells to cause irreversible electroporation, but also convert tumors into an immune active state, increase the permeability of microvessels, inhibit the proliferation of pathological blood vessels, and soften the extracellular matrix thereby inhibiting infiltrative tumor growth. Electrical pulses can alter the tumor microenvironment, making the inhibitory effect on the tumor not limited to short-term killing, but mobilizing the collective immune system to inhibit tumor growth and invasion together.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian’an Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- *Correspondence: Tian’an Jiang,
| | - Liting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Huiyang Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Jing Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyu Fang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Marracino P, Paffi A, d'Inzeo G. A rationale for non-linear responses to strong electric fields in molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:11654-11661. [PMID: 35536147 DOI: 10.1039/d1cp04466d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many approaches for calculation of the field-dependent electric properties of water solutions rely on the Onsager and Kirkwood theories of polar dielectrics. Such basic theories implicitly consider the electric field intensity to fulfill the so-called 'weak field conditions', i.e. to produce a linear response in the system. In this work we made use of molecular dynamics simulations to investigate possible non-linear effects induced by high intensity electric fields, specifically continuous wave bursts with nanosecond duration, comparing them with the ones predicted by the theory. We found that field intensities above 0.15 V nm-1 produce remarkable nonlinear responses in the whole 100 MHz-100 GHz frequency window considered, with the onset of higher order polarization signals, which are the clear fingerprint of harmonic distorsions. That non-linear response turned out to depend on the considered frequency. We finally show that MD outcomes are consistent with a modelization based on an extended formulation of the Langevin function including a frequency-dependent parameter.
Collapse
Affiliation(s)
- Paolo Marracino
- Rise Technology S. R. L., L. Re Paolo Toscanelli 170, 00121 Rome, Italy.
| | - Alessandra Paffi
- University of Rome "La Sapienza", DIET, Rome, Italy.,Centre on the Interactions between Electromagnetic Fields and Biosystems (ICEmB), University of Genoa, Genoa, Italy
| | - Guglielmo d'Inzeo
- University of Rome "La Sapienza", DIET, Rome, Italy.,Centre on the Interactions between Electromagnetic Fields and Biosystems (ICEmB), University of Genoa, Genoa, Italy
| |
Collapse
|
14
|
Electroporation and Electrochemotherapy in Gynecological and Breast Cancer Treatment. Molecules 2022; 27:molecules27082476. [PMID: 35458673 PMCID: PMC9026735 DOI: 10.3390/molecules27082476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/14/2022] [Accepted: 04/10/2022] [Indexed: 12/24/2022] Open
Abstract
Gynecological carcinomas affect an increasing number of women and are associated with poor prognosis. The gold standard treatment plan is mainly based on surgical resection and subsequent chemotherapy with cisplatin, 5-fluorouracil, anthracyclines, or taxanes. Unfortunately, this treatment is becoming less effective and is associated with many side effects that negatively affect patients’ physical and mental well-being. Electroporation based on tumor exposure to electric pulses enables reduction in cytotoxic drugs dose while increasing their effectiveness. EP-based treatment methods have received more and more interest in recent years and are the subject of a large number of scientific studies. Some of them show promising therapeutic potential without using any cytotoxic drugs or molecules already present in the human body (e.g., calcium electroporation). This literature review aims to present the fundamental mechanisms responsible for the course of EP-based therapies and the current state of knowledge in the field of their application in the treatment of gynecological neoplasms.
Collapse
|
15
|
Novickij V, Zinkevizčienė A, Radzevičiūtė E, Kulbacka J, Rembiałkowska N, Novickij J, Girkontaitė I. Bioluminescent Calcium Mediated Detection of Nanosecond Electroporation: Grasping the Differences Between 100 ns and 100 µs Pulses. Bioelectrochemistry 2022; 145:108084. [DOI: 10.1016/j.bioelechem.2022.108084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/14/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022]
|
16
|
Pulse Duration Dependent Asymmetry in Molecular Transmembrane Transport Due to Electroporation in H9c2 Rat Cardiac Myoblast Cells In Vitro. Molecules 2021; 26:molecules26216571. [PMID: 34770979 PMCID: PMC8588460 DOI: 10.3390/molecules26216571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Electroporation (EP) is one of the successful physical methods for intracellular drug delivery, which temporarily permeabilizes plasma membrane by exposing cells to electric pulses. Orientation of cells in electric field is important for electroporation and, consequently, for transport of molecules through permeabilized plasma membrane. Uptake of molecules after electroporation are the greatest at poles of cells facing electrodes and is often asymmetrical. However, asymmetry reported was inconsistent and inconclusive-in different reports it was either preferentially anodal or cathodal. We investigated the asymmetry of polar uptake of calcium ions after electroporation with electric pulses of different durations, as the orientation of elongated cells affects electroporation to a different extent when using electric pulses of different durations in the range of 100 ns to 100 µs. The results show that with 1, 10, and 100 µs pulses, the uptake of calcium ions is greater at the pole closer to the cathode than at the pole closer to the anode. With shorter 100 ns pulses, the asymmetry is not observed. A different extent of electroporation at different parts of elongated cells, such as muscle or cardiac cells, may have an impact on electroporation-based treatments such as drug delivery, pulse-field ablation, and gene electrotransfection.
Collapse
|
17
|
Martins Antunes de Melo WDC, Celiešiūtė-Germanienė R, Šimonis P, Stirkė A. Antimicrobial photodynamic therapy (aPDT) for biofilm treatments. Possible synergy between aPDT and pulsed electric fields. Virulence 2021; 12:2247-2272. [PMID: 34496717 PMCID: PMC8437467 DOI: 10.1080/21505594.2021.1960105] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Currently, microbial biofilms have been the cause of a wide variety of infections in the human body, reaching 80% of all bacterial and fungal infections. The biofilms present specific properties that increase the resistance to antimicrobial treatments. Thus, the development of new approaches is urgent, and antimicrobial photodynamic therapy (aPDT) has been shown as a promising candidate. aPDT involves a synergic association of a photosensitizer (PS), molecular oxygen and visible light, producing highly reactive oxygen species (ROS) that cause the oxidation of several cellular components. This therapy attacks many components of the biofilm, including proteins, lipids, and nucleic acids present within the biofilm matrix; causing inhibition even in the cells that are inside the extracellular polymeric substance (EPS). Recent advances in designing new PSs to increase the production of ROS and the combination of aPDT with other therapies, especially pulsed electric fields (PEF), have contributed to enhanced biofilm inhibition. The PEF has proven to have antimicrobial effect once it is known that extensive chemical reactions occur when electric fields are applied. This type of treatment kills microorganisms not only due to membrane rupture but also due to the formation of reactive compounds including free oxygen, hydrogen, hydroxyl and hydroperoxyl radicals. So, this review aims to show the progress of aPDT and PEF against the biofilms, suggesting that the association of both methods can potentiate their effects and overcome biofilm infections.
Collapse
Affiliation(s)
- Wanessa de Cassia Martins Antunes de Melo
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Raimonda Celiešiūtė-Germanienė
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Povilas Šimonis
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Arūnas Stirkė
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| |
Collapse
|
18
|
Kiełbik A, Szlasa W, Novickij V, Szewczyk A, Maciejewska M, Saczko J, Kulbacka J. Effects of high-frequency nanosecond pulses on prostate cancer cells. Sci Rep 2021; 11:15835. [PMID: 34349171 PMCID: PMC8339066 DOI: 10.1038/s41598-021-95180-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Electroporation with pulsed electric fields show a potential to be applied as an experimental focal therapy of tumors. Sub-microsecond regime of electric pulses displays unique electrophysical features operative in cells and membranes. Recently, MHz compression of nanosecond pulses electric fields (nsPEFs) bursts proved to enhance the effectiveness of the therapy. High morbidity of prostate cancer (PCa) and risk of overtreatment associated with this malignancy call for new minimal-invasive treatment alternative. Herein we present the in vitro study for developing applications based on this new technology. In this study, we used flow cytometric analysis, cell viability assay, caspase activity analysis, wound healing assay, confocal microscopy study, and immunofluorescence to investigate the biological effect of high-frequency nsPEFs on PCa cells. Our results show that high-frequency nsPEFs induces the permeabilization and cell death of PCa cells. The cytotoxicity is significantly enhanced in MHz compression of pulses and with the presence of extracellular Ca2+. High-frequency nsPEFs trigger changes in PCa cells' cytoskeleton and their mobility. The presented data show a therapeutic potential of high-frequency nsPEFs in a PCa setting. The sub-microsecond regime of pulses can potentially be applied in nanosecond electroporation protocols for PCa treatment.
Collapse
Affiliation(s)
- Aleksander Kiełbik
- grid.4495.c0000 0001 1090 049XMedical University Hospital, Borowska 213, 50-556 Wrocław, Poland ,grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | - Wojciech Szlasa
- grid.4495.c0000 0001 1090 049XFaculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Vitalij Novickij
- grid.9424.b0000 0004 1937 1776Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Anna Szewczyk
- grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland ,grid.8505.80000 0001 1010 5103Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wrocław, Poland
| | - Magdalena Maciejewska
- grid.413454.30000 0001 1958 0162Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Jolanta Saczko
- grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | - Julita Kulbacka
- grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
19
|
Batista Napotnik T, Polajžer T, Miklavčič D. Cell death due to electroporation - A review. Bioelectrochemistry 2021; 141:107871. [PMID: 34147013 DOI: 10.1016/j.bioelechem.2021.107871] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Exposure of cells to high voltage electric pulses increases transiently membrane permeability through membrane electroporation. Electroporation can be reversible and is used in gene transfer and enhanced drug delivery but can also lead to cell death. Electroporation resulting in cell death (termed as irreversible electroporation) has been successfully used as a new non-thermal ablation method of soft tissue such as tumours or arrhythmogenic heart tissue. Even though the mechanisms of cell death can influence the outcome of electroporation-based treatments due to use of different electric pulse parameters and conditions, these are not elucidated yet. We review the mechanisms of cell death after electroporation reported in literature, cell injuries that may lead to cell death after electroporation and membrane repair mechanisms involved. The knowledge of membrane repair and cell death mechanisms after cell exposure to electric pulses, targets of electric field in cells need to be identified to optimize existing and develop of new electroporation-based techniques used in medicine, biotechnology, and food technology.
Collapse
Affiliation(s)
- Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Tamara Polajžer
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
20
|
Carr L, Golzio M, Orlacchio R, Alberola G, Kolosnjaj-Tabi J, Leveque P, Arnaud-Cormos D, Rols MP. A nanosecond pulsed electric field (nsPEF) can affect membrane permeabilization and cellular viability in a 3D spheroids tumor model. Bioelectrochemistry 2021; 141:107839. [PMID: 34020398 DOI: 10.1016/j.bioelechem.2021.107839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/01/2022]
Abstract
Three-dimensional (3D) cellular models represent more realistically the complexity of in vivo tumors compared to 2D cultures. While 3D models were largely used in classical electroporation, the effects of nanosecond pulsed electric field (nsPEF) have been poorly investigated. In this study, we evaluated the biological effects induced by nsPEF on spheroid tumor model derived from the HCT-116 human colorectal carcinoma cell line. By varying the number of pulses (from 1 to 500) and the polarity (unipolar and bipolar), the response of nsPEF exposure (10 ns duration, 50 kV/cm) was assessed either immediately after the application of the pulses or over a period lasting up to 6 days. Membrane permeabilization and cellular death occurred following the application of at least 100 pulses. The extent of the response increased with the number of pulses, with a significant decrease of viability, 24 h post-exposure, when 250 and 500 pulses were applied. The effects were highly reduced when an equivalent number of bipolar pulses were delivered. This reduction was eliminated when a 100 ns interphase interval was introduced into the bipolar pulses. Altogether, our results show that nsPEF effects, previously observed at the single cell level, also occur in more realistic 3D tumor spheroids models.
Collapse
Affiliation(s)
- Lynn Carr
- Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France; School of Electronic Engineering, Bangor University, Bangor, UK
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Rosa Orlacchio
- Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France
| | - Geraldine Alberola
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | | | - Delia Arnaud-Cormos
- Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France; Institut Universitaire de France (IUF), 75005 Paris, France.
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France.
| |
Collapse
|
21
|
Poudel A, Oludiran A, Sözer EB, Casciola M, Purcell EB, Muratori C. Growth in a biofilm sensitizes Cutibacterium acnes to nanosecond pulsed electric fields. Bioelectrochemistry 2021; 140:107797. [PMID: 33773215 DOI: 10.1016/j.bioelechem.2021.107797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
The Gram-positive anaerobic bacterium Cutibacterium acnes (C. acnes) is a commensal of the human skin, but also an opportunistic pathogen that contributes to the pathophysiology of the skin disease acne vulgaris. C. acnes can form biofilms; cells in biofilms are more resilient to antimicrobial stresses. Acne therapeutic options such as topical or systemic antimicrobial treatments often show incomplete responses. In this study we measured the efficacy of nanosecond pulsed electric fields (nsPEF), a new promising cell and tissue ablation technology, to inactivate C. acnes. Our results show that all tested nsPEF doses (250 to 2000 pulses, 280 ns pulses, 28 kV/cm, 5 Hz; 0.5 to 4 kJ/ml) failed to inactivate planktonic C. acnes and that pretreatment with lysozyme, a naturally occurring cell-wall-weakening enzyme, increased C. acnes vulnerability to nsPEF. Surprisingly, growth in a biofilm appears to sensitize C. acnes to nsPEF-induced stress, as C. acnes biofilm-derived cells showed increased cell death after nsPEF treatments that did not affect planktonic cells. Biofilm inactivation by nsPEF was confirmed by treating intact biofilms grown on glass coverslips with an indium oxide conductive layer. Altogether our results show that, contrary to other antimicrobial agents, nsPEF kill more efficiently bacteria in biofilms than planktonic cells.
Collapse
Affiliation(s)
- Asia Poudel
- Old Dominion University, Department of Chemistry and Biochemistry, USA
| | - Adenrele Oludiran
- Old Dominion University, Department of Chemistry and Biochemistry, USA
| | - Esin B Sözer
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, USA
| | - Maura Casciola
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, USA; Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Erin B Purcell
- Old Dominion University, Department of Chemistry and Biochemistry, USA.
| | - Claudia Muratori
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, USA.
| |
Collapse
|
22
|
Cantu JC, Tolstykh GP, Tarango M, Beier HT, Ibey BL. Caveolin-1 is Involved in Regulating the Biological Response of Cells to Nanosecond Pulsed Electric Fields. J Membr Biol 2021; 254:141-156. [PMID: 33427940 DOI: 10.1007/s00232-020-00160-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/18/2020] [Indexed: 01/20/2023]
Abstract
Nanosecond pulsed electric fields (nsPEFs) induce changes in the plasma membrane (PM), including PM permeabilization (termed nanoporation), allowing free passage of ions into the cell and, in certain cases, cell death. Recent studies from our laboratory show that the composition of the PM is a critical determinant of PM nanoporation. Thus, we hypothesized that the biological response to nsPEF exposure could be influenced by lipid microdomains, including caveolae, which are specialized invaginations of the PM that are enriched in cholesterol and contain aggregates of important cell signaling proteins, such as caveolin-1 (Cav1). Caveolae play a significant role in cellular signal transduction, including control of calcium influx and cell death by interaction of Cav1 with regulatory signaling proteins. Present results show that depletion of Cav1 increased the influx of calcium, while Cav1 overexpression produced the opposite effect. Additionally, Cav1 is known to bind and sequester important cell signaling proteins within caveolae, rendering the binding partners inactive. Imaging of the PM after nsPEF exposure showed localized depletion of PM Cav1 and results of co-immunoprecipitation studies showed dissociation of two critical Cav1 binding partners (transient receptor potential cation channel subfamily C1 (TRPC1) and inositol trisphosphate receptor (IP3R)) after exposure to nsPEFs. Release of TRPC1 and IP3R from Cav1 would activate downstream signaling cascades, including store-operated calcium entry, which could explain the influx in calcium after nsPEF exposure. Results of the current study establish a significant relationship between Cav1 and the activation of cell signaling pathways in response to nsPEFs.
Collapse
Affiliation(s)
- Jody C Cantu
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, Bldg. 3260, San Antonio, TX, 78234-2644, USA.
| | - Gleb P Tolstykh
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, Bldg. 3260, San Antonio, TX, 78234-2644, USA
| | - Melissa Tarango
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, Bldg. 3260, San Antonio, TX, 78234-2644, USA
| | - Hope T Beier
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Optical Radiation Bioeffects Branch, JBSA Fort Sam Houston, San Antonio, TX, 78234, USA
| | - Bennett L Ibey
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, San Antonio, TX, 78234, USA
| |
Collapse
|
23
|
Nanosecond pulsed electric fields modulate the expression of the astaxanthin biosynthesis genes psy, crtR-b and bkt 1 in Haematococcus pluvialis. Sci Rep 2020; 10:15508. [PMID: 32968095 PMCID: PMC7511312 DOI: 10.1038/s41598-020-72479-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 07/10/2020] [Indexed: 12/19/2022] Open
Abstract
Nanosecond pulsed electric fields (nsPEFs) have been extensively studied with respect to cellular responses. Whether nsPEFs can regulate gene expression and to modulate the synthesis of valuable compounds, has so far been only tested in the context of apoptosis in cancer cells. We used the unicellular algae Haematococcus pluvialis as system to test, whether nsPEFs could alter gene expression and to promote the biosynthesis of astaxanthin. We find that nsPEFs induce a mild, but significant increase of mortality up to about 20%, accompanied by a moderate increase of astaxanthin accumulation. Steady-state transcript levels of three key genes psy, crtR-b and bkt 1 were seen to increase with a maximum at 3 d after PEF treatment at 50 ns. Pulsing at 25 ns reduce the transcripts of psy, crtR-b from around day 2 after the pulse, while those of bkt 1 remain unchanged. By blocking the membrane-located NADPH oxidase RboH, diphenylene iodonium by itself increased both, the levels of astaxanthin and transcripts of all three biosynthetic genes, and this increase was added up to that produced by nsPEFs. Artificial calcium influx by an ionophore did not induce major changes in the accumulation of astaxanthin, nor in the transcript levels, but amplified the response of crtR-b to nsPEFs at 25 ns, while decreased in 50 ns treatment. When Ca2+ influx was inhibited by GdCl3, the transcript of psy and bkt 1 were decreased for both 25 ns and 50 ns treatments, while crtR-b exhibited an obvious increase for the 25 ns treatment. We interpret these data in a working model, where nsPEFs permeabilise plasma and chloroplast membrane depending on pulse duration leading to a differential release of plastid retrograde signaling to the nucleus.
Collapse
|
24
|
Graybill PM, Davalos RV. Cytoskeletal Disruption after Electroporation and Its Significance to Pulsed Electric Field Therapies. Cancers (Basel) 2020; 12:E1132. [PMID: 32366043 PMCID: PMC7281591 DOI: 10.3390/cancers12051132] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Pulsed electric fields (PEFs) have become clinically important through the success of Irreversible Electroporation (IRE), Electrochemotherapy (ECT), and nanosecond PEFs (nsPEFs) for the treatment of tumors. PEFs increase the permeability of cell membranes, a phenomenon known as electroporation. In addition to well-known membrane effects, PEFs can cause profound cytoskeletal disruption. In this review, we summarize the current understanding of cytoskeletal disruption after PEFs. Compiling available studies, we describe PEF-induced cytoskeletal disruption and possible mechanisms of disruption. Additionally, we consider how cytoskeletal alterations contribute to cell-cell and cell-substrate disruption. We conclude with a discussion of cytoskeletal disruption-induced anti-vascular effects of PEFs and consider how a better understanding of cytoskeletal disruption after PEFs may lead to more effective therapies.
Collapse
Affiliation(s)
- Philip M. Graybill
- BEMS Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rafael V. Davalos
- BEMS Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Virginia Tech–Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
| |
Collapse
|
25
|
Compact Square-Wave Pulse Electroporator with Controlled Electroporation Efficiency and Cell Viability. Symmetry (Basel) 2020. [DOI: 10.3390/sym12030412] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The design and development of a compact square-wave pulse generator for the electroporation of biological cells is presented. This electroporator can generate square-wave pulses with durations from 3 μs up to 10 ms, voltage amplitudes up to 3500 V, and currents up to 250 A. The quantity of the accumulated energy is optimized by means of a variable capacitor bank. The pulse forming unit design uses a crowbar circuit, which gives better control of the pulse form and its duration, independent of the load impedance. In such cases, the square-wave pulse form ensures better control of electroporation efficiency by choosing parameters determined in advance. The device has an integrated graphic LCD screen and measurement modules for the visualization of the current pulse, allowing for express control of the electroporation quality and does not require an external oscilloscope for current pulse recording. This electroporator was tested on suspensions of Saccharomyces cerevisiae yeast cells, during which, it was demonstrated that the application of such square-wave pulses ensured better control of the electroporation efficiency and cell viability after treatment using the pulsed electric field (PEF).
Collapse
|
26
|
Abstract
In this paper, we present an analysis and a validation of a simulation program with integrated circuit emphasis (SPICE) model for a pulse forming circuit of a high frequency electroporation system, which can deliver square-wave sub-microsecond (100–900 ns) electric field pulses. The developed SPICE model is suggested for use in evaluation of transient processes that occur due to high frequency operations in prototype systems. A controlled crowbar circuit was implemented to support a variety of biological loads and to ensure a constant electric pulse rise and fall time during electroporation to be independent of the applied buffer bioimpedance. The SPICE model was validated via a comparison of the simulation and experimental results obtained from the already existing prototype system. The SPICE model results were in good agreement with the experimental results, and the model complexity was found to be sufficient for analysis of transient processes. As result, the proposed SPICE model can be useful for evaluation and compensation of transient processes in sub-microsecond pulsed power set-ups during the development of new prototypes.
Collapse
|
27
|
Zhang Y, Mao Z, Wang B, Zhang J, Lu N, Hong R, Dong S, Yao C, Liu QH. Enhanced Antitumor Efficacy Achieved Through Combination of nsPEFs and Low-Dosage Paclitaxel. IEEE Trans Biomed Eng 2019; 66:3129-3135. [PMID: 30794505 DOI: 10.1109/tbme.2019.2900720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Looking for a safe and effective cancer therapy for patients is becoming an important and promising research direction. Nanosecond pulsed electric field (nsPEF) has been found to be a potential non-thermal therapeutic technique with few side effects in pre-clinical studies. On the other hand, paclitaxel (PTX), as a common chemotherapeutic agent, shows full anti-tumor activities and is used to treat a wide variety of cancers. However, the delivery of PTX is challenging due to its poor aqueous solubility. Hence, high dosages of PTX have been used to achieve effective treatment, which creates some side effects. In this study, nsPEF was combined with low-level PTX, in order to validate if this combined treatment could bring about enhanced efficacy and allow reduced doses of PTX in clinical application. Cell proliferation, apoptosis, and cell cycle distribution were examined using MTT and flow cytometry assay, respectively. Results showed that combination treatments of nsPEF and PTX exhibited significant synergistic effects in vitro. The underlying mechanism might be that these two agents acted at different targets and coordinately enhanced MDA-MB-231 cell death.
Collapse
|
28
|
Wang Y, Yin S, Zhou Y, Zhou W, Chen T, Wu Q, Zhou L, Zheng S. Dual-function of Baicalin in nsPEFs-treated Hepatocytes and Hepatocellular Carcinoma cells for Different Death Pathway and Mitochondrial Response. Int J Med Sci 2019; 16:1271-1282. [PMID: 31588193 PMCID: PMC6775272 DOI: 10.7150/ijms.34876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/03/2019] [Indexed: 12/24/2022] Open
Abstract
Nanosecond pulsed electric fields (nsPEFs) is emerged as a potential curative modality to ablate hepatocellular carcinoma (HCC). The application of local ablation is usually limited by insufficiency of liver function. While baicalin, a flavonoid isolated from Scutellaria baicalensis Georgi, has been proven to possess both anti-tumor and protective effects. Our study aimed to estimate different responses of hepatic cancer cells and hepatocytes to the combination of nsPEFs and baicalin. Cell viability, apoptosis and necrosis, mitochondrial transmembrane potential (MTP) and reactive oxygen species (ROS) were examined by CCK-8, FCM, JC-1 and fluorescent probe, respectively. After treatment by nsPEFs, most hepatocytes died by apoptosis, nevertheless, nearly all cancer cells were killed through necrosis. Low concentration of baicalin synergically enhanced nsPEFs-induced suppression and necrosis of HCC cells, nevertheless, the application of baicalin protected normal hepatocytes from the injury caused by nsPEFs, owing to elevating mitochondrial transmembrane potential and reducing ROS generation. Our work provided an advantageous therapy for HCC through the enhanced combination treatment of nsPEFs and baicalin, with which could improve the tumor-ablation effect and alleviate the injury of hepatic tissues simultaneously.
Collapse
Affiliation(s)
- Yubo Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Shengyong Yin
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Yuan Zhou
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Wuhua Zhou
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China.,Department of hepatobiliary and pancreatic surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Tianchi Chen
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Qinchuan Wu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Lin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| |
Collapse
|
29
|
Farashi S, Sasanpour P, Rafii-Tabar H. Interaction of low frequency external electric fields and pancreatic β-cell: a mathematical modeling approach to identify the influence of excitation parameters. Int J Radiat Biol 2018; 94:1038-1048. [DOI: 10.1080/09553002.2018.1478162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sajjad Farashi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Computational Nano-Bioelectromagnetics Research Group, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Beebe SJ, Lassiter BP, Guo S. Nanopulse Stimulation (NPS) Induces Tumor Ablation and Immunity in Orthotopic 4T1 Mouse Breast Cancer: A Review. Cancers (Basel) 2018; 10:cancers10040097. [PMID: 29601471 PMCID: PMC5923352 DOI: 10.3390/cancers10040097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
Nanopulse Stimulation (NPS) eliminates mouse and rat tumor types in several different animal models. NPS induces protective, vaccine-like effects after ablation of orthotopic rat N1-S1 hepatocellular carcinoma. Here we review some general concepts of NPS in the context of studies with mouse metastatic 4T1 mammary cancer showing that the postablation, vaccine-like effect is initiated by dynamic, multilayered immune mechanisms. NPS eliminates primary 4T1 tumors by inducing immunogenic, caspase-independent programmed cell death (PCD). With lower electric fields, like those peripheral to the primary treatment zone, NPS can activate dendritic cells (DCs). The activation of DCs by dead/dying cells leads to increases in memory effector and central memory T-lymphocytes in the blood and spleen. NPS also eliminates immunosuppressive cells in the tumor microenvironment and blood. Finally, NPS treatment of 4T1 breast cancer exhibits an abscopal effect and largely prevents spontaneous metastases to distant organs. NPS with fast rise–fall times and pulse durations near the plasma membrane charging time constant, which exhibits transient, high-frequency components (1/time = Hz), induce responses from mitochondria, endoplasmic reticulum, and nucleus. Such effects may be responsible for release of danger-associated molecular patterns, including ATP, calreticulin, and high mobility group box 1 (HMBG1) from 4T1-Luc cells to induce immunogenic cell death (ICD). This likely leads to immunity and the vaccine-like response. In this way, NPS acts as a unique onco-immunotherapy providing distinct therapeutic advantages showing possible clinical utility for breast cancers as well as for other malignancies.
Collapse
Affiliation(s)
- Stephen J Beebe
- Frank Reidy Research Center for Bioelectrics, 4211 Monarch Ways, Suite 300, Norfolk, VA 23508, USA.
| | - Brittany P Lassiter
- Frank Reidy Research Center for Bioelectrics, 4211 Monarch Ways, Suite 300, Norfolk, VA 23508, USA.
| | - Siqi Guo
- Frank Reidy Research Center for Bioelectrics, 4211 Monarch Ways, Suite 300, Norfolk, VA 23508, USA.
| |
Collapse
|
31
|
Xu X, Chen Y, Zhang R, Miao X, Chen X. Activation of Anti-tumor Immune Response by Ablation of HCC with Nanosecond Pulsed Electric Field. J Clin Transl Hepatol 2018; 6:85-88. [PMID: 29577034 PMCID: PMC5863003 DOI: 10.14218/jcth.2017.00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
Locoregional therapy is playing an increasingly important role in the non-surgical management of hepatocellular carcinoma (HCC). The novel technique of non-thermal electric ablation by nanosecond pulsed electric field has been recognized as a potential locoregional methodology for indicated HCC. This manuscript explores the most recent studies to indicate its unique anti-tumor immune response. The possible immune mechanism, termed as nano-pulse stimulation, was also analyzed.
Collapse
Affiliation(s)
- Xiaobo Xu
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiling Chen
- Department of Anatomy, Tianjin Medical University, Tianjin, China
| | - Ruiqing Zhang
- Hepatobiliary & Hydatid Department, Digestive and Vascular Surgery Centre, Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xudong Miao
- Department of Orthopedics, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinhua Chen
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence to: Xinhua Chen, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China. Tel: +86-571-87236570, Fax: +86-571-87236466, E-mail:
| |
Collapse
|
32
|
Carr L, Bardet SM, Arnaud-Cormos D, Leveque P, O'Connor RP. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells. Bioelectrochemistry 2018; 119:68-75. [DOI: 10.1016/j.bioelechem.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/23/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022]
|
33
|
High frequency electroporation efficiency is under control of membrane capacitive charging and voltage potential relaxation. Bioelectrochemistry 2018; 119:92-97. [DOI: 10.1016/j.bioelechem.2017.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023]
|
34
|
Zhang B, Kuang D, Tang X, Mi Y, Luo Q, Song G. Effect of Low-Field High-Frequency nsPEFs on the Biological Behaviors of Human A375 Melanoma Cells. IEEE Trans Biomed Eng 2017; 65:2093-2100. [PMID: 29989943 DOI: 10.1109/tbme.2017.2784546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To evaluate the effect of low-field high-frequency nanosecond pulsed electric fields (nsPEFs) on multiple biological behaviors of human A375 melanoma cells and to optimize suitable parameters for further study and clinical use. METHODS An nsPEF generator was developed to generate appropriate pulses. Cell apoptosis and the cell cycle were evaluated by flow cytometry. The CCK-8 assay was performed to explore the effect of nsPEFs on the viability of A375 melanoma cells. Cell migration was assessed using a Transwell Boyden Chamber. The proliferation of A375 melanoma cells was determined by the cloning efficacy test. Furthermore, the nude mouse tumorigenicity assay was used to detect the effectiveness of nsPEFs in vivo. RESULTS The nsPEFs with our tested parameters failed to induce apoptosis of A375 melanoma cells, though nsPEFs with high pulse duration (500 ns) induced necrosis. However, the viability and migration of A375 melanoma cells were significantly inhibited by nsPEFs. nsPEFs also suppressed the proliferation of A375 melanoma cells by restricting cells in G0/G1 phase. Moreover, animal experiments demonstrated that nsPEFs inhibited the growth of melanoma in vivo. CONCLUSION Low-field high-frequency nsPEFs failed to induce apoptosis but effectively inhibited the growth of melanoma via affecting other biological behaviors of melanoma cells, such as cell viability, proliferation, and migration. SIGNIFICANCE This study investigated the influence of low-field high-frequency nsPEFs on melanoma through evaluating their effects on multiple biological behaviors and is helpful in the treatment of melanoma and other tumors.
Collapse
|
35
|
Romanenko S, Begley R, Harvey AR, Hool L, Wallace VP. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential. J R Soc Interface 2017; 14:20170585. [PMID: 29212756 PMCID: PMC5746568 DOI: 10.1098/rsif.2017.0585] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
Since regular radio broadcasts started in the 1920s, the exposure to human-made electromagnetic fields has steadily increased. These days we are not only exposed to radio waves but also other frequencies from a variety of sources, mainly from communication and security devices. Considering that nearly all biological systems interact with electromagnetic fields, understanding the affects is essential for safety and technological progress. This paper systematically reviews the role and effects of static and pulsed radio frequencies (100-109 Hz), millimetre waves (MMWs) or gigahertz (109-1011 Hz), and terahertz (1011-1013 Hz) on various biomolecules, cells and tissues. Electromagnetic fields have been shown to affect the activity in cell membranes (sodium versus potassium ion conductivities) and non-selective channels, transmembrane potentials and even the cell cycle. Particular attention is given to millimetre and terahertz radiation due to their increasing utilization and, hence, increasing human exposure. MMWs are known to alter active transport across cell membranes, and it has been reported that terahertz radiation may interfere with DNA and cause genomic instabilities. These and other phenomena are discussed along with the discrepancies and controversies from published studies.
Collapse
Affiliation(s)
- Sergii Romanenko
- School of Physics, The University of Western Australia, Perth, Western Australia, Australia
| | - Ryan Begley
- School of Physics, The University of Western Australia, Perth, Western Australia, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia
| | - Livia Hool
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Vincent P Wallace
- School of Physics, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
36
|
Gianulis EC, Casciola M, Xiao S, Pakhomova ON, Pakhomov AG. Electropermeabilization by uni- or bipolar nanosecond electric pulses: The impact of extracellular conductivity. Bioelectrochemistry 2017; 119:10-19. [PMID: 28865240 DOI: 10.1016/j.bioelechem.2017.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/05/2017] [Accepted: 08/15/2017] [Indexed: 02/03/2023]
Abstract
Cellular effects caused by nanosecond electric pulses (nsEP) can be reduced by an electric field reversal, a phenomenon known as bipolar cancellation. The reason for this cancellation effect remains unknown. We hypothesized that assisted membrane discharge is the mechanism for bipolar cancellation. CHO-K1 cells bathed in high (16.1mS/cm; HCS) or low (1.8mS/cm; LCS) conductivity solutions were exposed to either one unipolar (300-ns) or two opposite polarity (300+300-ns; bipolar) nsEP (4-40kV/cm) with increasing interpulse intervals (0.1-50μs). Time-lapse YO-PRO-1 (YP) uptake revealed enhanced membrane permeabilization in LCS compared to HCS at all tested voltages. The time-dependence of bipolar cancellation was similar in both solutions, using either identical (22kV/cm) or isoeffective nsEP treatments (12 and 32kV/cm for LCS and HCS, respectively). However, cancellation was significantly stronger in LCS when the bipolar nsEP had no, or very short (<1μs), interpulse intervals. Finally, bipolar cancellation was still present with interpulse intervals as long as 50μs, beyond the time expected for membrane discharge. Our findings do not support assisted membrane discharge as the mechanism for bipolar cancellation. Instead they exemplify the sustained action of nsEP that can be reversed long after the initial stimulus.
Collapse
Affiliation(s)
- Elena C Gianulis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| | - Maura Casciola
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Shu Xiao
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23508, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
37
|
Lei T, Li F, Liang Z, Tang C, Xie K, Wang P, Dong X, Shan S, Liu J, Xu Q, Luo E, Shen G. Effects of four kinds of electromagnetic fields (EMF) with different frequency spectrum bands on ovariectomized osteoporosis in mice. Sci Rep 2017; 7:553. [PMID: 28373666 PMCID: PMC5428825 DOI: 10.1038/s41598-017-00668-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/08/2017] [Indexed: 02/08/2023] Open
Abstract
Electromagnetic fields (EMF) was considered as a non-invasive modality for treatment of osteoporosis while the effects were diverse with EMF parameters in time domain. In present study, we extended analysis of EMF characteristics from time domain to frequency domain, aiming to investigate effects of four kinds of EMF (LP (1–100 Hz), BP (100–3,000 Hz), HP (3,000–50,000 Hz) and AP (1–50,000 Hz)) on ovariectomized (OVX) osteoporosis (OP) in mice. Forty-eight 3-month-old female BALB/c mice were equally assigned to Sham, OVX, OVX + LP, OVX + BP, OVX + HP and OVX + AP groups (n = 8). After 8-week exposure (3 h/day), LP and BP significantly increased serum bone formation markers and osteogenesis-related gene expressions compared with OVX. Bedsides, LP and BP also slightly increased bone resorption activity compared with OVX, evidenced by increased RANKL/OPG ratio. HP sharply decreased serum bone formation and resporption markers and osteogenesis and osteoclastogenesis related gene expressions compared with OVX. AP had accumulative effects of LP, BP and HP, which significantly increased bone formation and decreased bone resporption activity compared with OVX. As a result, LP, BP and HP exposure did not later deterioration of bone mass, microarchitecture and mechanical strength in OVX mice with OP. However, AP stimulation attenuated OVX-induced bone loss.
Collapse
Affiliation(s)
- Tao Lei
- School of Biomedical Engineering, Fourth Military Medical University, 17 West Changle Road, Xi'an, China
| | - Feijiang Li
- School of Biomedical Engineering, Fourth Military Medical University, 17 West Changle Road, Xi'an, China
| | - Zhuowen Liang
- Institute of Orthopaedics, Xijing hospital, Fourth Military Medical University, Xi'an, China
| | - Chi Tang
- School of Biomedical Engineering, Fourth Military Medical University, 17 West Changle Road, Xi'an, China
| | - Kangning Xie
- School of Biomedical Engineering, Fourth Military Medical University, 17 West Changle Road, Xi'an, China
| | - Pan Wang
- School of Biomedical Engineering, Fourth Military Medical University, 17 West Changle Road, Xi'an, China
| | - Xu Dong
- School of Biomedical Engineering, Fourth Military Medical University, 17 West Changle Road, Xi'an, China
| | - Shuai Shan
- School of Biomedical Engineering, Fourth Military Medical University, 17 West Changle Road, Xi'an, China
| | - Juan Liu
- School of Biomedical Engineering, Fourth Military Medical University, 17 West Changle Road, Xi'an, China
| | - Qiaoling Xu
- School of Nursing, Fourth Military Medical University, 17 West Changle Road, Xi'an, China
| | - Erping Luo
- School of Biomedical Engineering, Fourth Military Medical University, 17 West Changle Road, Xi'an, China.
| | - Guanghao Shen
- School of Biomedical Engineering, Fourth Military Medical University, 17 West Changle Road, Xi'an, China.
| |
Collapse
|
38
|
Dezest M, Chavatte L, Bourdens M, Quinton D, Camus M, Garrigues L, Descargues P, Arbault S, Burlet-Schiltz O, Casteilla L, Clément F, Planat V, Bulteau AL. Mechanistic insights into the impact of Cold Atmospheric Pressure Plasma on human epithelial cell lines. Sci Rep 2017; 7:41163. [PMID: 28120925 PMCID: PMC5264585 DOI: 10.1038/srep41163] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/09/2016] [Indexed: 01/24/2023] Open
Abstract
Compelling evidence suggests that Cold Atmospheric Pressure Plasma (CAPP) has potential as a new cancer therapy. However, knowledge about cellular signaling events and toxicity subsequent to plasma treatment is still poorly documented. The aim of this study was to focus on the interaction between 3 different types of plasma (He, He-O2, He-N2) and human epithelial cell lines to gain better insight into plasma-cell interaction. We provide evidence that reactive oxygen and nitrogen species (RONS) are inducing cell death by apoptosis and that the proteasome, a major intracellular proteolytic system which is important for tumor cell growth and survival, is a target of (He or He-N2) CAPP. However, RONS are not the only actors involved in cell death; electric field and charged particles could play a significant role especially for He-O2 CAPP. By differential label-free quantitative proteomic analysis we found that CAPP triggers antioxidant and cellular defense but is also affecting extracellular matrix in keratinocytes. Moreover, we found that malignant cells are more resistant to CAPP treatment than normal cells. Taken together, our findings provide insight into potential mechanisms of CAPP-induced proteasome inactivation and the cellular consequences of these events.
Collapse
Affiliation(s)
- Marlène Dezest
- IPREM, UMR 5254, Université de Pau et des Pays de l'Adour, 64000, Pau, France
| | - Laurent Chavatte
- IPREM, UMR 5254, Université de Pau et des Pays de l'Adour, 64000, Pau, France
| | - Marion Bourdens
- STROMALAB, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, UPS, INSERM U1031, BP31432 Toulouse cedex 4, France
| | - Damien Quinton
- Univ. BORDEAUX, ISM. CNRS UMR 5255 NSysA group, ENSCBP, Pessac, 33607, France
| | - Mylène Camus
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| | - Luc Garrigues
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| | | | - Stéphane Arbault
- Univ. BORDEAUX, ISM. CNRS UMR 5255 NSysA group, ENSCBP, Pessac, 33607, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| | - Louis Casteilla
- STROMALAB, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, UPS, INSERM U1031, BP31432 Toulouse cedex 4, France
| | - Franck Clément
- IPREM, UMR 5254, Université de Pau et des Pays de l'Adour, 64000, Pau, France
| | - Valérie Planat
- STROMALAB, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, UPS, INSERM U1031, BP31432 Toulouse cedex 4, France
| | - Anne-Laure Bulteau
- IPREM, UMR 5254, Université de Pau et des Pays de l'Adour, 64000, Pau, France
| |
Collapse
|
39
|
Carr L, Bardet SM, Burke RC, Arnaud-Cormos D, Leveque P, O'Connor RP. Calcium-independent disruption of microtubule dynamics by nanosecond pulsed electric fields in U87 human glioblastoma cells. Sci Rep 2017; 7:41267. [PMID: 28117459 PMCID: PMC5259788 DOI: 10.1038/srep41267] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/19/2016] [Indexed: 12/26/2022] Open
Abstract
High powered, nanosecond duration, pulsed electric fields (nsPEF) cause cell death by a mechanism that is not fully understood and have been proposed as a targeted cancer therapy. Numerous chemotherapeutics work by disrupting microtubules. As microtubules are affected by electrical fields, this study looks at the possibility of disrupting them electrically with nsPEF. Human glioblastoma cells (U87-MG) treated with 100, 10 ns, 44 kV/cm pulses at a frequency of 10 Hz showed a breakdown of their interphase microtubule network that was accompanied by a reduction in the number of growing microtubules. This effect is temporally linked to loss of mitochondrial membrane potential and independent of cellular swelling and calcium influx, two factors that disrupt microtubule growth dynamics. Super-resolution microscopy revealed microtubule buckling and breaking as a result of nsPEF application, suggesting that nsPEF may act directly on microtubules.
Collapse
Affiliation(s)
- Lynn Carr
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Sylvia M Bardet
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Ryan C Burke
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Delia Arnaud-Cormos
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Philippe Leveque
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Rodney P O'Connor
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| |
Collapse
|
40
|
Gianulis EC, Labib C, Saulis G, Novickij V, Pakhomova ON, Pakhomov AG. Selective susceptibility to nanosecond pulsed electric field (nsPEF) across different human cell types. Cell Mol Life Sci 2016; 74:1741-1754. [PMID: 27986976 DOI: 10.1007/s00018-016-2434-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/27/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022]
Abstract
Tumor ablation by nanosecond pulsed electric fields (nsPEF) is an emerging therapeutic modality. We compared nsPEF cytotoxicity for human cell lines of cancerous (IMR-32, Hep G2, HT-1080, and HPAF-II) and non-cancerous origin (BJ and MRC-5) under strictly controlled and identical conditions. Adherent cells were uniformly treated by 300-ns PEF (0-2000 pulses, 1.8 kV/cm, 50 Hz) on indium tin oxide-covered glass coverslips, using the same media and serum. Cell survival plotted against the number of pulses displayed three distinct regions (initial resistivity, logarithmic survival decline, and residual resistivity) for all tested cell types, but with differences in LD50 spanning as much as nearly 80-fold. The non-cancerous cells were less sensitive than IMR-32 neuroblastoma cells but more vulnerable than the other cancers tested. The cytotoxic efficiency showed no apparent correlation with cell or nuclear size, cell morphology, metabolism level, or the extent of membrane disruption by nsPEF. Increasing pulse duration to 9 µs (0.75 kV/cm, 5 Hz) produced a different selectivity pattern, suggesting that manipulation of PEF parameters can, at least for certain cancers, overcome their resistance to nsPEF ablation. Identifying mechanisms and cell markers of differential nsPEF susceptibility will critically contribute to the proper choice and outcome of nsPEF ablation therapies.
Collapse
Affiliation(s)
- Elena C Gianulis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA.
| | - Chantelle Labib
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA
| | - Gintautas Saulis
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Vitalij Novickij
- Magnetic Field Institute, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA
| |
Collapse
|
41
|
The Combined Application of the Caco-2 Cell Bioassay Coupled with In Vivo (Gallus gallus) Feeding Trial Represents an Effective Approach to Predicting Fe Bioavailability in Humans. Nutrients 2016; 8:nu8110732. [PMID: 27869705 PMCID: PMC5133116 DOI: 10.3390/nu8110732] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/09/2016] [Indexed: 12/28/2022] Open
Abstract
Research methods that predict Fe bioavailability for humans can be extremely useful in evaluating food fortification strategies, developing Fe-biofortified enhanced staple food crops and assessing the Fe bioavailability of meal plans that include such crops. In this review, research from four recent poultry (Gallus gallus) feeding trials coupled with in vitro analyses of Fe-biofortified crops will be compared to the parallel human efficacy studies which used the same varieties and harvests of the Fe-biofortified crops. Similar to the human studies, these trials were aimed to assess the potential effects of regular consumption of these enhanced staple crops on maintenance or improvement of iron status. The results demonstrate a strong agreement between the in vitro/in vivo screening approach and the parallel human studies. These observations therefore indicate that the in vitro/Caco-2 cell and Gallus gallus models can be integral tools to develop varieties of staple food crops and predict their effect on iron status in humans. The cost-effectiveness of this approach also means that it can be used to monitor the nutritional stability of the Fe-biofortified crop once a variety has released and integrated into the food system. These screening tools therefore represent a significant advancement to the field for crop development and can be applied to ensure the sustainability of the biofortification approach.
Collapse
|
42
|
Steelman ZA, Tolstykh GP, Beier HT, Ibey BL. Cellular response to high pulse repetition rate nanosecond pulses varies with fluorescent marker identity. Biochem Biophys Res Commun 2016; 478:1261-7. [DOI: 10.1016/j.bbrc.2016.08.107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
|
43
|
Chopinet L, Rols MP. Nanosecond electric pulses: A mini-review of the present state of the art. Bioelectrochemistry 2015; 103:2-6. [DOI: 10.1016/j.bioelechem.2014.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 07/20/2014] [Accepted: 07/24/2014] [Indexed: 01/08/2023]
|
44
|
Beebe J S. Mechanisms of Nanosecond Pulsed Electric Field (NsPEF)-Induced Cell Death in Cells and Tumors. ACTA ACUST UNITED AC 2015. [DOI: 10.15406/jnmr.2015.02.00016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Amadei A, Marracino P. Theoretical–computational modelling of the electric field effects on protein unfolding thermodynamics. RSC Adv 2015. [DOI: 10.1039/c5ra15605j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper we present a general theoretical–computational approach to model the protein unfolding thermodynamics response to intense electric fields.
Collapse
Affiliation(s)
- A. Amadei
- Dipartimento di Scienze e Tecnologie Chimiche
- Università degli studi di Roma Tor Vergata
- 00031 Rome
- Italy
| | - P. Marracino
- Dipartimento di Ingegneria dell'Informazione
- Elettronica e Telecomunicazioni
- Sapienza Universitaà di Roma
- 00184 Rome
- Italy
| |
Collapse
|
46
|
Wu S, Guo J, Wei W, Zhang J, Fang J, Beebe SJ. Enhanced breast cancer therapy with nsPEFs and low concentrations of gemcitabine. Cancer Cell Int 2014; 14:98. [PMID: 25379013 PMCID: PMC4209047 DOI: 10.1186/s12935-014-0098-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/17/2014] [Indexed: 12/27/2022] Open
Abstract
Background Chemotherapy either before or after surgery is a common breast cancer treatment. Long-term, high dose treatments with chemotherapeutic drugs often result in undesirable side effects, frequent recurrences and resistances to therapy. Methods The anti-cancer drug, gemcitabine (GEM) was used in combination with pulse power technology with nanosecond pulsed electric fields (nsPEFs) for treatment of human breast cancer cells in vitro. Two strategies include sensitizing mammary tumor cells with GEM before nsPEF treatment or sensitizing cells with nsPEFs before GEM treatment. Breast cancer cell lines MCF-7 and MDA-MB-231 were treated with 250 65 ns-duration pulses and electric fields of 15, 20 or 25 kV/cm before or after treatment with 0.38 μM GEM. Results Both cell lines exhibited robust synergism for loss of cell viability 24 h and 48 h after treatment; treatment with GEM before nsPEFs was the preferred order. In clonogenic assays, only MDA-MB-231 cells showed synergism; again GEM before nsPEFs was the preferred order. In apoptosis/necrosis assays with Annexin-V-FITC/propidium iodide 2 h after treatment, both cell lines exhibited apoptosis as a major cell death mechanism, but only MDA-MB-231 cells exhibited modest synergism. However, unlike viability assays, nsPEF treatment before GEM was preferred. MDA-MB-231 cells exhibited much greater levels of necrosis then in MCF-7 cells, which were very low. Synergy was robust and greater when nsPEF treatment was before GEM. Conclusions Combination treatments with low GEM concentrations and modest nsPEFs provide enhanced cytotoxicity in two breast cancer cell lines. The treatment order is flexible, although long-term survival and short-term cell death analyses indicated different treatment order preferences. Based on synergism, apoptosis mechanisms for both agents were more similar in MCF-7 than in MDA-MB-231 cells. In contrast, necrosis mechanisms for the two agents were distinctly different in MDA-MB-231, but too low to reliably evaluate in MCF-7 cells. While disease mechanisms in the two cell lines are different based on the differential synergistic response to treatments, combination treatment with GEM and nsPEFs should provide an advantageous therapy for breast cancer ablation in vivo.
Collapse
Affiliation(s)
- Shan Wu
- College of Engineering, Peking University, Beijing, 100871 China
| | - Jinsong Guo
- College of Engineering, Peking University, Beijing, 100871 China
| | - Wendong Wei
- College of Engineering, Peking University, Beijing, 100871 China
| | - Jue Zhang
- College of Engineering, Peking University, Beijing, 100871 China ; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China
| | - Jing Fang
- College of Engineering, Peking University, Beijing, 100871 China
| | - Stephen J Beebe
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA 23508 USA
| |
Collapse
|
47
|
Beebe SJ. Considering effects of nanosecond pulsed electric fields on proteins. Bioelectrochemistry 2014; 103:52-9. [PMID: 25218277 DOI: 10.1016/j.bioelechem.2014.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/31/2014] [Accepted: 08/18/2014] [Indexed: 01/20/2023]
Abstract
Most, if not all, effects of intense, pulsed electric fields are analyzed in terms of electrical charging of plasma membranes and/or subcellular membranes. However, not all cell responses from nanosecond pulsed electric fields (nsPEFs) are fully explained by poration of cell membranes. Observations that nsPEFs induce a Ca2-dependent dissipation of the mitochondria membrane potential (ΔΨm), which is enhanced when high frequency components are present in fast rise-fall waveforms, are not compatible with a poration event. Ca(2+) is shown to have little or no effect on propidium iodide uptake as a measure of plasma membrane poration and consequently intracellular membranes. Since most if not all Ca(2+)-regulated events are mediated by proteins, actions of nsPEFs on a protein(s) that regulate and/or affect the mitochondria membrane potential are possible. To show that nsPEFs can directly affect proteins, nsPEFs non-thermally inactivated the catalytic (phosphotransferase) activity of the catalytic subunit of the cAMP-dependent protein kinase, which is the prototype of the protein kinase superfamily that share a common catalytic mechanism and whose functions are highly dependent on their structure. These studies present indirect and direct evidences that nsPEFs can affect proteins and their functions, at least in part, by affecting their structure.
Collapse
Affiliation(s)
- Stephen J Beebe
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA 23508, United States.
| |
Collapse
|
48
|
Chen R, Sain NM, Harlow KT, Chen YJ, Shires PK, Heller R, Beebe SJ. A protective effect after clearance of orthotopic rat hepatocellular carcinoma by nanosecond pulsed electric fields. Eur J Cancer 2014; 50:2705-13. [PMID: 25081978 DOI: 10.1016/j.ejca.2014.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/01/2014] [Accepted: 07/07/2014] [Indexed: 12/21/2022]
Abstract
Strategies for treating liver cancer using radiation, chemotherapy combinations and tyrosine kinase inhibitors targeting specific mutations have provided longer survival times, yet multiple treatments are often needed and recurrences with new malignant phenotypes are not uncommon. New and innovative treatments are undoubtedly needed to successfully treat liver cancer. Over the last decade, nanosecond pulsed electric fields (nsPEFs) have shown promise in pre-clinical studies; however, these have been limited to treatment of skin cancers or xenographs in mice. In the present report, an orthotopic hepatocellular carcinoma (HCC) model is established in rats using N1-S1 HCC cells. Data demonstrate a response rate of 80-90% when 1000 pulses are delivered with 100ns durations, electric field strengths of 50kV/cm and repetition rates of 1Hz. N1-S1 tumours treated with nsPEFs expressed significant number of cells with active caspase-3 and caspase-9, but not caspase-8, indicating an intrinsic apoptosis mechanism(s) as well as caspase-independent mechanisms. Most remarkably, rats with successfully ablated tumours failed to re-grow tumours when challenged with a second injection of N1-S1 cells when implanted in the same or different liver lobe that harboured the original tumour. Given this protective effect, infiltration of immune cells and the presence of granzyme B expressing cells within days of treatment suggest the possibility of an anti-tumour adaptive immune response. In conclusion, NsPEFs not only eliminate N1-S1 HCC tumours, but also may induce an immuno-protective effect that defends animals against recurrences of the same cancer.
Collapse
Affiliation(s)
- Ru Chen
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, IRP2, Suite 300, Norfolk, VA 23508, USA; Ethicon, 4545 Creek Road, Cincinnati, OH 45242, USA
| | - Nova M Sain
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, IRP2, Suite 300, Norfolk, VA 23508, USA
| | - K Tyler Harlow
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, IRP2, Suite 300, Norfolk, VA 23508, USA
| | - Yeong-Jer Chen
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, IRP2, Suite 300, Norfolk, VA 23508, USA
| | | | - Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, IRP2, Suite 300, Norfolk, VA 23508, USA
| | - Stephen J Beebe
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, IRP2, Suite 300, Norfolk, VA 23508, USA.
| |
Collapse
|
49
|
Pakhomova ON, Gregory B, Semenov I, Pakhomov AG. Calcium-mediated pore expansion and cell death following nanoelectroporation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2547-54. [PMID: 24978108 DOI: 10.1016/j.bbamem.2014.06.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
Abstract
Opening of long-lived pores in the cell membrane is the principal primary effect of intense, nanosecond pulsed electric field (nsPEF). Here we demonstrate that the evolution of pores, cell survival, the time and the mode of cell death (necrotic or apoptotic) are determined by the level of external Ca(2+) after nsPEF. We also introduce a novel, minimally disruptive technique for nsEP exposure of adherent cells on indium tin oxide (ITO)-coated glass coverslips, which does not require cell detachment and enables fast exchanges of bath media. Increasing the Ca(2+) level from the nominal 2-5μM to 2mM for the first 60-90min after permeabilization by 300-nsPEF increased the early (necrotic) death in U937, CHO, and BPAE cells. With nominal Ca(2+), the inhibition of osmotic swelling rescued cells from the early necrosis and increased caspase 3/7 activation later on. However, the inhibition of swelling had a modest or no protective effect with 2mM Ca(2+) in the medium. With the nominal Ca(2+), most cells displayed gradual increase in YO-PRO-1 and propidium (Pr) uptake. With 2mM Ca(2+), the initially lower Pr uptake was eventually replaced by a massive and abrupt Pr entry (necrotic death). It was accompanied by a transient acceleration of the growth of membrane blebs due to the increase of the intracellular osmotic pressure. We conclude that the high-Ca(2+)-dependent necrotic death in nsPEF-treated cells is effected by a delayed, sudden, and osmotically-independent pore expansion (or de novo formation of larger pores), but not by the membrane rupture.
Collapse
Affiliation(s)
- Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.
| | - Betsy Gregory
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
50
|
Guionet A, Joubert-Durigneux V, Packan D, Cheype C, Garnier JP, David F, Zaepffel C, Leroux RM, Teissié J, Blanckaert V. Effect of nanosecond pulsed electric field on Escherichia coli
in water: inactivation and impact on protein changes. J Appl Microbiol 2014; 117:721-8. [DOI: 10.1111/jam.12558] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/23/2014] [Accepted: 05/29/2014] [Indexed: 11/29/2022]
Affiliation(s)
- A. Guionet
- VERI; Chemin de la Digue; Maisons Lafitte France
- CNRS UMR5089 - IPBS (Institut de Pharmacologie et de Biologie Structurale); Toulouse France
- Université de Toulouse; UPS; IPBS; Toulouse France
| | | | - D. Packan
- ONERA; DMPH; Chemin de la Hunière; Palaiseau France
| | - C. Cheype
- CERPEM; Laval Mayenne Technopole; Laval France
| | | | - F. David
- VERI; Chemin de la Digue; Maisons Lafitte France
| | - C. Zaepffel
- ONERA; DMPH; Chemin de la Hunière; Palaiseau France
| | - R.-M. Leroux
- Mer, Molécules, Santé; IUML-FR 3473 CNRS, Université du Maine; IUT de Laval; Département Génie Biologique, Laval France
| | - J. Teissié
- CNRS UMR5089 - IPBS (Institut de Pharmacologie et de Biologie Structurale); Toulouse France
- Université de Toulouse; UPS; IPBS; Toulouse France
| | - V. Blanckaert
- Mer, Molécules, Santé; IUML-FR 3473 CNRS, Université du Maine; IUT de Laval; Département Génie Biologique, Laval France
| |
Collapse
|