1
|
Joos M, Vackier T, Mees MA, Coppola G, Alexandris S, Geunes R, Thielemans W, Steenackers HPL. Antimicrobial Activity of Glycyrrhizinic Acid Is pH-Dependent. ACS APPLIED BIO MATERIALS 2024; 7:8223-8235. [PMID: 39592134 DOI: 10.1021/acsabm.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
In recent years, antimicrobial hydrogels have attracted much attention in biomedical applications due to their biocompatibility and high water content. Glycyrrhizin (GA) is an antimicrobial that can form pH-dependent hydrogels due to the three carboxyl groups of GA that differ in pKa value. The influence of GA protonation on the antimicrobial activity, however, has never been studied before. Therefore, we investigated the effect of the pH on the antimicrobial activity of GA against Pseudomonas aeruginosa, Staphylococcus aureus, MRSA, Staphylococcus epidermidis, Acinetobacter baumannii, Klebsiella pneumoniae, Klebsiella aerogenes, and two strains of Escherichia coli. In general, the antimicrobial activity of GA increases as a function of decreasing pH (and thus increasing protonation of GA). More specifically, fully protonated GA hydrogels (pH = 3) are required for growth inhibition and killing of E. coli UTI89 and Klebsiella in the suspension above the hydrogel, while the staphylococci strains and A. baumannii are already inhibited by fully deprotonated GA (pH = 6.8). P. aeruginosa and E. coli DH5α showed moderate susceptibility, as they are completely inhibited by a hydrogel at pH 3.8, containing partly protonated GA, but not by fully deprotonated GA (pH = 6.8). The antimicrobial activity of the hydrogel cannot solely be attributed to the resulting pH decrease of the suspension, as the presence of GA significantly increases the activity. Instead, this increased activity is due to the release of GA from the hydrogel into the suspension, where it directly interacts with the bacteria. Moreover, we provide evidence indicating that the pH dependency of the antimicrobial activity is due to differences in GA protonation state by treating the pathogens with GA solutions differing in their GA protonation distribution. Finally, we show by LC-MS that there is no chemical or enzymatic breakdown of GA. Overall, our results demonstrate that the pH influences not only the physical but also the antimicrobial properties of the GA hydrogels.
Collapse
Affiliation(s)
- Mathieu Joos
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| | - Thijs Vackier
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| | - Maarten A Mees
- Department of Chemical Engineering, KU Leuven, Sustainable Materials Lab (SusMat), Kortrijk 8500, Belgium
| | - Guglielmo Coppola
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
- Department of Chemistry, KU Leuven - Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Leuven 3001, Belgium
| | - Stelios Alexandris
- Department of Chemical Engineering, KU Leuven - Laboratory for Soft Matter, Rheology and Technology (SMaRT), Leuven 3001, Belgium
| | - Robbe Geunes
- Department of Chemical Engineering, KU Leuven, Sustainable Materials Lab (SusMat), Kortrijk 8500, Belgium
| | - Wim Thielemans
- Department of Chemical Engineering, KU Leuven, Sustainable Materials Lab (SusMat), Kortrijk 8500, Belgium
| | - Hans P L Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
2
|
Monteiro R, Silva E, Pereira MO, Sousa AM. Mechanistic Insights into Succinic Acid as an Adjuvant for Ciprofloxacin in Treating Pseudomonas aeruginosa Growing Within Cystic Fibrosis Airway Mucus. Microorganisms 2024; 12:2538. [PMID: 39770741 PMCID: PMC11678660 DOI: 10.3390/microorganisms12122538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Pseudomonas aeruginosa is a major cause of chronic respiratory infections in patients with cystic fibrosis (CF), with biofilm formation contributing to its persistence and antibiotic resistance. This study aimed to gain insights into the mechanistic action of succinic acid as a ciprofloxacin adjuvant against clinically relevant CF isolates, including small colony variants and mucoid strains, and a ciprofloxacin-resistant strain grown within CF dense mucus. Time-kill assays in artificial CF mucus, along with planktonic and surface-attached biofilm experiments, were used to assess the activity of succinic acid alone and in combination with sublethal ciprofloxacin concentrations. Succinic acid demonstrated an adjuvant effect of ciprofloxacin against P. aeruginosa grown within CF mucus at pH levels below pKa1 during the early bacterial growth stages. In examining planktonic growth and biofilms under these conditions, we found that succinic acid demonstrated strong antibacterial and antibiofilm properties. Conversely, succinic acid activity decreased at later growth stages, though it enhanced the ciprofloxacin effect, especially against mucoid biofilms. Moreover, we noted that, in dense CF mucus, succinic acid activity was attenuated compared to a non-CF environment, indicating diffusion challenges. These findings underscore the potential of succinic acid as a therapeutic adjuvant for improving antibiotic treatment outcomes and overcoming biofilm-associated resistance in CF.
Collapse
Affiliation(s)
- Rosana Monteiro
- Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (R.M.); (E.S.); (M.O.P.)
| | - Eduarda Silva
- Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (R.M.); (E.S.); (M.O.P.)
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (R.M.); (E.S.); (M.O.P.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (R.M.); (E.S.); (M.O.P.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Li B, Srivastava S, Shaikh M, Mereddy G, Garcia MR, Shah A, Ofori-Anyinam N, Chu T, Cheney N, Yang JH. Bioenergetic stress potentiates antimicrobial resistance and persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603336. [PMID: 39026737 PMCID: PMC11257553 DOI: 10.1101/2024.07.12.603336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Antimicrobial resistance (AMR) is a global health crisis and there is an urgent need to better understand AMR mechanisms. Antibiotic treatment alters several aspects of bacterial physiology, including increased ATP utilization, carbon metabolism, and reactive oxygen species (ROS) formation. However, how the "bioenergetic stress" induced by increased ATP utilization affects treatment outcomes is unknown. Here we utilized a synthetic biology approach to study the direct effects of bioenergetic stress on antibiotic efficacy. We engineered a genetic system that constitutively hydrolyzes ATP or NADH in Escherichia coli. We found that bioenergetic stress potentiates AMR evolution via enhanced ROS production, mutagenic break repair, and transcription-coupled repair. We also find that bioenergetic stress potentiates antimicrobial persistence via potentiated stringent response activation. We propose a unifying model that antibiotic-induced antimicrobial resistance and persistence is caused by antibiotic-induced. This has important implications for preventing or curbing the spread of AMR infections.
Collapse
|
4
|
Zwaenepoel B, De Backer T, Glorieux G, Verbeke F. Predictive value of protein-bound uremic toxins for heart failure in patients with chronic kidney disease. ESC Heart Fail 2024; 11:466-474. [PMID: 38041505 PMCID: PMC10804180 DOI: 10.1002/ehf2.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 12/03/2023] Open
Abstract
AIMS This retrospective cohort study aimed to be the first to evaluate the association between plasma protein-bound uremic toxins (PBUTs) concentrations, echocardiographic parameters of heart failure (HF), and incident HF events in patients with chronic kidney disease (CKD) not on dialysis. METHODS AND RESULTS Retrospective, single-centre, cohort study at the Ghent University Hospital, Belgium. Adults with CKD stages G1-G5, not on dialysis, could be included. Exclusion criteria were ongoing pregnancy, age <18 years, active acute infection, active malignancy, history of transplantation, or a cardiovascular event within 3 months prior to inclusion. Free and total concentrations of five PBUTs were quantified at baseline: indoxyl sulfate (IxS), p-cresyl sulfate (pCS), p-cresyl glucuronide (pCG), indole-3 acetic acid (IAA), and hippuric acid (HA). Patients were grouped into three echocardiographic categories: normal left ventricular ejection fraction (LVEF) and normal left ventricular end-diastolic pressure (LVEDP), normal LVEF and increased LVEDP, and reduced LVEF, based on available echocardiographic data in a time interval of ±6 months around the plasma sample collection. A total of 523 patients were included between January 2011 and January 2014. Echocardiographic data within the predefined timeframe were available for 210 patients (40% of patients). Levels of pCG and pCS were significantly higher in patients with reduced (<50%) versus normal LVEF (P < 0.05). After a median follow-up 5.5 years, 43 (8.4%) patients reached the composite endpoint of hospitalization or mortality due to HF. Free fractions of IxS, pCS, and pCG showed the strongest association with clinical outcome: free IxS: HR 1.71 (95% CI 1.11-2.63; P = 0.015), free pCS: HR 1.82 (95% CI 1.11-3.01; P = 0.019), and free pCG: HR 1.67 (95% CI 1.08-2.58; P = 0.020), and these results were independent of age, gender, body mass index, diabetes, and systolic blood pressure. In models that were also adjusted for serum creatinine, the free fractions of these PBUTs remained significant. CONCLUSIONS Elevated free concentrations of IxS, pCG, and pCS were independently associated with an increased risk of HF events in non-dialysed CKD patients. Further research is necessary to confirm these findings and investigate the potential impact of PBUT-lowering interventions on HF events in this patient group.
Collapse
Affiliation(s)
- Bert Zwaenepoel
- Department of CardiologyGhent University Hospital, Ghent UniversityGhentBelgium
| | - Tine De Backer
- Department of CardiologyGhent University Hospital, Ghent UniversityGhentBelgium
| | - Griet Glorieux
- Department of NephrologyGhent University Hospital, Ghent UniversityGhentBelgium
| | - Francis Verbeke
- Department of NephrologyGhent University Hospital, Ghent UniversityGhentBelgium
| |
Collapse
|
5
|
Beetham CM, Schuster CF, Kviatkovski I, Santiago M, Walker S, Gründling A. Histidine transport is essential for the growth of Staphylococcus aureus at low pH. PLoS Pathog 2024; 20:e1011927. [PMID: 38227607 PMCID: PMC10817146 DOI: 10.1371/journal.ppat.1011927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/26/2024] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen capable of causing many different human diseases. During colonization and infection, S. aureus will encounter a range of hostile environments, including acidic conditions such as those found on the skin and within macrophages. However, little is known about the mechanisms that S. aureus uses to detect and respond to low pH. Here, we employed a transposon sequencing approach to determine on a genome-wide level the genes required or detrimental for growth at low pH. We identified 31 genes that were essential for the growth of S. aureus at pH 4.5 and confirmed the importance of many of them through follow up experiments using mutant strains inactivated for individual genes. Most of the genes identified code for proteins with functions in cell wall assembly and maintenance. These data suggest that the cell wall has a more important role than previously appreciated in promoting bacterial survival when under acid stress. We also identified several novel processes previously not linked to the acid stress response in S. aureus. These include aerobic respiration and histidine transport, the latter by showing that one of the most important genes, SAUSA300_0846, codes for a previously uncharacterized histidine transporter. We further show that under acid stress, the expression of the histidine transporter gene is increased in WT S. aureus. In a S. aureus SAUSA300_0846 mutant strain expression of the histidine biosynthesis genes is induced under acid stress conditions allowing the bacteria to maintain cytosolic histidine levels. This strain is, however, unable to maintain its cytosolic pH to the same extent as a WT strain, revealing an important function specifically for histidine transport in the acid stress response of S. aureus.
Collapse
Affiliation(s)
- Catrin M. Beetham
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Christopher F. Schuster
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Igor Kviatkovski
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Marina Santiago
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Angelika Gründling
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Schumacher K, Gelhausen R, Kion-Crosby W, Barquist L, Backofen R, Jung K. Ribosome profiling reveals the fine-tuned response of Escherichia coli to mild and severe acid stress. mSystems 2023; 8:e0103723. [PMID: 37909716 PMCID: PMC10746267 DOI: 10.1128/msystems.01037-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Bacteria react very differently to survive in acidic environments, such as the human gastrointestinal tract. Escherichia coli is one of the extremely acid-resistant bacteria and has a variety of acid-defense mechanisms. Here, we provide the first genome-wide overview of the adaptations of E. coli K-12 to mild and severe acid stress at both the transcriptional and translational levels. Using ribosome profiling and RNA sequencing, we uncover novel adaptations to different degrees of acidity, including previously hidden stress-induced small proteins and novel key transcription factors for acid defense, and report mRNAs with pH-dependent differential translation efficiency. In addition, we distinguish between acid-specific adaptations and general stress response mechanisms using denoising autoencoders. This workflow represents a powerful approach that takes advantage of next-generation sequencing techniques and machine learning to systematically analyze bacterial stress responses.
Collapse
Affiliation(s)
- Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Willow Kion-Crosby
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
7
|
Schumacher K, Brameyer S, Jung K. Bacterial acid stress response: from cellular changes to antibiotic tolerance and phenotypic heterogeneity. Curr Opin Microbiol 2023; 75:102367. [PMID: 37633223 DOI: 10.1016/j.mib.2023.102367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/28/2023]
Abstract
Most bacteria are neutralophiles but can survive fluctuations in pH in their environment. Herein, we provide an overview of the adaptation of several human, soil, and food bacteria to acid stress, mainly based on next-generation sequencing studies, highlighting common and specific strategies. We also discuss the interplay between acid stress response and antibiotic tolerance, as well as the response of individual cells.
Collapse
Affiliation(s)
- Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
| |
Collapse
|
8
|
Ivontsin LA, Mashkovtseva EV, Nartsissov YR. Membrane Lipid Composition Influences the Hydration of Proton Half-Channels in F oF 1-ATP Synthase. Life (Basel) 2023; 13:1816. [PMID: 37763220 PMCID: PMC10532555 DOI: 10.3390/life13091816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The membrane lipid composition plays an important role in the regulation of membrane protein activity. To probe its influence on proton half-channels' structure in FoF1-ATP synthase, we performed molecular dynamics simulations with the bacterial protein complex (PDB ID: 6VWK) embedded in three types of membranes: a model POPC, a lipid bilayer containing 25% (in vivo), and 75% (bacterial stress) of cardiolipin (CL). The structure proved to be stable regardless of the lipid composition. The presence of CL increased the hydration of half-channels. The merging of two water cavities at the inlet half-channel entrance and a long continuous chain of water molecules directly to cAsp61 from the periplasm were observed. Minor conformational changes in half-channels with the addition of CL caused extremely rare direct transitions between aGlu219-aAsp119, aGlu219-aHis245, and aGln252-cAsp61. Deeper penetration of water molecules (W1-W3) also increased the proton transport continuity. Stable spatial positions of significant amino acid (AA) residue aAsn214 were found under all simulation conditions indicate a prevailing influence of AA-AA or AA-W interactions on the side-chain dynamics. These results allowed us to put forward a model of the proton movement in ATP synthases under conditions close to in vivo and to evaluate the importance of membrane composition in simulations.
Collapse
Affiliation(s)
- Leonid A. Ivontsin
- Institute of Cytochemistry and Molecular Pharmacology, 24/14 6th Radialnaya Str., Moscow 115404, Russia; (E.V.M.); (Y.R.N.)
| | - Elena V. Mashkovtseva
- Institute of Cytochemistry and Molecular Pharmacology, 24/14 6th Radialnaya Str., Moscow 115404, Russia; (E.V.M.); (Y.R.N.)
| | - Yaroslav R. Nartsissov
- Institute of Cytochemistry and Molecular Pharmacology, 24/14 6th Radialnaya Str., Moscow 115404, Russia; (E.V.M.); (Y.R.N.)
- Biomedical Research Group, BiDiPharma GmbH, 5 Bültbek, 22962 Siek, Germany
| |
Collapse
|
9
|
Peng J, Xu Z, Li L, Zhao B, Guo Y. Disruption of the sensor kinase phoQ gene decreases acid resistance in plant growth-promoting rhizobacterium Rahnella aquatilis HX2. J Appl Microbiol 2023; 134:6991427. [PMID: 36748653 DOI: 10.1093/jambio/lxad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/24/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
AIMS Rahnella aquatilis HX2, a promising plant growth-promoting rhizobacterium (PGPR) in the field, contains genes homologous to the PhoP/PhoQ two-component regulatory system. Although this system regulates stress response in numerous pathogens, PhoP/PhoQ characterization in a PGPR has not received in-depth exploration. METHODS AND RESULTS The phoQ gene was mutated in strain HX2 using an in-frame deletion strategy. Compared to the wild type, the phoQ mutant exhibited increased sensitivity to acidic conditions (pH 4.0) in a chemically defined medium and in mild acidic natural soil (pH 5.7). The phoQ mutant also exhibited increased swimming motility under acidic conditions. Acid resistance was restored in the mutant by introducing the phoQ gene on a plasmid. Three acid resistance genes, add, cfa, and fur were downregulated significantly, whereas the chaperone encoding gene, dnak, was upregulated when the phoQ mutant was exposed to acid stress. CONCLUSIONS This study suggested that the PhoP/PhoQ system positively regulates the acid resistance of R. aquatilis HX2.
Collapse
Affiliation(s)
- Jing Peng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.,Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Zhongnan Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.,Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Lei Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Bingjie Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.,Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.,Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Mendonça AA, Pinto-Neto WDP, da Paixão GA, Santos DDS, De Morais MA, De Souza RB. Journey of the Probiotic Bacteria: Survival of the Fittest. Microorganisms 2022; 11:95. [PMID: 36677387 PMCID: PMC9861974 DOI: 10.3390/microorganisms11010095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This review aims to bring a more general view of the technological and biological challenges regarding production and use of probiotic bacteria in promoting human health. After a brief description of the current concepts, the challenges for the production at an industrial level are presented from the physiology of the central metabolism to the ability to face the main forms of stress in the industrial process. Once produced, these cells are processed to be commercialized in suspension or dried forms or added to food matrices. At this stage, the maintenance of cell viability and vitality is of paramount for the quality of the product. Powder products requires the development of strategies that ensure the integrity of components and cellular functions that allow complete recovery of cells at the time of consumption. Finally, once consumed, probiotic cells must face a very powerful set of physicochemical mechanisms within the body, which include enzymes, antibacterial molecules and sudden changes in pH. Understanding the action of these agents and the induction of cellular tolerance mechanisms is fundamental for the selection of increasingly efficient strains in order to survive from production to colonization of the intestinal tract and to promote the desired health benefits.
Collapse
Affiliation(s)
- Allyson Andrade Mendonça
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Walter de Paula Pinto-Neto
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Giselle Alves da Paixão
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| | - Dayane da Silva Santos
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Marcos Antonio De Morais
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Rafael Barros De Souza
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| |
Collapse
|
11
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
12
|
Neira G, Vergara E, Holmes DS. Genome-guided prediction of acid resistance mechanisms in acidophilic methanotrophs of phylogenetically deep-rooted Verrucomicrobia isolated from geothermal environments. Front Microbiol 2022; 13:900531. [PMID: 36212841 PMCID: PMC9543262 DOI: 10.3389/fmicb.2022.900531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Verrucomicrobia are a group of microorganisms that have been proposed to be deeply rooted in the Tree of Life. Some are methanotrophs that oxidize the potent greenhouse gas methane and are thus important in decreasing atmospheric concentrations of the gas, potentially ameliorating climate change. They are widespread in various environments including soil and fresh or marine waters. Recently, a clade of extremely acidophilic Verrucomicrobia, flourishing at pH < 3, were described from high-temperature geothermal ecosystems. This novel group could be of interest for studies about the emergence of life on Earth and to astrobiologists as homologs for possible extraterrestrial life. In this paper, we describe predicted mechanisms for survival of this clade at low pH and suggest its possible evolutionary trajectory from an inferred neutrophilic ancestor. Extreme acidophiles are defined as organisms that thrive in extremely low pH environments (≤ pH 3). Many are polyextremophiles facing high temperatures and high salt as well as low pH. They are important to study for both providing fundamental insights into biological mechanisms of survival and evolution in such extreme environments and for understanding their roles in biotechnological applications such as industrial mineral recovery (bioleaching) and mitigation of acid mine drainage. They are also, potentially, a rich source of novel genes and pathways for the genetic engineering of microbial strains. Acidophiles of the Verrucomicrobia phylum are unique as they are the only known aerobic methanotrophs that can grow optimally under acidic (pH 2–3) and moderately thermophilic conditions (50–60°C). Three moderately thermophilic genera, namely Methylacidiphilum, Methylacidimicrobium, and Ca. Methylacidithermus, have been described in geothermal environments. Most of the investigations of these organisms have focused on their methane oxidizing capabilities (methanotrophy) and use of lanthanides as a protein cofactor, with no extensive study that sheds light on the mechanisms that they use to flourish at extremely low pH. In this paper, we extend the phylogenetic description of this group of acidophiles using whole genome information and we identify several mechanisms, potentially involved in acid resistance, including “first line of defense” mechanisms that impede the entry of protons into the cell. These include the presence of membrane-associated hopanoids, multiple copies of the outer membrane protein (Slp), and inner membrane potassium channels (kup, kdp) that generate a reversed membrane potential repelling the intrusion of protons. Acidophilic Verrucomicrobia also display a wide array of proteins potentially involved in the “second line of defense” where protons that evaded the first line of defense and entered the cell are expelled or neutralized, such as the glutamate decarboxylation (gadAB) and phosphate-uptake systems. An exclusive N-type ATPase F0-F1 was identified only in acidophiles of Verrucomicrobia and is predicted to be a specific adaptation in these organisms. Phylogenetic analyses suggest that many predicted mechanisms are evolutionarily conserved and most likely entered the acidophilic lineage of Verrucomicrobia by vertical descent from a common ancestor. However, it is likely that some defense mechanisms such as gadA and kup entered the acidophilic Verrucomicrobia lineage by horizontal gene transfer.
Collapse
Affiliation(s)
- Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- *Correspondence: David S. Holmes
| |
Collapse
|
13
|
Kim Y, Lee S, Park K, Yoon H. Cooperative Interaction between Acid and Copper Resistance in Escherichia coli. J Microbiol Biotechnol 2022; 32:602-611. [PMID: 35283428 PMCID: PMC9628877 DOI: 10.4014/jmb.2201.01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
Abstract
The persistence of pathogenic Escherichia coli under acidic conditions poses a serious risk to food safety, especially in acidic foods such as kimchi. To identify the bacterial factors required for acid resistance, transcriptomic analysis was conducted on an acid-resistant enterotoxigenic E. coli strain and the genes with significant changes in their expression under acidic pH were selected as putative resistance factors against acid stress. These genes included those associated with a glutamatedependent acid resistance (GDAR) system and copper resistance. E. coli strains lacking GadA, GadB, or YbaST, the components of the GDAR system, exhibited significantly attenuated growth and survival under acidic stress conditions. Accordantly, the inhibition of the GDAR system by 3-mercaptopropionic acid and aminooxyacetic acid abolished bacterial adaptation and survival under acidic conditions, indicating the indispensable role of a GDAR system in acid resistance. Intriguingly, the lack of cueR encoding a transcriptional regulator for copper resistance genes markedly impaired bacterial resistance to acid stress as well as copper. Conversely, the absence of YbaST severely compromised bacterial resistance against copper, suggesting an interplay between acid and copper resistance. These results suggest that a GDAR system can be a promising target for developing control measures to prevent E. coli resistance to acid and copper treatments.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seohyeon Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Kyungah Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea,Corresponding author Phone: +82-31-219-2450 Fax: +82-31-219-1610 E-mail:
| |
Collapse
|
14
|
Tang R, Sun W, Zhang JC, Mao L, Quanquin N, Wu D, Sun Y. Expression of Human Uncoupling Protein-1 in Escherichia coli Decreases its Survival Under Extremely Acidic Conditions. Curr Microbiol 2022; 79:77. [DOI: 10.1007/s00284-022-02762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/08/2022] [Indexed: 11/03/2022]
|
15
|
Masoura M, Milner MT, Overton TW, Gkatzionis K, Lund PA. Use of Transposon Directed Insertion-Site Sequencing to Probe the Antibacterial Mechanism of a Model Honey on E. coli K-12. Front Microbiol 2022; 12:803307. [PMID: 35111142 PMCID: PMC8803141 DOI: 10.3389/fmicb.2021.803307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance is an ever-growing health concern worldwide that has created renewed interest in the use of traditional anti-microbial treatments, including honey. However, understanding the underlying mechanism of the anti-microbial action of honey has been hampered due to the complexity of its composition. High throughput genetic tools could assist in understanding this mechanism. In this study, the anti-bacterial mechanism of a model honey, made of sugars, hydrogen peroxide, and gluconic acid, was investigated using genome-wide transposon mutagenesis combined with high-throughput sequencing (TraDIS), with the strain Escherichia coli K-12 MG1655 as the target organism. We identified a number of genes which when mutated caused a severe loss of fitness when cells were exposed to the model honey. These genes encode membrane proteins including those involved in uptake of essential molecules, and components of the electron transport chain. They are enriched for pathways involved in intracellular homeostasis and redox activity. Genes involved in assembly and activity of formate dehydrogenase O (FDH-O) were of particular note. The phenotypes of mutants in a subset of the genes identified were confirmed by phenotypic screening of deletion strains. We also found some genes which when mutated led to enhanced resistance to treatment with the model honey. This study identifies potential synergies between the main honey stressors and provides insights into the global antibacterial mechanism of this natural product.
Collapse
Affiliation(s)
- Maria Masoura
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
- Institute of Microbiology and Infection (IMI), University of Birmingham, Birmingham, United Kingdom
| | - Mathew T. Milner
- Institute of Microbiology and Infection (IMI), University of Birmingham, Birmingham, United Kingdom
| | - Tim W. Overton
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Lemnos, Greece
| | - Peter A. Lund
- Institute of Microbiology and Infection (IMI), University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Peter A. Lund,
| |
Collapse
|
16
|
de la Garza-García JA, Ouahrani-Bettache S, Lyonnais S, Ornelas-Eusebio E, Freddi L, Al Dahouk S, Occhialini A, Köhler S. Comparative Genome-Wide Transcriptome Analysis of Brucella suis and Brucella microti Under Acid Stress at pH 4.5: Cold Shock Protein CspA and Dps Are Associated With Acid Resistance of B. microti. Front Microbiol 2021; 12:794535. [PMID: 34966374 PMCID: PMC8710502 DOI: 10.3389/fmicb.2021.794535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Brucellae are facultative intracellular coccobacilli causing brucellosis, one of the most widespread bacterial zoonosis affecting wildlife animals, livestock and humans. The genus Brucella comprises classical and atypical species, such as Brucella suis and Brucella microti, respectively. The latter is characterized by increased metabolic activity, fast growth rates, and extreme acid resistance at pH 2.5, suggesting an advantage for environmental survival. In addition, B. microti is more acid-tolerant than B. suis at the intermediate pH of 4.5. This acid-resistant phenotype of B. microti may have major implications for fitness in soil, food products and macrophages. Our study focused on the identification and characterization of acid resistance determinants of B. suis and B. microti in Gerhardt's minimal medium at pH 4.5 and 7.0 for 20 min and 2 h by comparative RNA-Seq-based transcriptome analysis, validated by RT-qPCR. Results yielded a common core response in both species with a total of 150 differentially expressed genes, and acidic pH-dependent genes regulated specifically in each species. The identified core response mechanisms comprise proton neutralization or extrusion from the cytosol, participating in maintaining physiological intracellular pH values. Differential expression of 441 genes revealed species-specific mechanisms in B. microti with rapid physiological adaptation to acid stress, anticipating potential damage to cellular components and critical energy conditions. Acid stress-induced genes encoding cold shock protein CspA, pseudogene in B. suis, and stress protein Dps were associated with survival of B. microti at pH 4.5. B. suis response with 284 specifically regulated genes suggested increased acid stress-mediated protein misfolding or damaging, triggering the set-up of repair strategies countering the consequences rather than the origin of acid stress and leading to subsequent loss of viability. In conclusion, our work supports the hypothesis that increased acid stress resistance of B. microti is based on selective pressure for the maintenance of functionality of critical genes, and on specific differential gene expression, resulting in rapid adaptation.
Collapse
Affiliation(s)
- Jorge A de la Garza-García
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| | - Safia Ouahrani-Bettache
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| | | | - Erika Ornelas-Eusebio
- Unité des Zoonoses Bactériennes and Unité d'Epidémiologie, Laboratoire de Santé Animale, ANSES, University Paris-Est, Maisons-Alfort, France
| | - Luca Freddi
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| | | | - Alessandra Occhialini
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| | - Stephan Köhler
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| |
Collapse
|
17
|
Abram F, Arcari T, Guerreiro D, O'Byrne CP. Evolutionary trade-offs between growth and survival: The delicate balance between reproductive success and longevity in bacteria. Adv Microb Physiol 2021; 79:133-162. [PMID: 34836610 DOI: 10.1016/bs.ampbs.2021.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All living cells strive to allocate cellular resources in a way that promotes maximal evolutionary fitness. While there are many competing demands for resources the main decision making process centres on whether to proceed with growth and reproduction or to "hunker down" and invest in protection and survival (or to strike an optimal balance between these two processes). The transcriptional programme active at any given time largely determines which of these competing processes is dominant. At the top of the regulatory hierarchy are the sigma factors that commandeer the transcriptional machinery and determine which set of promoters are active at any given time. The regulatory inputs controlling their activity are therefore often highly complex, with multiple layers of regulation, allowing relevant environmental information to produce the most beneficial response. The tension between growth and survival is also evident in the developmental programme necessary to promote biofilm formation, which is typically associated with low growth rates and enhanced long-term survival. Nucleotide second messengers and energy pools (ATP/ADP levels) play critical roles in determining the fate of individual cells. Regulatory small RNAs frequently play important roles in the decision making processes too. In this review we discuss the trade-off that exists between reproduction and persistence in bacteria and discuss some of the recent advances in this fascinating field.
Collapse
Affiliation(s)
- Florence Abram
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Talia Arcari
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Duarte Guerreiro
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Conor P O'Byrne
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
18
|
Sulphate-Reducing Bacteria’s Response to Extreme pH Environments and the Effect of Their Activities on Microbial Corrosion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052201] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sulphate-reducing bacteria (SRB) are dominant species causing corrosion of various types of materials. However, they also play a beneficial role in bioremediation due to their tolerance of extreme pH conditions. The application of sulphate-reducing bacteria (SRB) in bioremediation and control methods for microbiologically influenced corrosion (MIC) in extreme pH environments requires an understanding of the microbial activities in these conditions. Recent studies have found that in order to survive and grow in high alkaline/acidic condition, SRB have developed several strategies to combat the environmental challenges. The strategies mainly include maintaining pH homeostasis in the cytoplasm and adjusting metabolic activities leading to changes in environmental pH. The change in pH of the environment and microbial activities in such conditions can have a significant impact on the microbial corrosion of materials. These bacteria strategies to combat extreme pH environments and their effect on microbial corrosion are presented and discussed.
Collapse
|
19
|
Yu L, Zhang S, Xu Y, Mi X, Xing T, Li J, Zhang L, Gao F, Jiang Y. Acid resistance of E. coli O157:H7 and O26:H11 exposure to lactic acid revealed by transcriptomic analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Arcari T, Feger ML, Guerreiro DN, Wu J, O’Byrne CP. Comparative Review of the Responses of Listeria monocytogenes and Escherichia coli to Low pH Stress. Genes (Basel) 2020; 11:genes11111330. [PMID: 33187233 PMCID: PMC7698193 DOI: 10.3390/genes11111330] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Acidity is one of the principal physicochemical factors that influence the behavior of microorganisms in any environment, and their response to it often determines their ability to grow and survive. Preventing the growth and survival of pathogenic bacteria or, conversely, promoting the growth of bacteria that are useful (in biotechnology and food production, for example), might be improved considerably by a deeper understanding of the protective responses that these microorganisms deploy in the face of acid stress. In this review, we survey the molecular mechanisms used by two unrelated bacterial species in their response to low pH stress. We chose to focus on two well-studied bacteria, Escherichia coli (phylum Proteobacteria) and Listeria monocytogenes (phylum Firmicutes), that have both evolved to be able to survive in the mammalian gastrointestinal tract. We review the mechanisms that these species use to maintain a functional intracellular pH as well as the protective mechanisms that they deploy to prevent acid damage to macromolecules in the cells. We discuss the mechanisms used to sense acid in the environment and the regulatory processes that are activated when acid is encountered. We also highlight the specific challenges presented by organic acids. Common themes emerge from this comparison as well as unique strategies that each species uses to cope with acid stress. We highlight some of the important research questions that still need to be addressed in this fascinating field.
Collapse
|
21
|
Ikeyama N, Murakami T, Toyoda A, Mori H, Iino T, Ohkuma M, Sakamoto M. Microbial interaction between the succinate-utilizing bacterium Phascolarctobacterium faecium and the gut commensal Bacteroides thetaiotaomicron. Microbiologyopen 2020; 9:e1111. [PMID: 32856395 PMCID: PMC7568257 DOI: 10.1002/mbo3.1111] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
A large variety of microbes are present in the human gut, some of which are considered to interact with each other. Most of these interactions involve bacterial metabolites. Phascolarctobacterium faecium hardly uses carbohydrates for growth and instead uses succinate as a substrate. This study investigated the growth behavior of the co‐culture of the succinate‐specific utilizer P. faecium and the succinogenic gut commensal Bacteroides thetaiotaomicron. Succinate production by B. thetaiotaomicron supported the growth of P. faecium and concomitant propionate production via the succinate pathway. The succinate produced was completely converted to propionate. This result was comparable with the monoculture of P. faecium in the medium supplemented with 1% (w/v) succinate. We analyzed the transcriptional response (RNA‐Seq) between the mono‐ and co‐culture of P. faecium and B. thetaiotaomicron. Comparison of the expression levels of genes of P. faecium between the mono‐ and co‐cultured conditions highlighted that the genes putatively involved in the transportation of succinate were notably expressed under the co‐cultured conditions. Differential expression analysis showed that the presence of P. faecium induced changes in the B. thetaiotaomicron transcriptional pattern, for example, expression changes in the genes for vitamin B12 transporters and reduced expression of glutamate‐dependent acid resistance system‐related genes. Also, transcriptome analysis of P. faecium suggested that glutamate and succinate might be used as sources of succinyl‐CoA, an intermediate in the succinate pathway. This study revealed some survival strategies of asaccharolytic bacteria, such as Phascolarctobacterium spp., in the human gut.
Collapse
Affiliation(s)
- Nao Ikeyama
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Takumi Murakami
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hiroshi Mori
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takao Iino
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Mitsuo Sakamoto
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.,PRIME, Japan Agency for Medical Research and Development (AMED), Tsukuba, Ibaraki, Japan
| |
Collapse
|
22
|
Kornspan D, Zahavi T, Salmon-Divon M. The Acidic Stress Response of the Intracellular Pathogen Brucella melitensis: New Insights from a Comparative, Genome-Wide Transcriptome Analysis. Genes (Basel) 2020; 11:genes11091016. [PMID: 32872264 PMCID: PMC7563570 DOI: 10.3390/genes11091016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022] Open
Abstract
The intracellular pathogenic bacteria belonging to the genus Brucella must cope with acidic stress as they penetrate the host via the gastrointestinal route, and again during the initial stages of intracellular infection. A transcription-level regulation has been proposed to explain this but the specific molecular mechanisms are yet to be determined. We recently reported a comparative transcriptomic analysis of the attenuated vaccine Brucella melitensis strain Rev.1 against the virulent strain 16M in cultures grown under either neutral or acidic conditions. Here, we re-analyze the RNA-seq data of 16M from our previous study and compare it to published transcriptomic data of this strain from both an in cellulo and an in vivo model. We identify 588 genes that are exclusively differentially expressed in 16M grown under acidic versus neutral pH conditions, including 286 upregulated genes and 302 downregulated genes that are not differentially expressed in either the in cellulo or the in vivo model. Of these, we highlight 13 key genes that are known to be associated with a bacterial response to acidic stress and, in our study, were highly upregulated under acidic conditions. These genes provide new molecular insights into the mechanisms underlying the acid-resistance of Brucella within its host.
Collapse
Affiliation(s)
- David Kornspan
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan 50250, Israel
- Correspondence: ; Tel.: +972-3-968-1745
| | - Tamar Zahavi
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel 40700, Israel; (T.Z.); (M.S.-D.)
| | - Mali Salmon-Divon
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel 40700, Israel; (T.Z.); (M.S.-D.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
23
|
Zhang W, Chen X, Sun W, Nie T, Quanquin N, Sun Y. Escherichia Coli Increases its ATP Concentration in Weakly Acidic Environments Principally through the Glycolytic Pathway. Genes (Basel) 2020; 11:genes11090991. [PMID: 32854287 PMCID: PMC7563387 DOI: 10.3390/genes11090991] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022] Open
Abstract
Acid resistance is an intrinsic characteristic of intestinal bacteria in order to survive passage through the stomach. Adenosine triphosphate (ATP), the ubiquitous chemical used to power metabolic reactions, activate signaling cascades, and form precursors of nucleic acids, was also found to be associated with the survival of Escherichia coli (E. coli) in acidic environments. The metabolic pathway responsible for elevating the level of ATP inside these bacteria during acid adaptation has been unclear. E. coli uses several mechanisms of ATP production, including oxidative phosphorylation, glycolysis and the oxidation of organic compounds. To uncover which is primarily used during adaptation to acidic conditions, we broadly analyzed the levels of gene transcription of multiple E. coli metabolic pathway components. Our findings confirmed that the primary producers of ATP in E. coli undergoing mild acidic stress are the glycolytic enzymes Glk, PykF and Pgk, which are also essential for survival under markedly acidic conditions. By contrast, the transcription of genes related to oxidative phosphorylation was downregulated, despite it being the major producer of ATP in neutral pH environments.
Collapse
Affiliation(s)
- Wenbin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510640, China;
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (W.S.); (T.N.)
| | - Xin Chen
- Guangdong Key Laboratory of IoT Information Technology, School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
| | - Wei Sun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (W.S.); (T.N.)
| | - Tao Nie
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (W.S.); (T.N.)
| | - Natalie Quanquin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA;
| | - Yirong Sun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (W.S.); (T.N.)
- Correspondence:
| |
Collapse
|
24
|
Guan N, Liu L. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol 2020; 104:51-65. [PMID: 31773206 PMCID: PMC6942593 DOI: 10.1007/s00253-019-10226-1] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Microorganisms encounter acid stress during multiple bioprocesses. Microbial species have therefore developed a variety of resistance mechanisms. The damage caused by acidic environments is mitigated through the maintenance of pH homeostasis, cell membrane integrity and fluidity, metabolic regulation, and macromolecule repair. The acid tolerance mechanisms can be used to protect probiotics against gastric acids during the process of food intake, and can enhance the biosynthesis of organic acids. The combination of systems and synthetic biology technologies offers new and wide prospects for the industrial applications of microbial acid tolerance mechanisms. In this review, we summarize acid stress response mechanisms of microbial cells, illustrate the application of microbial acid tolerance in industry, and prospect the introduction of systems and synthetic biology to further explore the acid tolerance mechanisms and construct a microbial cell factory for valuable chemicals.
Collapse
Affiliation(s)
- Ningzi Guan
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
25
|
Acid-happy: Survival and recovery of enteropathogenic Escherichia coli (EPEC) in simulated gastric fluid. Microb Pathog 2019; 128:396-404. [PMID: 30660737 DOI: 10.1016/j.micpath.2019.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/14/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Gastric fluid pH serves an important function as an ecological filter to kill unwanted microbial taxa that would otherwise colonise the intestines, thereby shaping the diversity and composition of microbial communities found in the gut. The typical American-based diet causes the gastric pH to increase to pH 4 to 5, and it takes ∼2 h to return to pH 1.5 (normal). This window of increased gastric pH may allow potential pathogens to negotiate the hostile environment of the stomach. Another factor to consider is that in developing countries many people experience hypochlorhydria related to malnutrition and various gastric diseases. Enteropathogenic E. coli (EPEC) is a leading cause of infantile diarrhoea and has a high incidence in the developing world. The aim of this study was to assess the survival and recovery of non-acid adapted EPEC exposed to simulated gastric fluid (SGF) over a period of 180 min. RESULTS EPEC were grown in nutrient-rich medium and acid challenged in SGF at pH 1.5, 2.5, 3.5 and 4.5. Culturability was evaluated using a standard plate count method, and metabolic viability was assessed via cellular energy (adenosine triphosphate [ATP] assay) and respiratory activity (3-bis(2-methyloxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide [XTT] assay), and recovery and proliferation by means of optical density in liquid cultures. Sampling was performed at 0, 30, 60, 120, and 180 min post-SGF exposure. The results of this study showed that EPEC is remarkably acid resistant and was able to survive a simulated gastric environment for up to 3 h (180 min) at various pH (1.5, 2.5, 3.5, and 4.5). EPEC was culturable at all pH (1.5, 2.5, 3.5 and 4.5) at the higher inoculum size of 5.4-7.1 × 106 CFU/ml, and at all pH except pH 1.5 at the lower inoculums of 5.4-7.1 × 103 CFU/ml or 5.4-7.1 × 101 CFU/ml. The organism remained metabolically viable at pH 1.5, 2.5, 3.5, and 4.5 and was able to recover and proliferate once placed in a neutral, nutrient-rich environment. CONCLUSION In this study, EPEC demonstrated remarkable acid resistance and recovery at low pH without prior acid adaptation, which could prove to be problematic even in healthy people. In individuals with decreased gastric acidity, there is a higher probability of pathogen colonization and a resulting change in the gut microbiome. The results highlight the potential increase of food- and waterborne diseases in persons with compromised gastric function, or who are malnourished or immunocompromised. The data herein may possibly help in calculating more precisely the risk associated with consuming bacterial contaminated food and water in these individuals.
Collapse
|
26
|
Robertson J, Gizdavic-Nikolaidis M, Nieuwoudt MK, Swift S. The antimicrobial action of polyaniline involves production of oxidative stress while functionalisation of polyaniline introduces additional mechanisms. PeerJ 2018; 6:e5135. [PMID: 29967756 PMCID: PMC6026458 DOI: 10.7717/peerj.5135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/08/2018] [Indexed: 12/31/2022] Open
Abstract
Polyaniline (PANI) and functionalised polyanilines (fPANI) are novel antimicrobial agents whose mechanism of action was investigated. Escherichia coli single gene deletion mutants revealed that the antimicrobial mechanism of PANI likely involves production of hydrogen peroxide while homopolymer poly(3-aminobenzoic acid), P3ABA, used as an example of a fPANI, disrupts metabolic and respiratory machinery, by targeting ATP synthase and causes acid stress. PANI was more active against E. coli in aerobic, compared to anaerobic, conditions, while this was apparent for P3ABA only in rich media. Greater activity in aerobic conditions suggests involvement of reactive oxygen species. P3ABA treatment causes an increase in intracellular free iron, which is linked to perturbation of metabolic enzymes and could promote reactive oxygen species production. Addition of exogenous catalase protected E. coli from PANI antimicrobial action; however, this was not apparent for P3ABA treated cells. The results presented suggest that PANI induces production of hydrogen peroxide, which can promote formation of hydroxyl radicals causing biomolecule damage and potentially cell death. P3ABA is thought to act as an uncoupler by targeting ATP synthase resulting in a futile cycle, which precipitates dysregulation of iron homeostasis, oxidative stress, acid stress, and potentially the fatal loss of proton motive force.
Collapse
Affiliation(s)
- Julia Robertson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | | | | | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Roset MS, Alefantis TG, DelVecchio VG, Briones G. Iron-dependent reconfiguration of the proteome underlies the intracellular lifestyle of Brucella abortus. Sci Rep 2017; 7:10637. [PMID: 28878308 PMCID: PMC5587712 DOI: 10.1038/s41598-017-11283-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/21/2017] [Indexed: 12/24/2022] Open
Abstract
Brucella ssp. is a facultative intracellular pathogen that causes brucellosis, a worldwide zoonosis that affects a wide range of mammals including humans. A critical step for the establishment of a successful Brucella infection is its ability to survive within macrophages. To further understand the mechanisms that Brucella utilizes to adapt to an intracellular lifestyle, a differential proteomic study was performed for the identification of intracellular modulated proteins. Our results demonstrated that at 48 hours post-infection Brucella adjusts its metabolism in order to survive intracellularly by modulating central carbon metabolism. Remarkably, low iron concentration is likely the dominant trigger for reprogramming the protein expression profile. Up-regulation of proteins dedicated to reduce the concentration of reactive oxygen species, protein chaperones that prevent misfolding of proteins, and proteases that degrade toxic protein aggregates, suggest that Brucella protects itself from damage likely due to oxidative burst. This proteomic analysis of B. abortus provides novel insights into the mechanisms utilized by Brucella to establish an intracellular persistent infection and will aid in the development of new control strategies and novel targets for antimicrobial therapy.
Collapse
Affiliation(s)
- M S Roset
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, IIB-INTECH-CONICET, San Martín 1650, Buenos Aires, Argentina.
| | - T G Alefantis
- Vital Probes Inc., 1820 N. E.27th Drive, Wilton Manors, Florida, USA.,Sanofi Pasteur, 1 Discovery Drive, Swiftwater, PA, USA
| | - V G DelVecchio
- Vital Probes Inc., 1820 N. E.27th Drive, Wilton Manors, Florida, USA
| | - G Briones
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, IIB-INTECH-CONICET, San Martín 1650, Buenos Aires, Argentina.
| |
Collapse
|
28
|
Sun Y, Zhang W, Ma J, Pang H, Wang H. Overproduction of α-Lipoic Acid by Gene Manipulated Escherichia coli. PLoS One 2017; 12:e0169369. [PMID: 28068366 PMCID: PMC5222372 DOI: 10.1371/journal.pone.0169369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/15/2016] [Indexed: 11/23/2022] Open
Abstract
Alpha-lipoic acid (LA) is an important enzyme cofactor widely used by organisms and is also a natural antioxidant for the treatment of pathologies driven by low levels of endogenous antioxidants. In order to establish a safer and more efficient process for LA production, we developed a new biological method for LA synthesis based on the emerging knowledge of lipoic acid biosynthesis. We first cloned the lipD gene, which encodes the lipoyl domain of the E2 subunit of pyruvate dehydrogenase, allowing high levels of LipD production. Plasmids containing genes for the biosynthesis of LA were subsequently constructed utilizing various vectors and promotors to produce high levels of LA. These plasmids were transformed into the Escherichia coli strain BL21. Octanoic acid (OA) was used as the substrate for LA synthesis. One transformant, YS61, which carried lipD, lplA, and lipA, produced LA at levels over 200-fold greater than the wild-type strain, showing that LA could be produced efficiently in E. coli using genetic engineering methods.
Collapse
Affiliation(s)
- Yirong Sun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, P. R. China
- * E-mail: (YS); (HW)
| | - Wenbin Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Jincheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Hongshen Pang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
- Shenzhen University, Shenzhen, Guangdong, P.R.China
| | - Haihong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
- * E-mail: (YS); (HW)
| |
Collapse
|
29
|
Woo JM, Kim JW, Song JW, Blank LM, Park JB. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity. PLoS One 2016; 11:e0163265. [PMID: 27681369 PMCID: PMC5040553 DOI: 10.1371/journal.pone.0163265] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/05/2016] [Indexed: 01/29/2023] Open
Abstract
The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.
Collapse
Affiliation(s)
- Ji-Min Woo
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Ji-Won Kim
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Ji-Won Song
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Lars M. Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Jin-Byung Park
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
- * E-mail:
| |
Collapse
|
30
|
Nakanishi-Matsui M, Sekiya M, Futai M. ATP synthase from Escherichia coli : Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:129-140. [DOI: 10.1016/j.bbabio.2015.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/19/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
31
|
Liu M, Han X, Xian M, Ding Y, Liu H, Zhao G. Development of a 3-hydroxypropionate resistant Escherichia coli strain. Bioengineered 2015; 7:21-7. [PMID: 26709549 DOI: 10.1080/21655979.2015.1122143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
3-hydroxypropionate (3HP) is an important platform chemical, and its biosynthesis is severely restricted by the toxicity of 3HP on cell growth and survival. To improve Escherichia coli resistance to 3HP and reduce the total production cost in industrial applications, we have identified variations in protein expression level exposed to sub-lethal concentration of this chemical using 2-dimensional gel electrophoresis. Under 3HP stress, the amount of 46 proteins was increased while the amount of 23 proteins was reduced. According to the proteomic results, overexpression of some identified proteins significantly increased the E. coli survival rate under 3HP stress. This study shed light on clues for developing E. coli strains with higher resistance to 3HP toxicity and lower production cost for industrial applications.
Collapse
Affiliation(s)
- Min Liu
- a CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Xueping Han
- a CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Mo Xian
- a CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| | - Yamei Ding
- c Institute of Oceanology, Chinese Academy of Sciences , Qingdao , China
| | - Huizhou Liu
- a CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| | - Guang Zhao
- a CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| |
Collapse
|
32
|
Seo SW, Kim D, O'Brien EJ, Szubin R, Palsson BO. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli. Nat Commun 2015; 6:7970. [PMID: 26258987 PMCID: PMC4918353 DOI: 10.1038/ncomms8970] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 07/01/2015] [Indexed: 12/27/2022] Open
Abstract
The regulators GadE, GadW and GadX (which we refer to as GadEWX) play a critical role in the transcriptional regulation of the glutamate-dependent acid resistance (GDAR) system in Escherichia coli K-12 MG1655. However, the genome-wide regulatory role of GadEWX is still unknown. Here we comprehensively reconstruct the genome-wide GadEWX transcriptional regulatory network and RpoS involvement in E. coli K-12 MG1655 under acidic stress. Integrative data analysis reveals that GadEWX regulons consist of 45 genes in 31 transcription units and 28 of these genes were associated with RpoS-binding sites. We demonstrate that GadEWX directly and coherently regulate several proton-generating/consuming enzymes with pairs of negative-feedback loops for pH homeostasis. In addition, GadEWX regulate genes with assorted functions, including molecular chaperones, acid resistance, stress response and other regulatory activities. These results show how GadEWX simultaneously coordinate many cellular processes to produce the overall response of E. coli to acid stress. GadEWX regulons play a critical role in transcription regulation in response to acid stress. By reconstructing genome-wide GadEWX transcriptional network, here the authors show how GadEWX simultaneously coordinates many other cellular processes to produce the overall response of E. coli to acid stress.
Collapse
Affiliation(s)
- Sang Woo Seo
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Donghyuk Kim
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Edward J O'Brien
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA.,Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
33
|
Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 2014; 38:1091-125. [PMID: 24898062 DOI: 10.1111/1574-6976.12076] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022] Open
Abstract
As part of their life cycle, neutralophilic bacteria are often exposed to varying environmental stresses, among which fluctuations in pH are the most frequent. In particular, acid environments can be encountered in many situations from fermented food to the gastric compartment of the animal host. Herein, we review the current knowledge of the molecular mechanisms adopted by a range of Gram-positive and Gram-negative bacteria, mostly those affecting human health, for coping with acid stress. Because organic and inorganic acids have deleterious effects on the activity of the biological macromolecules to the point of significantly reducing growth and even threatening their viability, it is not unexpected that neutralophilic bacteria have evolved a number of different protective mechanisms, which provide them with an advantage in otherwise life-threatening conditions. The overall logic of these is to protect the cell from the deleterious effects of a harmful level of protons. Among the most favoured mechanisms are the pumping out of protons, production of ammonia and proton-consuming decarboxylation reactions, as well as modifications of the lipid content in the membrane. Several examples are provided to describe mechanisms adopted to sense the external acidic pH. Particular attention is paid to Escherichia coli extreme acid resistance mechanisms, the activity of which ensure survival and may be directly linked to virulence.
Collapse
Affiliation(s)
- Peter Lund
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
34
|
Performance study of chromium (VI) removal in presence of phenol in a continuous packed bed reactor by Escherichia coli isolated from East Calcutta Wetlands. BIOMED RESEARCH INTERNATIONAL 2013; 2013:373412. [PMID: 24073400 PMCID: PMC3773405 DOI: 10.1155/2013/373412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022]
Abstract
Organic pollutants, like phenol, along with heavy metals, like chromium, are present in various industrial effluents that pose serious health hazard to humans. The present study looked at removal of chromium (VI) in presence of phenol in a counter-current continuous packed bed reactor packed with E. coli cells immobilized on clay chips. The cells removed 85% of 500 mg/L of chromium (VI) from MS media containing glucose. Glucose was then replaced by 500 mg/L phenol. Temperature and pH of the MS media prior to addition of phenol were 30°C and 7, respectively. Hydraulic retention times of phenol- and chromium (VI)-containing synthetic media and air flow rates were varied to study the removal efficiency of the reactor system. Then temperature conditions of the reactor system were varied from 10°C to 50°C, the optimum being 30°C. The pH of the media was varied from pH 1 to pH 12, and the optimum pH was found to be 7. The maximum removal efficiency of 77.7% was achieved for synthetic media containing phenol and chromium (VI) in the continuous reactor system at optimized conditions, namely, hydraulic retention time at 4.44 hr, air flow rate at 2.5 lpm, temperature at 30°C, and pH at 7.
Collapse
|
35
|
Vanhauteghem D, Janssens GPJ, Lauwaerts A, Sys S, Boyen F, Cox E, Meyer E. Exposure to the proton scavenger glycine under alkaline conditions induces Escherichia coli viability loss. PLoS One 2013; 8:e60328. [PMID: 23544135 PMCID: PMC3609748 DOI: 10.1371/journal.pone.0060328] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/25/2013] [Indexed: 11/29/2022] Open
Abstract
Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH.
Collapse
Affiliation(s)
- Donna Vanhauteghem
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | | | | | | | | | |
Collapse
|