1
|
Association between placental global DNA methylation and blood pressure during human pregnancy. J Hypertens 2022; 40:1002-1009. [DOI: 10.1097/hjh.0000000000003103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Chiang CC, Lin GL, Yang SY, Tu CW, Huang WL, Wei CF, Wang FC, Lin PJ, Huang WH, Chuang YM, Lee YT, Yeh CC, Chan M, Hsu YC. PCDHB15 as a potential tumor suppressor and epigenetic biomarker for breast cancer. Oncol Lett 2022; 23:117. [PMID: 35261631 PMCID: PMC8855166 DOI: 10.3892/ol.2022.13237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/07/2022] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is among the most frequently diagnosed cancer types and the leading cause of cancer-related death in women. The mortality rate of patients with breast cancer is currently increasing, perhaps due to a lack of early screening tools. In the present study, using The Cancer Genome Atlas (TCGA) breast cancer dataset (n=883), it was determined that methylation of the protocadherin β15 (PCDHB15) promoter was higher in breast cancer samples than that in normal tissues. A negative association between promoter methylation and expression of PCDHB15 was observed in the TCGA dataset and breast cancer cell lines. In TCGA cohort, lower PCDHB15 expression was associated with shorter relapse-free survival times. Treatment with the DNA methyltransferase inhibitor restored PCDHB15 expression in a breast cancer cell line; however, overexpression of PCDHB15 was shown to suppress colony formation. PCDHB15 methylation detected in circulating cell-free DNA (cfDNA) isolated from serum samples was higher in patients with breast cancer (40.8%) compared with that in patients with benign tumors (22.4%). PCDHB15 methylation was not correlated with any clinical parameters. Taken together, PCDHB15 is a potential tumor suppressor in cases of breast cancer, which can be epigenetically silenced via promoter methylation. PCDHB15 methylation using cfDNA is a novel minimally invasive epigenetic biomarker for the diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Ching-Chung Chiang
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Guan-Ling Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Shu-Yi Yang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Chi-Wen Tu
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Wen-Long Huang
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi 62247, Taiwan, R.O.C
| | - Chun-Feng Wei
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Feng-Chi Wang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Pin-Ju Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Wan-Hong Huang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Yu-Ming Chuang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Yu-Ting Lee
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Chia-Chou Yeh
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi 62247, Taiwan, R.O.C
| | - Michael Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Yu-Chen Hsu
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| |
Collapse
|
3
|
Xu Z, Meng SH, Bai JG, Sun C, Zhao LL, Tang RF, Yin ZL, Ji JW, Yang W, Ma GJ. C/EBPα Regulates FOXC1 to Modulate Tumor Growth by Interacting with PPARγ in Hepatocellular Carcinoma. Curr Cancer Drug Targets 2021; 20:59-66. [PMID: 31512996 DOI: 10.2174/1568009619666190912161003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/28/2019] [Accepted: 07/01/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Forkhead box C1 (FOXC1) is an important cancer-associated gene in tumor. PPAR-γ and C/EBPα are both transcriptional regulators involved in tumor development. OBJECTIVE We aimed to clarify the function of PPAR-γ, C/EBPα in hepatocellular carcinoma (HCC) and the relationship of PPAR-γ, C/EBPα and FOXC1 in HCC. METHODS Western blotting, immunofluorescent staining, and immunohistochemistry were used to evaluate protein expression. qRT-PCR was used to assess mRNA expression. Co-IP was performed to detect the protein interaction. And ChIP and fluorescent reporter detection were used to determine the binding between protein and FOXC1 promoter. RESULTS C/EBPα could bind to FOXC1 promoter and PPAR-γ could strengthen C/EBPα's function. Expressions of C/EBPα and PPAR-γ were both negatively related to FOXC1 in human HCC tissue. Confocal displayed that C/EBPα was co-located with FOXC1 in HepG2 cells. C/EBPα could bind to FOXC1 promoter by ChIP. Luciferase activity detection exhibited that C/EBPα could inhibit FOXC1 promoter activity, especially FOXC1 promoter from -600 to -300 was the critical binding site. Only PPAR-γ could not influence luciferase activity but strengthen inhibited effect of C/EBPα. Further, the Co-IP displayed that PPAR-γ could bind to C/EBPα. When C/EBPα and PPAR-γ were both high expressed, cell proliferation, migration, invasion, and colony information were inhibited enormously. C/EBPα plasmid combined with or without PPAR-γ agonist MDG548 treatment exhibited a strong tumor inhibition and FOXC1 suppression in mice. CONCLUSION Our data establish C/EBPα targeting FOXC1 as a potential determinant in the HCC, which supplies a new pathway to treat HCC. However, PPAR-γ has no effect on FOXC1 expression.
Collapse
Affiliation(s)
- Zhuo Xu
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, China
| | - Shao-Hua Meng
- Second Department of Abdominal Surgery, First Affiliated Hospital of Xingtai Medical College, China
| | - Jian-Guo Bai
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, China
| | - Chao Sun
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, China
| | - Li-Li Zhao
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi 276000, China
| | - Rui-Feng Tang
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, China
| | - Zhao-Lin Yin
- Department of Ultrasound, the Fourth Hospital of Hebei Medical University, China
| | - Jun-Wei Ji
- Department of Emergency, The Fourth Hospital of Hebei Medical University, Hebei, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, China
| | - Guang-Jun Ma
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, China
| |
Collapse
|
4
|
Oe M, Ojima K, Muroya S. Difference in potential DNA methylation impact on gene expression between fast- and slow-type myofibers. Physiol Genomics 2021; 53:69-83. [PMID: 33459151 DOI: 10.1152/physiolgenomics.00099.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscles are comprised of two major types of myofibers, fast and slow. It is hypothesized that once myofiber type is determined, muscle fiber-type specificity is maintained by an epigenetic mechanism, however, this remains poorly understood. To address this, we conducted a comprehensive CpG methylation analysis with a reduced representation of bisulfite sequencing (RRBS). Using GFP-myh7 mouse, we visually distinguished and separately pooled slow-type and myh7-negative fast-type fibers for analyses. A total of 31,967 and 26,274 CpGs were hypermethylated by ≥10% difference in the fast- and slow-type fibers, respectively. Notably, the number of promoter-hypermethylated genes with downregulated expression in the slow-type fibers was 3.5 times higher than that in the fast-type fibers. Gene bodies of the fast-type-specific myofibrillar genes Actn3, Tnnt3, Tnni2, Tnnc2, and Tpm1 were hypermethylated in the slow-type fibers, whereas those of the slow-type-specific genes Myh7, Tnnt1, and Tpm3 were hypermethylated in the fast-type fibers. Each of the instances of gene hypermethylation was associated with the respective downregulated expression. In particular, a relationship between CpG methylation sites and the transcription variant distribution of Tpm1 was observed, suggesting a regulation of Tpm1 alternative promoter usage by gene body CpG methylation. An association of hypermethylation with the regulation of gene expression was also observed in the transcription factors Sim2 and Tbx1. These results suggest not only a myofiber type-specific regulation of gene expression and alternative promoter usage by gene body CpG methylation but also a dominant effect of promoter-hypermethylation on the gene expressions in slow myofibers.
Collapse
Affiliation(s)
- Mika Oe
- Muscle Biology Research Unit, Division of Animal Products Research, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Susumu Muroya
- Muscle Biology Research Unit, Division of Animal Products Research, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| |
Collapse
|
5
|
Lapsley CR, Irwin R, McLafferty M, Thursby SJ, O'Neill SM, Bjourson AJ, Walsh CP, Murray EK. Methylome profiling of young adults with depression supports a link with immune response and psoriasis. Clin Epigenetics 2020; 12:85. [PMID: 32539844 PMCID: PMC7477873 DOI: 10.1186/s13148-020-00877-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Currently the leading cause of global disability, clinical depression is a heterogeneous condition characterised by low mood, anhedonia and cognitive impairments. Its growing incidence among young people, often co-occurring with self-harm, is of particular concern. We recently reported very high rates of depression among first year university students in Northern Ireland, with over 25% meeting the clinical criteria, based on DSM IV. However, the causes of depression in such groups remain unclear, and diagnosis is hampered by a lack of biological markers. The aim of this exploratory study was to examine DNA methylation patterns in saliva samples from individuals with a history of depression and matched healthy controls. RESULTS From our student subjects who showed evidence of a total lifetime major depressive event (MDE, n = 186) we identified a small but distinct subgroup (n = 30) with higher risk scores on the basis of co-occurrence of self-harm and attempted suicide. Factors conferring elevated risk included being female or non-heterosexual, and intrinsic factors such as emotional suppression and impulsiveness. Saliva samples were collected and a closely matched set of high-risk cases (n = 16) and healthy controls (n = 16) similar in age, gender and smoking status were compared. These showed substantial differences in DNA methylation marks across the genome, specifically in the late cornified envelope (LCE) gene cluster. Gene ontology analysis showed highly significant enrichment for immune response, and in particular genes associated with the inflammatory skin condition psoriasis, which we confirmed using a second bioinformatics approach. We then verified methylation gains at the LCE gene cluster at the epidermal differentiation complex and at MIR4520A/B in our cases in the laboratory, using pyrosequencing. Additionally, we found loss of methylation at the PSORSC13 locus on chromosome 6 by array and pyrosequencing, validating recent findings in brain tissue from people who had died by suicide. Finally, we could show that similar changes in immune gene methylation preceded the onset of depression in an independent cohort of adolescent females. CONCLUSIONS Our data suggests an immune component to the aetiology of depression in at least a small subgroup of cases, consistent with the accumulating evidence supporting a relationship between inflammation and depression. Additionally, DNA methylation changes at key loci, detected in saliva, may represent a valuable tool for identifying at-risk subjects.
Collapse
Affiliation(s)
- Coral R Lapsley
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, UK
| | - Rachelle Irwin
- Genomics Medicine Research Group, School of Biomedical Sciences, Ulster University, Coleraine Campus, Coleraine, UK
| | - Margaret McLafferty
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, UK.,School of Psychology, Ulster University, Coleraine Campus, Coleraine, UK
| | - Sara Jayne Thursby
- Genomics Medicine Research Group, School of Biomedical Sciences, Ulster University, Coleraine Campus, Coleraine, UK
| | - Siobhan M O'Neill
- School of Psychology, Ulster University, Coleraine Campus, Coleraine, UK
| | - Anthony J Bjourson
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, UK
| | - Colum P Walsh
- Genomics Medicine Research Group, School of Biomedical Sciences, Ulster University, Coleraine Campus, Coleraine, UK
| | - Elaine K Murray
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, UK.
| |
Collapse
|
6
|
Bauer M. Cell-type-specific disturbance of DNA methylation pattern: a chance to get more benefit from and to minimize cohorts for epigenome-wide association studies. Int J Epidemiol 2018; 47:917-927. [DOI: 10.1093/ije/dyy029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Affiliation(s)
- Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, UFZ, Permoserst, 15, 04318 Leipzig, Germany
| |
Collapse
|
7
|
Condon DE, Tran PV, Lien YC, Schug J, Georgieff MK, Simmons RA, Won KJ. Defiant: (DMRs: easy, fast, identification and ANnoTation) identifies differentially Methylated regions from iron-deficient rat hippocampus. BMC Bioinformatics 2018; 19:31. [PMID: 29402210 PMCID: PMC5800085 DOI: 10.1186/s12859-018-2037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Identification of differentially methylated regions (DMRs) is the initial step towards the study of DNA methylation-mediated gene regulation. Previous approaches to call DMRs suffer from false prediction, use extreme resources, and/or require library installation and input conversion. RESULTS We developed a new approach called Defiant to identify DMRs. Employing Weighted Welch Expansion (WWE), Defiant showed superior performance to other predictors in the series of benchmarking tests on artificial and real data. Defiant was subsequently used to investigate DNA methylation changes in iron-deficient rat hippocampus. Defiant identified DMRs close to genes associated with neuronal development and plasticity, which were not identified by its competitor. Importantly, Defiant runs between 5 to 479 times faster than currently available software packages. Also, Defiant accepts 10 different input formats widely used for DNA methylation data. CONCLUSIONS Defiant effectively identifies DMRs for whole-genome bisulfite sequencing (WGBS), reduced-representation bisulfite sequencing (RRBS), Tet-assisted bisulfite sequencing (TAB-seq), and HpaII tiny fragment enrichment by ligation-mediated PCR-tag (HELP) assays.
Collapse
Affiliation(s)
- David E Condon
- Department of Genetics, The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Phu V Tran
- Department of Pediatrics, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA
| | - Yu-Chin Lien
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Jonathan Schug
- Department of Genetics, The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Kyoung-Jae Won
- Department of Genetics, The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
8
|
Yang Z, Jiang S, Cheng Y, Li T, Hu W, Ma Z, Chen F, Yang Y. FOXC1 in cancer development and therapy: deciphering its emerging and divergent roles. Ther Adv Med Oncol 2017; 9:797-816. [PMID: 29449899 PMCID: PMC5808840 DOI: 10.1177/1758834017742576] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022] Open
Abstract
Forkhead box C1 (FOXC1) is an essential member of the forkhead box transcription factors and has been highlighted as an important transcriptional regulator of crucial proteins associated with a wide variety of carcinomas. FOXC1 regulates tumor-associated genes and is regulated by multiple pathways that control its mRNA expression and protein activity. Aberrant FOXC1 expression is involved in diverse tumorigenic processes, such as abnormal cell proliferation, cancer stem cell maintenance, cancer migration, and angiogenesis. Herein, we review the correlation between the expression of FOXC1 and tumor behaviors. We also summarize the mechanisms of the regulation of FOXC1 expression and activity in physiological and pathological conditions. In particular, we focus on the pathological processes of cancer targeted by FOXC1 and discuss whether FOXC1 is good or detrimental during tumor progression. Moreover, FOXC1 is highlighted as a clinical biomarker for diagnosis or prognosis in various human cancers. The information reviewed here should assist in experimental designs and emphasize the potential of FOXC1 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yicheng Cheng
- Department of Stomatology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| |
Collapse
|
9
|
Mohammadpour‐Gharehbagh A, Teimoori B, Narooei‐nejad M, Mehrabani M, Saravani R, Salimi S. The association of the placental MTHFR 3′‐UTR polymorphisms, promoter methylation, and MTHFR expression with preeclampsia. J Cell Biochem 2017; 119:1346-1354. [DOI: 10.1002/jcb.26290] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/18/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Abbas Mohammadpour‐Gharehbagh
- Cellular and Molecular Research CenterZahedan University of Medical SciencesZahedanIran
- Department of Clinical BiochemistrySchool of MedicineZahedan University of Medical SciencesZahedanIran
| | - Batool Teimoori
- Department of Obstetrics and GynecologySchool of MedicineZahedan University of Medical SciencesZahedanIran
- Pregnancy Health Research CenterZahedan University of Medical SciencesZahedanIran
| | - Mehrnaz Narooei‐nejad
- Department of Medical GeneticsSchool of MedicineZahedan University of Medical SciencesZahedanIran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology SciencesKerman University of Medical SciencesKermanIran
| | - Ramin Saravani
- Cellular and Molecular Research CenterZahedan University of Medical SciencesZahedanIran
- Department of Clinical BiochemistrySchool of MedicineZahedan University of Medical SciencesZahedanIran
| | - Saeedeh Salimi
- Cellular and Molecular Research CenterZahedan University of Medical SciencesZahedanIran
- Department of Clinical BiochemistrySchool of MedicineZahedan University of Medical SciencesZahedanIran
| |
Collapse
|
10
|
Lin S, Lin B, Wang X, Pan Y, Xu Q, He JS, Gong W, Xing R, He Y, Guo L, Lu Y, Wang JM, Huang J. Silencing of ATP4B of ATPase H +/K + Transporting Beta Subunit by Intragenic Epigenetic Alteration in Human Gastric Cancer Cells. Oncol Res 2017; 25:317-329. [PMID: 28281974 PMCID: PMC7840950 DOI: 10.3727/096504016x14734735156265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ATPase H+/K+ Transporting Beta Subunit (ATP4B) encodes the β subunit of the gastric H+, K+-ATPase, which controls gastric acid secretion and is therefore a target for acid reduction. Downregulation of ATP4B was recently observed in human gastric cancer (GC) without known mechanisms. In the present study, we demonstrated that ATP4B expression was decreased in human GC tissues and cell lines associated with DNA hypermethylation and histone hypoacetylation of histone H3 lysine 9 at its intragenic region close to the transcriptional start site. The expression of ATP4B was restored in GC cell lines by treatment with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-AZA), or histone deacetylase inhibitor, trichostatin A (TSA), with further enhancement by combined treatment with both drugs. In contrast, 5-AZA had no effect on ATP4B expression in human hepatocellular carcinoma (HCC) and pancreatic cancer cell lines, in which ATP4B was silenced and accompanied by intragenic methylation. Chromatin immunoprecipitation (ChIP) showed that, in BGC823 GC cells, histone H3 lysine 9 acetylation (H3K9ac) was enhanced in the intragenic region of ATP4B upon TSA treatment, whereas 5-AZA showed a minimal effect. Additionally, ATP4B expression enhanced the inhibitory effects of chemotherapeutic mediation docetaxel on GC cell growth. Thus, as opposed to HCC and pancreatic cancer cells, the silencing of ATP4B in GC cells is attributable to the interplay between intragenic DNA methylation and histone acetylation of ATP4B, the restoration of which is associated with a favorable anticancer effect of docetaxel. These results have implications for targeting epigenetic alteration at the intragenic region of ATP4B in GC cells to benefit diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Shuye Lin
- *College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, P.R. China
- †Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Bonan Lin
- *College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, P.R. China
| | - Xiaoyue Wang
- *College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, P.R. China
| | - Yuanming Pan
- ‡Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, Beijing, P.R. China
| | - Qing Xu
- *College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, P.R. China
| | - Jin-Shen He
- *College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, P.R. China
| | - Wanghua Gong
- §Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Rui Xing
- ‡Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, Beijing, P.R. China
| | - Yuqi He
- ¶Department of Gastroenterology, PLA Army General Hospital, Beijing, P.R. China
| | - Lihua Guo
- *College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, P.R. China
| | - Youyong Lu
- ‡Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, Beijing, P.R. China
| | - Ji Ming Wang
- †Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jiaqiang Huang
- *College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, P.R. China
- †Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
11
|
Mayne BT, Leemaqz SY, Smith AK, Breen J, Roberts CT, Bianco-Miotto T. Accelerated placental aging in early onset preeclampsia pregnancies identified by DNA methylation. Epigenomics 2016; 9:279-289. [PMID: 27894195 PMCID: PMC6040051 DOI: 10.2217/epi-2016-0103] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: To determine whether dynamic DNA methylation changes in the human placenta can be used to predict gestational age. Materials & methods: Publicly available placental DNA methylation data from 12 studies, together with our own dataset, using Illumina Infinium Human Methylation BeadChip arrays. Results & conclusion: We developed an accurate tool for predicting gestational age of placentas using 62 CpG sites. There was a higher predicted gestational age for placentas from early onset preeclampsia cases, but not term preeclampsia, compared with their chronological age. Therefore, early onset preeclampsia is associated with placental aging. Gestational age acceleration prediction from DNA methylation array data may provide insight into the molecular mechanisms of pregnancy disorders.
Collapse
Affiliation(s)
- Benjamin T Mayne
- Robinson Research Institute, University of Adelaide, SA, 5005, Australia.,Adelaide Medical School, University of Adelaide, SA, 5005, Australia
| | - Shalem Y Leemaqz
- Robinson Research Institute, University of Adelaide, SA, 5005, Australia.,Adelaide Medical School, University of Adelaide, SA, 5005, Australia
| | - Alicia K Smith
- Department of Gynecology and Obstetrics & Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James Breen
- Robinson Research Institute, University of Adelaide, SA, 5005, Australia.,Bioinformatics Hub, School of Biological Sciences, University of Adelaide, SA, 5005, Australia
| | - Claire T Roberts
- Robinson Research Institute, University of Adelaide, SA, 5005, Australia.,Adelaide Medical School, University of Adelaide, SA, 5005, Australia
| | - Tina Bianco-Miotto
- Robinson Research Institute, University of Adelaide, SA, 5005, Australia.,Waite Research Institute, School of Agriculture, Food & Wine, University of Adelaide, SA, 5005, Australia
| |
Collapse
|
12
|
Felts SJ, Van Keulen VP, Hansen MJ, Bell MP, Allen K, Belachew AA, Vile RG, Cunningham JM, Hoskin TL, Pankratz VS, Pease LR. Widespread Non-Canonical Epigenetic Modifications in MMTV-NeuT Breast Cancer. Neoplasia 2016; 17:348-57. [PMID: 25925377 PMCID: PMC4415121 DOI: 10.1016/j.neo.2015.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/13/2015] [Accepted: 02/27/2015] [Indexed: 11/26/2022] Open
Abstract
Breast tumors in (FVB × BALB-NeuT) F1 mice have characteristic loss of chromosome 4 and sporadic loss or gain of other chromosomes. We employed the Illumina GoldenGate genotyping platform to quantitate loss of heterozygosity (LOH) across the genome of primary tumors, revealing strong biases favoring chromosome 4 alleles from the FVB parent. While allelic bias was not observed on other chromosomes, many tumors showed concerted LOH (C-LOH) of all alleles of one or the other parent on sporadic chromosomes, a pattern consistent with cytogenetic observations. Surprisingly, comparison of LOH in tumor samples relative to normal unaffected tissues from these animals revealed significant variegated (stochastic) deviations from heterozygosity (V-LOH) in every tumor genome. Sequence analysis showed expected changes in the allelic frequency of single nucleotide polymorphisms (SNPs) in cases of C-LOH. However, no evidence of LOH due to mutations, small deletions, or gene conversion at the affected SNPs or surrounding DNA was found at loci with V-LOH. Postulating an epigenetic mechanism contributing to V-LOH, we tested whether methylation of template DNA impacts allele detection efficiency using synthetic oligonucleotide templates in an assay mimicking the GoldenGate genotyping format. Methylated templates were systematically over-scored, suggesting that the observed patterns of V-LOH may represent extensive epigenetic DNA modifications across the tumor genomes. As most of the SNPs queried do not contain standard (CpG) methylation targets, we propose that widespread, non-canonical DNA modifications occur during Her2/neuT-driven tumorigenesis.
Collapse
Affiliation(s)
- Sara J Felts
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Michael J Hansen
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Michael P Bell
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kathleen Allen
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alem A Belachew
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Richard G Vile
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tanya L Hoskin
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - V Shane Pankratz
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Larry R Pease
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
13
|
Noehammer C, Pulverer W, Hassler MR, Hofner M, Wielscher M, Vierlinger K, Liloglou T, McCarthy D, Jensen TJ, Nygren A, Gohlke H, Trooskens G, Braspenning M, Van Criekinge W, Egger G, Weinhaeusel A. Strategies for validation and testing of DNA methylation biomarkers. Epigenomics 2015; 6:603-22. [PMID: 25531255 DOI: 10.2217/epi.14.43] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
DNA methylation is a stable covalent epigenetic modification of primarily CpG dinucleotides that has recently gained considerable attention for its use as a biomarker in different clinical settings, including disease diagnosis, prognosis and therapeutic response prediction. Although the advent of genome-wide DNA methylation profiling in primary disease tissue has provided a manifold resource for biomarker development, only a tiny fraction of DNA methylation-based assays have reached clinical testing. Here, we provide a critical overview of different analytical methods that are suitable for biomarker validation, including general study design considerations, which might help to streamline epigenetic marker development. Furthermore, we highlight some of the recent marker validation studies and established markers that are currently commercially available for assisting in clinical management of different cancers.
Collapse
Affiliation(s)
- Christa Noehammer
- Health & Environment Department, Molecular Diagnostics, AIT Austrian Institute of Technology, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jensen TJ, Kim SK, Zhu Z, Chin C, Gebhard C, Lu T, Deciu C, van den Boom D, Ehrich M. Whole genome bisulfite sequencing of cell-free DNA and its cellular contributors uncovers placenta hypomethylated domains. Genome Biol 2015; 16:78. [PMID: 25886572 PMCID: PMC4427941 DOI: 10.1186/s13059-015-0645-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/27/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Circulating cell-free fetal DNA has enabled non-invasive prenatal fetal aneuploidy testing without direct discrimination of the maternal and fetal DNA. Testing may be improved by specifically enriching the sample material for fetal DNA. DNA methylation may allow for such a separation of DNA; however, this depends on knowledge of the methylomes of circulating cell-free DNA and its cellular contributors. RESULTS We perform whole genome bisulfite sequencing on a set of unmatched samples including circulating cell-free DNA from non-pregnant and pregnant female donors and genomic DNA from maternal buffy coat and placenta samples. We find CpG cytosines within longer fragments are more likely to be methylated. Comparison of the methylomes of placenta and non-pregnant circulating cell-free DNA reveal many of the 51,259 identified differentially methylated regions are located in domains exhibiting consistent placenta hypomethylation across millions of consecutive bases. We find these placenta hypomethylated domains are consistently located within regions exhibiting low CpG and gene density. Differentially methylated regions identified when comparing placenta to non-pregnant circulating cell-free DNA are recapitulated in pregnant circulating cell-free DNA, confirming the ability to detect differential methylation in circulating cell-free DNA mixtures. CONCLUSIONS We generate methylome maps for four sample types at single-base resolution, identify a link between DNA methylation and fragment length in circulating cell-free DNA, identify differentially methylated regions between sample groups, and uncover the presence of megabase-size placenta hypomethylated domains.
Collapse
Affiliation(s)
- Taylor J Jensen
- Sequenom Laboratories, 3595 John Hopkins Ct, San Diego, CA, 92121, USA.
| | - Sung K Kim
- Sequenom Laboratories, 3595 John Hopkins Ct, San Diego, CA, 92121, USA.
| | - Zhanyang Zhu
- Sequenom Laboratories, 3595 John Hopkins Ct, San Diego, CA, 92121, USA.
| | - Christine Chin
- Sequenom Laboratories, 3595 John Hopkins Ct, San Diego, CA, 92121, USA.
| | - Claudia Gebhard
- Sequenom Laboratories, 3595 John Hopkins Ct, San Diego, CA, 92121, USA.
| | - Tim Lu
- Sequenom Laboratories, 3595 John Hopkins Ct, San Diego, CA, 92121, USA.
| | - Cosmin Deciu
- Sequenom Laboratories, 3595 John Hopkins Ct, San Diego, CA, 92121, USA.
| | | | - Mathias Ehrich
- Sequenom Inc., 3595 John Hopkins Ct, San Diego, CA, 92121, USA.
| |
Collapse
|
15
|
Muñoz-Rodríguez JL, Vrba L, Futscher BW, Hu C, Komenaka IK, Meza-Montenegro MM, Gutierrez-Millan LE, Daneri-Navarro A, Thompson PA, Martinez ME. Differentially expressed microRNAs in postpartum breast cancer in Hispanic women. PLoS One 2015; 10:e0124340. [PMID: 25875827 PMCID: PMC4395255 DOI: 10.1371/journal.pone.0124340] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/27/2015] [Indexed: 11/18/2022] Open
Abstract
The risk of breast cancer transiently increases immediately following pregnancy; peaking between 3-7 years. The biology that underlies this risk window and the effect on the natural history of the disease is unknown. MicroRNAs (miRNAs) are small non-coding RNAs that have been shown to be dysregulated in breast cancer. We conducted miRNA profiling of 56 tumors from a case series of multiparous Hispanic women and assessed the pattern of expression by time since last full-term pregnancy. A data-driven splitting analysis on the pattern of 355 miRNAs separated the case series into two groups: a) an early group representing women diagnosed with breast cancer ≤ 5.2 years postpartum (n = 12), and b) a late group representing women diagnosed with breast cancer ≥ 5.3 years postpartum (n = 44). We identified 15 miRNAs with significant differential expression between the early and late postpartum groups; 60% of these miRNAs are encoded on the X chromosome. Ten miRNAs had a two-fold or higher difference in expression with miR-138, miR-660, miR-31, miR-135b, miR-17, miR-454, and miR-934 overexpressed in the early versus the late group; while miR-892a, miR-199a-5p, and miR-542-5p were underexpressed in the early versus the late postpartum group. The DNA methylation of three out of five tested miRNAs (miR-31, miR-135b, and miR-138) was lower in the early versus late postpartum group, and negatively correlated with miRNA expression. Here we show that miRNAs are differentially expressed and differentially methylated between tumors of the early versus late postpartum, suggesting that potential differences in epigenetic dysfunction may be operative in postpartum breast cancers.
Collapse
Affiliation(s)
- José L. Muñoz-Rodríguez
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States of America
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, United States of America
| | - Lukas Vrba
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States of America
| | - Bernard W. Futscher
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States of America
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, United States of America
- * E-mail:
| | - Chengcheng Hu
- Department of Epidemiology and Biostatistics, The Mel & Enid Zuckerman College of Public Health, The University of Arizona, Tucson, AZ, United States of America
| | - Ian K. Komenaka
- Department of Surgery, Maricopa Medical Center, Phoenix, AZ, United States of America
| | | | | | - Adrian Daneri-Navarro
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Patricia A. Thompson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, United States of America
| | - Maria Elena Martinez
- Department of Family & Preventive Medicine, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
16
|
Jeschke J, Collignon E, Fuks F. DNA methylome profiling beyond promoters - taking an epigenetic snapshot of the breast tumor microenvironment. FEBS J 2014; 282:1801-14. [PMID: 25331982 DOI: 10.1111/febs.13125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/06/2014] [Accepted: 10/19/2014] [Indexed: 12/22/2022]
Abstract
Breast cancer, one of the most common and deadliest malignancies in developed countries, is a remarkably heterogeneous disease, which is clinically reflected by patients who display similar pathological features but respond differently to treatments. In the search for mediators of responsiveness, the tumor microenvironment (TME), in particular tumor-associated immune cells, has been pushed into the spotlight as it has become clear that the TME is an active component of breast cancer disease that affects clinical outcomes. Thus, the characterization of the TME in terms of cell identities and their frequencies has generated a great deal of interest. The common methods currently used for this purpose are either limited in accuracy or application, and DNA methylation has recently been proposed as an alternative approach. The aim of this review is to discuss DNA methylation profiling beyond promoters as a potential clinical tool for TME characterization and cell typing within tumors. With respect to this, we review the role of DNA methylation in breast cancer and cell-lineage specification, as well as inform about the composition and clinical relevance of the TME.
Collapse
Affiliation(s)
- Jana Jeschke
- Laboratory of Cancer Epigenetics, Université Libre de Bruxelles, Brussels, Belgium
| | | | | |
Collapse
|
17
|
Chatterton Z, Burke D, Emslie KR, Craig JM, Ng J, Ashley DM, Mechinaud F, Saffery R, Wong NC. Validation of DNA methylation biomarkers for diagnosis of acute lymphoblastic leukemia. Clin Chem 2014; 60:995-1003. [PMID: 24829271 DOI: 10.1373/clinchem.2013.219956] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND DNA methylation biomarkers capable of diagnosis and subtyping have been found for many cancers. Fifteen such markers have previously been identified for pediatric acute lymphoblastic leukemia (ALL). Validation of these markers is necessary to assess their clinical utility for molecular diagnostics. Substantial efficiencies could be achieved with these DNA methylation markers for disease tracking with potential to replace patient-specific genetic testing. METHODS We evaluated DNA methylation of promoter regions of TLX3 (T-cell leukemia homeobox) and FOXE3 (forkhead box E3) in bone marrow biopsies from 197 patients classified as leukemic (n = 95) or clear of the disease (n = 102) by MALDI-TOF. Using a single nucleotide extension assay (methylSABER), we tested 10 bone marrow biopsies collected throughout the course of patient chemotherapy. Using reference materials, diagnostic thresholds and limits of detection were characterized for both methods. RESULTS Reliable detection of DNA methylation of TLX3 and FOXE3 segregated ALL from those clear of disease with minimal false-negative and false-positive results. The limit of detection with MALDI-TOF was 1000-5000 copies of methylated allele. For methylSABER, the limit of detection was 10 copies of methylated TLX3, which enabled monitoring of minimal residual disease in ALL patients. CONCLUSIONS Mass spectrometry procedures can be used to regionally multiplex and detect rare DNA methylation events, establish DNA methylation loci as clinically applicable biomarkers for disease diagnosis, and track pediatric ALL.
Collapse
Affiliation(s)
- Zac Chatterton
- Cancer and Disease Epigenetics and Department of Paediatrics, University of Melbourne, Melbourne, Australia; current address: Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY;
| | - Daniel Burke
- National Measurement Institute, Sydney, Australia
| | | | - Jeffery M Craig
- Developmental Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Jane Ng
- Cancer and Disease Epigenetics and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David M Ashley
- Andrew Love Cancer Centre, Deakin University, Victoria, Australia
| | | | - Richard Saffery
- Cancer and Disease Epigenetics and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Nicholas C Wong
- Cancer and Disease Epigenetics and Department of Paediatrics, University of Melbourne, Melbourne, Australia; current address: Ludwig Institute of Cancer Research, Olivia Newton-John Cancer and Wellness Centre, Austin Hospital, Heidelberg, Victoria, Australia
| |
Collapse
|
18
|
Failli A, Legitimo A, Migheli F, Coppedè F, Mathers JC, Spisni R, Miccoli P, Migliore L, Consolini R. Efficacy and feasibility of the epithelial cell adhesion molecule (EpCAM) immunomagnetic cell sorter for studies of DNA methylation in colorectal cancer. Int J Mol Sci 2013; 15:44-57. [PMID: 24362576 PMCID: PMC3907797 DOI: 10.3390/ijms15010044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/10/2013] [Accepted: 12/13/2013] [Indexed: 12/28/2022] Open
Abstract
The aim of this work was to assess the impact on measurements of methylation of a panel of four cancer gene promoters of purifying tumor cells from colorectal tissue samples using the epithelial cell adhesion molecule (EpCAM)-immunomagnetic cell enrichment approach. We observed that, on average, methylation levels were higher in enriched cell fractions than in the whole tissue, but the difference was significant only for one out of four studied genes. In addition, there were strong correlations between methylation values for individual samples of whole tissue and the corresponding enriched cell fractions. Therefore, assays on whole tissue are likely to provide reliable estimates of tumor-specific methylation of cancer genes. However, tumor cell tissue separation using immunomagnetic beads could, in some cases, give a more accurate value of gene promoter methylation than the analysis of the whole cancer tissue, although relatively expensive and time-consuming. The efficacy and feasibility of the immunomagnetic cell sorting for methylation studies are discussed.
Collapse
Affiliation(s)
- Alessandra Failli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy; E-Mails: (A.F.); (A.L.)
| | - Annalisa Legitimo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy; E-Mails: (A.F.); (A.L.)
| | - Francesca Migheli
- Department of Translational Research and New Technologies in Medicine and Surgery, Division of Medical Genetics, University of Pisa, Pisa 56126, Italy; E-Mails: (F.M.); (F.C.); (L.M.)
| | - Fabio Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, Division of Medical Genetics, University of Pisa, Pisa 56126, Italy; E-Mails: (F.M.); (F.C.); (L.M.)
- Department of Laboratory Medicine, Pisa University Hospital (AOUP), Pisa 56126, Italy
| | - John C. Mathers
- Human Nutrition Research Centre, Institute for Ageing & Health, Biomedical Research Building, Campus for Ageing & Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; E-Mail:
| | - Roberto Spisni
- Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa 56124, Italy; E-Mails: (R.S.); (P.M.)
| | - Paolo Miccoli
- Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa 56124, Italy; E-Mails: (R.S.); (P.M.)
| | - Lucia Migliore
- Department of Translational Research and New Technologies in Medicine and Surgery, Division of Medical Genetics, University of Pisa, Pisa 56126, Italy; E-Mails: (F.M.); (F.C.); (L.M.)
- Department of Laboratory Medicine, Pisa University Hospital (AOUP), Pisa 56126, Italy
| | - Rita Consolini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy; E-Mails: (A.F.); (A.L.)
- Author to whom correspondence should be addressed; E-mail: ; Tel.: +39-50-992-222; Fax: +39-50-993-044
| |
Collapse
|