1
|
Ranjan G, Sehgal P, Scaria V, Sivasubbu S. SCAR-6 elncRNA locus epigenetically regulates PROZ and modulates coagulation and vascular function. EMBO Rep 2024:10.1038/s44319-024-00272-w. [PMID: 39358551 DOI: 10.1038/s44319-024-00272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
In this study, we characterize a novel lncRNA-producing gene locus that we name Syntenic Cardiovascular Conserved Region-Associated lncRNA-6 (scar-6) and functionally validate its role in coagulation and cardiovascular function. A 12-bp deletion of the scar-6 locus in zebrafish (scar-6gib007Δ12/Δ12) results in cranial hemorrhage and vascular permeability. Overexpression, knockdown and rescue with the scar-6 lncRNA modulates hemostasis in zebrafish. Molecular investigation reveals that the scar-6 lncRNA acts as an enhancer lncRNA (elncRNA), and controls the expression of prozb, an inhibitor of factor Xa, through an enhancer element in the scar-6 locus. The scar-6 locus suppresses loop formation between prozb and scar-6 sequences, which might be facilitated by the methylation of CpG islands via the prdm14-PRC2 complex whose binding to the locus might be stabilized by the scar-6 elncRNA transcript. Binding of prdm14 to the scar-6 locus is impaired in scar-6gib007Δ12/Δ12 zebrafish. Finally, activation of the PAR2 receptor in scar-6gib007Δ12/Δ12 zebrafish triggers NF-κB-mediated endothelial cell activation, leading to vascular dysfunction and hemorrhage. We present evidence that the scar-6 locus plays a role in regulating the expression of the coagulation cascade gene prozb and maintains vascular homeostasis.
Collapse
Affiliation(s)
- Gyan Ranjan
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Paras Sehgal
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Vishwanath Cancer Care Foundation, Mumbai, India.
- Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Vishwanath Cancer Care Foundation, Mumbai, India.
- Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| |
Collapse
|
2
|
Chatterjee B, Fatima F, Seth S, Sinha Roy S. Moderate Elevation of Homocysteine Induces Endothelial Dysfunction through Adaptive UPR Activation and Metabolic Rewiring. Cells 2024; 13:214. [PMID: 38334606 PMCID: PMC10854856 DOI: 10.3390/cells13030214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 02/10/2024] Open
Abstract
Elevation of the intermediate amino acid metabolite Homocysteine (Hcy) causes Hyperhomocysteinemia (HHcy), a metabolic disorder frequently associated with mutations in the methionine-cysteine metabolic cycle as well as with nutritional deficiency and aging. The previous literature suggests that HHcy is a strong risk factor for cardiovascular diseases. Severe HHcy is well-established to correlate with vascular pathologies primarily via endothelial cell death. Though moderate HHcy is more prevalent and associated with an increased risk of cardiovascular abnormalities in later part of life, its precise role in endothelial physiology is largely unknown. In this study, we report that moderate elevation of Hcy causes endothelial dysfunction through impairment of their migration and proliferation. We established that unlike severe elevation of Hcy, moderate HHcy is not associated with suppression of endothelial VEGF/VEGFR transcripts and ROS induction. We further showed that moderate HHcy induces a sub-lethal ER stress that causes defective endothelial migration through abnormal actin cytoskeletal remodeling. We also found that sub-lethal increase in Hcy causes endothelial proliferation defect by suppressing mitochondrial respiration and concomitantly increases glycolysis to compensate the consequential ATP loss and maintain overall energy homeostasis. Finally, analyzing a previously published microarray dataset, we confirmed that these hallmarks of moderate HHcy are conserved in adult endothelial cells as well. Thus, we identified adaptive UPR and metabolic rewiring as two key mechanistic signatures in moderate HHcy-associated endothelial dysfunction. As HHcy is clinically associated with enhanced vascular inflammation and hypercoagulability, identifying these mechanistic pathways may serve as future targets to regulate endothelial function and health.
Collapse
Affiliation(s)
- Barun Chatterjee
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; (B.C.); (F.F.); (S.S.)
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Fabeha Fatima
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; (B.C.); (F.F.); (S.S.)
| | - Surabhi Seth
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; (B.C.); (F.F.); (S.S.)
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Soumya Sinha Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; (B.C.); (F.F.); (S.S.)
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
3
|
Huang W, Paul D, Calin GA, Bayraktar R. miR-142: A Master Regulator in Hematological Malignancies and Therapeutic Opportunities. Cells 2023; 13:84. [PMID: 38201290 PMCID: PMC10778542 DOI: 10.3390/cells13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs (miRNAs) are a type of non-coding RNA whose dysregulation is frequently associated with the onset and progression of human cancers. miR-142, an ultra-conserved miRNA with both active -3p and -5p mature strands and wide-ranging physiological targets, has been the subject of countless studies over the years. Due to its preferential expression in hematopoietic cells, miR-142 has been found to be associated with numerous types of lymphomas and leukemias. This review elucidates the multifaceted role of miR-142 in human physiology, its influence on hematopoiesis and hematopoietic cells, and its intriguing involvement in exosome-mediated miR-142 transport. Moreover, we offer a comprehensive exploration of the genetic and molecular landscape of the miR-142 genomic locus, highlighting its mutations and dysregulation within hematological malignancies. Finally, we discuss potential avenues for harnessing the therapeutic potential of miR-142 in the context of hematological malignancies.
Collapse
Affiliation(s)
- Wilson Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Zhang C, Zhang S, Liu M, Wang Y, Wang D, Xu S. Screening and identification of miRNAs regulating Tbx4/5 genes of Pampus argenteus. PeerJ 2022; 10:e14300. [PMID: 36312751 PMCID: PMC9610670 DOI: 10.7717/peerj.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023] Open
Abstract
Background Silver pomfret (Pampus argenteus) is one of the most widely distributed and economically important pelagic fish species. However, an unique morphological feature of P. argenteus is the loss of pelvic fins, which can increase the energy requirement during food capture to some extent and is therefore not conducive to artificial culture. Tbx4/5 genes are highly conserved regulatory factors that regulate limb development in vertebrates and are in turn regulated by microRNAs (miRNAs). However, the miRNAs that directly regulate the Tbx4/5 genes in P. argenteus remain to be elucidated. Methods The Tbx4/5 genes of P. argenteus were first cloned, and the small RNA transcriptomes were sequenced by high-throughput sequencing during the critical period of the fin development at days 1, 7, and 13 of hatching. The miRNAs regulating the Tbx4/5 genes of P. argenteus were subsequently predicted by bioinformatics analysis, and the related miRNAs were verified in vitro using a dual fluorescence reporter system. Results A total of 662 miRNAs were identified, of which 257 were known miRNAs and 405 were novel miRNAs were identified. Compared to day 1, 182 miRNAs were differentially expressed (DE) on day 7, of which 77 and 105 miRNAs were downregulated and upregulated, respectively, while 278 miRNAs were DE on day 13, of which 136 and 142 miRNAs were downregulated and upregulated, respectively. Compared to day 13, four miRNAs were DE on day 7, of which three miRNAs were downregulated and one miRNA was upregulated. The results of hierarchical clustering of the miRNAs revealed that the DE genes were inversely expressed between days 1 and 7, and between days 1 and 13 of larval development, indicating that the larvae were in the peak stage of differentiation. However, the number of DE genes between days 7 and 13 of larval development was relatively small, suggesting the initiation of development. The potential target genes of the DE miRNAs were subsequently predicted, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of target genes were performed. The results suggested that the DE miRNAs were involved in growth, development, and signal transduction pathways, of which the Wnt and Fgfs signaling pathways are known to play important roles in the growth and development of fins. The results of dual fluorescence reporter assays demonstrated that miR-102, miR-301c, and miR-589 had a significant negative regulatory effect on the 3'-UTR of the Tbx4 gene, while miR-187, miR-201, miR-219, and miR-460 had a significant negative regulatory effect on the 3'-UTR of the Tbx5 gene. Altogether, the findings indicated that miRNAs play an important role in regulating the growth and development of pelvic fins in P. argenteus. This study provides a reference for elucidating the interactions between the miRNAs and target genes of P. argenteus in future studies.
Collapse
Affiliation(s)
| | | | | | - Yajun Wang
- Ningbo University, Zhejiang, China,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, China
| | | | - Shanliang Xu
- Ningbo University, Zhejiang, China,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Luo W, Wang J, Zhou Y, Pang M, Yu X, Tong J. Dynamic mRNA and miRNA expression of the head during early development in bighead carp (Hypophthalmichthys nobilis). BMC Genomics 2022; 23:168. [PMID: 35232381 PMCID: PMC8887032 DOI: 10.1186/s12864-022-08387-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Head of fish species, an exquisitely complex anatomical system, is important not only for studying fish evolution and development, but also for economic values. Currently, although some studies have been made on fish growth and body shapes, very limited information is available on the molecular mechanism of head development. Results In this study, RNA sequencing (RNA–Seq) and small RNA sequencing (sRNA–Seq) technologies were used to conduct integrated analysis for the head of bighead carp at different development stages, including 1, 3, 5, 15 and 30 Dph (days post hatch). By RNA-Seq data, 26 pathways related to growth and bone formation were identified as the main physiological processes during early development. Coupling this to sRNA–Seq data, we picked out six key pathways that may be responsible for head development, namely ECM receptor interaction, TNF signaling pathway, osteoclast differentiation, PI3K–Akt signaling pathway, Neuroactive ligand–receptor interaction and Jak–STAT signaling pathway. Totally, 114 important candidate genes from the six pathways were obtained. Then we found the top 20 key genes according to the degree value by cytohubba, which regulated cell growth, skeletal formation and blood homeostasis, such as pik3ca, pik3r1, egfr, vegfa, igf1 and itga2b. Finally, we also acquired 19 key miRNAs playing multiple roles in the perfection of various tissues in the head (such as brain, eye and mouth) and mineralization of head bone system, such as let–7e, miR–142a–5p, miR–144–3p, miR–23a–3p and miR–223. Conclusions Results of this study will be informative for genetic mechanisms of head development and also provide potential candidate targets for the interaction regulation during early growth in bighead carp. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08387-x.
Collapse
Affiliation(s)
- Weiwei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Junru Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
6
|
Behera J, Kelly KE, Tyagi N. Hydrogen sulfide prevents ethanol-induced ZO-1 CpG promoter hypermethylation-dependent vascular permeability via miR-218/DNMT3a axis. J Cell Physiol 2021; 236:6852-6867. [PMID: 33855696 DOI: 10.1002/jcp.30382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
Ethanol (ET) causes cerebrovascular dysfunction by altering homocysteine (Hcy) metabolism and by causing oxidative stress. However, there are no strategies to prevent ET-induced epigenetic deregulation of tight junction protein (hyper-methylation) and endothelial cell permeability to date. Hydrogen sulfide (H2 S) has an antioxidative, antiapoptotic, and anti-inflammatory effect. Here, we investigated the protective role of H2 S in ET-induced endothelial permeability through epigenetic changes in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to 50 mM ET treatment in the presence or absence of 50 μM NaHS (H2 S donor). The result demonstrates that ET-induced cellular toxicity increased intracellular Hcy levels, which further intensified mitochondrial dysfunction and energy defects. Using miScript microRNA (miRNA) polymerase chain reaction array-based screening, we identified a particular miRNA, miR-218, as a novel target of ET-induced DNA methyltransferase-3a (DNMT3a) activation. miR-218 influences CpG island methylation of the zonula occludens 1 (ZO-1) promoter in the endothelial cells. We discovered that ET suppressed miR-218 levels and induced endothelial permeability via DNMT3a-mediated ZO-1 hyper-methylation. Treatment with mito-TEMPO (mitochondria-targeted antioxidant), 5'-azacitidine (DNMT inhibitor), or miR-218 overexpression was shown to protect endothelial cells against ET-induced permeability. Also, bEnd3 cells pretreated with NaHS attenuated ET-induced vascular permeability and prevented CpG island methylation at the promoter. In conclusion, our data provide evidence that H2 S treatment protects vascular integrity from ET-induced stress by mitigating CpG (ZO-1 promoter) DNA hyper-methylation. This finding uncovers a new mechanistic understanding of NaHS/H2 S, that may have therapeutic potential in preventing or diminishing ET-induced brain vascular permeability and dysfunction induced by alcoholism.
Collapse
Affiliation(s)
- Jyotirmaya Behera
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Kimberly E Kelly
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Shu Y, Luo T, Wang M, Zhang Y, Zhang L, Xiao Z, Wang Q, Zhang Q, Zou J, Yu C, Xu S, Yu T, Zhou L, Yu S. Gastrodin promotes CNS myelination via a lncRNA Gm7237/miR-142a/MRF pathway. RNA Biol 2021; 18:1279-1290. [PMID: 33151124 PMCID: PMC8354603 DOI: 10.1080/15476286.2020.1841976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Treatment of central nervous system (CNS) demyelination is greatly hindered by lack of the knowledge regarding to underlying molecular mechanisms as well as therapeutic agents. Here, we report a novel small molecule agent, gastrodin (GAS), which can significantly promote CNS myelination in in vivo mice models. By using high-throughput sequencing analysis, we discover a key long non-coding RNA Gm7237 that can enhance CNS myelination and is up-regulated by GAS. Through using bioinformatic analysis and experimental validations, we further unravel that microRNA-142a (miR-142a) and its target myelin gene regulatory factor (MRF) is under the direct regulation by Gm7237. Finally, we demonstrate that Gm7237/miR-142a/MRF axis is the key pathway involved in CNS myelination mediated by GAS. Overall, our results provide not only a novel agent for therapeutic treatment of CNS demyelination but also a molecular basis responsible for GAS-promoted CNS myelination.
Collapse
Affiliation(s)
- Yue Shu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tianyuan Luo
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Mingda Wang
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Lin Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Zhi Xiao
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Qianxing Wang
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Qiang Zhang
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
- Department of Cerebrovascular, Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Jia Zou
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Tian Yu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Liang Zhou
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Shouyang Yu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Sehgal P, Mathew S, Sivadas A, Ray A, Tanwar J, Vishwakarma S, Ranjan G, Shamsudheen KV, Bhoyar RC, Pateria A, Leonard E, Lalwani M, Vats A, Pappuru RR, Tyagi M, Jakati S, Sengupta S, B K B, Chakrabarti S, Kaur I, Motiani RK, Scaria V, Sivasubbu S. LncRNA VEAL2 regulates PRKCB2 to modulate endothelial permeability in diabetic retinopathy. EMBO J 2021; 40:e107134. [PMID: 34180064 PMCID: PMC8327952 DOI: 10.15252/embj.2020107134] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
Long non‐coding RNAs (lncRNAs) are emerging as key regulators of endothelial cell function. Here, we investigated the role of a novel vascular endothelial‐associated lncRNA (VEAL2) in regulating endothelial permeability. Precise editing of veal2 loci in zebrafish (veal2gib005Δ8/+) induced cranial hemorrhage. In vitro and in vivo studies revealed that veal2 competes with diacylglycerol for interaction with protein kinase C beta‐b (Prkcbb) and regulates its kinase activity. Using PRKCB2 as bait, we identified functional ortholog of veal2 in humans from HUVECs and named it as VEAL2. Overexpression and knockdown of VEAL2 affected tubulogenesis and permeability in HUVECs. VEAL2 was differentially expressed in choroid tissue in eye and blood from patients with diabetic retinopathy, a disease where PRKCB2 is known to be hyperactivated. Further, VEAL2 could rescue the effects of PRKCB2‐mediated turnover of endothelial junctional proteins thus reducing hyperpermeability in hyperglycemic HUVEC model of diabetic retinopathy. Based on evidence from zebrafish and hyperglycemic HUVEC models and diabetic retinopathy patients, we report a hitherto unknown VEAL2 lncRNA‐mediated regulation of PRKCB2, for modulating junctional dynamics and maintenance of endothelial permeability.
Collapse
Affiliation(s)
- Paras Sehgal
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Samatha Mathew
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ambily Sivadas
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Arjun Ray
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Jyoti Tanwar
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India.,Laboratory of Calciomics and Systemic Pathophysiology, Regional Center for Biotechnology, Faridabad, India
| | - Sushma Vishwakarma
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Gyan Ranjan
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - K V Shamsudheen
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Rahul C Bhoyar
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Abhishek Pateria
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Elvin Leonard
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Mukesh Lalwani
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Archana Vats
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Rajeev R Pappuru
- Kannuri Santhamma Centre for Retina and Vitreous, L V Prasad Eye Institute, Hyderabad, India
| | - Mudit Tyagi
- Kannuri Santhamma Centre for Retina and Vitreous, L V Prasad Eye Institute, Hyderabad, India
| | - Saumya Jakati
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Binukumar B K
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | | | - Inderjeet Kaur
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Center for Biotechnology, Faridabad, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
9
|
Bsat S, Halaoui A, Kobeissy F, Moussalem C, El Houshiemy MN, Kawtharani S, Omeis I. Acute ischemic stroke biomarkers: a new era with diagnostic promise? Acute Med Surg 2021; 8:e696. [PMID: 34745637 PMCID: PMC8552525 DOI: 10.1002/ams2.696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 01/14/2023] Open
Abstract
Stroke is considered as the first cause of neurological dysfunction and second cause of death worldwide. Recombinant tissue plasminogen activator is the only chemical treatment for ischemic stroke approved by the US Food and Drug Administration. It was the only standard of care for a long time with a very narrow therapeutic window, which usually ranges from 3 to 4.5 h of stroke onset; until 2015, when multiple trials demonstrated the benefit of mechanical thrombectomy during the first 6 h. In addition, recent trials showed that mechanical thrombectomy can be beneficial up to 24 h if the patients meet certain criteria including the presence of magnetic resonance imaging/computed tomography perfusion mismatch, which allows better selectivity and higher recruitment of eligible stroke patients. However, magnetic resonance imaging/computed tomography perfusion is not available in all stroke centers. Hence, physicians need other easy and available diagnostic tools to select stroke patients eligible for mechanical thrombectomy. Moreover, stroke management is still challenging for physicians, particularly those dealing with patients with "wake-up" stroke. The resulting brain tissue damage of ischemic stroke and the subsequent pathological processes are mediated by multiple molecular pathways that are modulated by inflammatory markers and post-transcriptional activity. A considerable number of published works suggest the role of inflammatory and cardiac brain-derived biomarkers (serum matrix metalloproteinase, thioredoxin, neuronal and glial markers, and troponin proteins) as well as different biomarkers including the emerging roles of microRNAs. In this review, we assess the accumulating evidence regarding the current status of acute ischemic stroke diagnostic biomarkers that could guide physicians for better management of stroke patients. Our review could give an insight into the roles of the different emerging markers and microRNAs that can be of high diagnostic value in patients with stroke. In fact, the field of stroke research, similar to the field of traumatic brain injury, is in immense need for novel biomarkers that can stratify diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Shadi Bsat
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Adham Halaoui
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular GeneticsFaculty of MedicineAmerican University of BeirutBeirutLebanon
| | - Charbel Moussalem
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | | | - Sarah Kawtharani
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Ibrahim Omeis
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
- Department of NeurosurgeryBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
10
|
Kesidou D, da Costa Martins PA, de Windt LJ, Brittan M, Beqqali A, Baker AH. Extracellular Vesicle miRNAs in the Promotion of Cardiac Neovascularisation. Front Physiol 2020; 11:579892. [PMID: 33101061 PMCID: PMC7546892 DOI: 10.3389/fphys.2020.579892] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide claiming almost 17. 9 million deaths annually. A primary cause is atherosclerosis within the coronary arteries, which restricts blood flow to the heart muscle resulting in myocardial infarction (MI) and cardiac cell death. Despite substantial progress in the management of coronary heart disease (CHD), there is still a significant number of patients developing chronic heart failure post-MI. Recent research has been focused on promoting neovascularisation post-MI with the ultimate goal being to reduce the extent of injury and improve function in the failing myocardium. Cardiac cell transplantation studies in pre-clinical models have shown improvement in cardiac function; nonetheless, poor retention of the cells has indicated a paracrine mechanism for the observed improvement. Cell communication in a paracrine manner is controlled by various mechanisms, including extracellular vesicles (EVs). EVs have emerged as novel regulators of intercellular communication, by transferring molecules able to influence molecular pathways in the recipient cell. Several studies have demonstrated the ability of EVs to stimulate angiogenesis by transferring microRNA (miRNA, miR) molecules to endothelial cells (ECs). In this review, we describe the process of neovascularisation and current developments in modulating neovascularisation in the heart using miRNAs and EV-bound miRNAs. Furthermore, we critically evaluate methods used in cell culture, EV isolation and administration.
Collapse
Affiliation(s)
- Despoina Kesidou
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Paula A. da Costa Martins
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
- Faculty of Health, Medicine and Life Sciences, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Leon J. de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Abdelaziz Beqqali
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Howard Baker
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Ketprasit N, Cheng IS, Deutsch F, Tran N, Imwong M, Combes V, Palasuwan D. The characterization of extracellular vesicles-derived microRNAs in Thai malaria patients. Malar J 2020; 19:285. [PMID: 32778117 PMCID: PMC7418320 DOI: 10.1186/s12936-020-03360-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/05/2020] [Indexed: 01/12/2023] Open
Abstract
Background Extracellular vesicles (EVs) have been broadly studied in malaria for nearly a decade. These vesicles carry various functional biomolecules including RNA families such as microRNAs (miRNA). These EVs-derived microRNAs have numerous roles in host-parasite interactions and are considered promising biomarkers for disease severity. However, this field lacks clinical studies of malaria-infected samples. In this study, EV specific miRNAs were isolated from the plasma of patients from Thailand infected with Plasmodium vivax and Plasmodium falciparum. In addition, it is postulated that these miRNAs were differentially expressed in these groups of patients and had a role in disease onset through the regulation of specific target genes. Methods EVs were purified from the plasma of Thai P. vivax-infected patients (n = 19), P. falciparum-infected patients (n = 18) and uninfected individuals (n = 20). EV-derived miRNAs were then prepared and abundance of hsa-miR-15b-5p, hsa-miR-16-5p, hsa-let-7a-5p and hsa-miR-150-5p was assessed in these samples. Quantitative polymerase chain reaction was performed, and relative expression of each miRNA was calculated using hsa-miR-451a as endogenous control. Then, the targets of up-regulated miRNAs and relevant pathways were predicted by using bioinformatics. Receiver Operating Characteristic with Area under the Curve (AUC) was then calculated to assess their diagnostic potential. Results The relative expression of hsa-miR-150-5p and hsa-miR-15b-5p was higher in P. vivax-infected patients compared to uninfected individuals, but hsa-let-7a-5p was up-regulated in both P. vivax-infected patients and P. falciparum-infected patients. Bioinformatic analysis revealed that these miRNAs might regulate genes involved in the malaria pathway including the adherens junction and the transforming growth factor-β pathways. All up-regulated miRNAs could potentially be used as disease biomarkers as determined by AUC; however, the sensitivity and specificity require further investigation. Conclusion An upregulation of hsa-miR-150-5p and hsa-miR-15b-5p was observed in P. vivax-infected patients while hsa-let-7a-5p was up-regulated in both P. vivax-infected and P. falciparum-infected patients. These findings will require further validation in larger cohort groups of malaria patients to fully understand the contribution of these EVs miRNAs to malaria detection and biology.
Collapse
Affiliation(s)
- Nutpakal Ketprasit
- Graduate Programme in Clinical Hematology Sciences, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Malaria and Microvesicles Research Group, School of Life Sciences, Faculty of Sciences, University Technology of Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Iris Simone Cheng
- Malaria and Microvesicles Research Group, School of Life Sciences, Faculty of Sciences, University Technology of Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Fiona Deutsch
- Non-coding RNA Cancer Group, School of Biomedical Engineering, Faculty of Engineering and IT, University Technology of Sydney, Sydney, NSW, Australia
| | - Nham Tran
- Non-coding RNA Cancer Group, School of Biomedical Engineering, Faculty of Engineering and IT, University Technology of Sydney, Sydney, NSW, Australia
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Valery Combes
- Malaria and Microvesicles Research Group, School of Life Sciences, Faculty of Sciences, University Technology of Sydney, Ultimo, Sydney, NSW, 2007, Australia.
| | - Duangdao Palasuwan
- Oxidation in Red Cell Disorders Research Unit, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Rama 1 Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
12
|
Balasubramanian S, Raghunath A, Perumal E. Role of epigenetics in zebrafish development. Gene 2019; 718:144049. [DOI: 10.1016/j.gene.2019.144049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
13
|
Delineating the Dynamic Transcriptome Response of mRNA and microRNA during Zebrafish Heart Regeneration. Biomolecules 2018; 9:biom9010011. [PMID: 30597924 PMCID: PMC6359357 DOI: 10.3390/biom9010011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Heart diseases are the leading cause of death for the vast majority of people around the world, which is often due to the limited capability of human cardiac regeneration. In contrast, zebrafish have the capacity to fully regenerate their hearts after cardiac injury. Understanding and activating these mechanisms would improve health in patients suffering from long-term consequences of ischemia. Therefore, we monitored the dynamic transcriptome response of both mRNA and microRNA in zebrafish at 1–160 days post cryoinjury (dpi). Using a control model of sham-operated and healthy fish, we extracted the regeneration specific response and further delineated the spatio-temporal organization of regeneration processes such as cell cycle and heart function. In addition, we identified novel (miR-148/152, miR-218b and miR-19) and previously known microRNAs among the top regulators of heart regeneration by using theoretically predicted target sites and correlation of expression profiles from both mRNA and microRNA. In a cross-species effort, we validated our findings in the dynamic process of rat myoblasts differentiating into cardiomyocytes-like cells (H9c2 cell line). Concluding, we elucidated different phases of transcriptomic responses during zebrafish heart regeneration. Furthermore, microRNAs showed to be important regulators in cardiomyocyte proliferation over time.
Collapse
|
14
|
Martin-Alonso A, Cohen A, Quispe-Ricalde MA, Foronda P, Benito A, Berzosa P, Valladares B, Grau GE. Differentially expressed microRNAs in experimental cerebral malaria and their involvement in endocytosis, adherens junctions, FoxO and TGF-β signalling pathways. Sci Rep 2018; 8:11277. [PMID: 30050092 PMCID: PMC6062515 DOI: 10.1038/s41598-018-29721-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
Cerebral malaria (CM) is the most severe manifestation of infection with Plasmodium, however its pathogenesis is still not completely understood. microRNA (miRNA) have been an area of focus in infectious disease research, due to their ability to affect normal biological processes, and have been shown to play roles in various viral, bacterial and parasitic infections, including malaria. The expression of miRNA was studied following infection of CBA mice with either Plasmodium berghei ANKA (causing CM), or Plasmodium yoelii (causing severe but non-cerebral malaria (NCM)). Using microarray analysis, miRNA expression was compared in the brains of non-infected (NI), NCM and CM mice. Six miRNA were significantly dysregulated between NCM and CM mice, and four of these, miR-19a-3p, miR-19b-3p, miR-142-3p and miR-223-3p, were further validated by qPCR assays. These miRNA are significantly involved in several pathways relevant to CM, including the TGF-β and endocytosis pathways. Dysregulation of these miRNA during CM specifically compared with NCM suggests that these miRNA, through their regulation of downstream targets, may be vitally involved in the neurological syndrome. Our data implies that, at least in the mouse model, miRNA may play a regulatory role in CM pathogenesis.
Collapse
Affiliation(s)
- Aarón Martin-Alonso
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Islas Canarias, Spain.
| | - Amy Cohen
- Vascular Immunology Unit, Department of Pathology, The University of Sidney, Sydney, Australia
| | | | - Pilar Foronda
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Islas Canarias, Spain
| | - Agustín Benito
- National Centre for Tropical Medicine, Health Institute Carlos III (ISCIII in Spanish), Madrid, Spain
- Network Biomedical Research on Tropical Diseases (RICET in Spanish), Madrid, Spain
| | - Pedro Berzosa
- National Centre for Tropical Medicine, Health Institute Carlos III (ISCIII in Spanish), Madrid, Spain
- Network Biomedical Research on Tropical Diseases (RICET in Spanish), Madrid, Spain
| | - Basilio Valladares
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Islas Canarias, Spain
| | - Georges E Grau
- Vascular Immunology Unit, Department of Pathology, The University of Sidney, Sydney, Australia
| |
Collapse
|
15
|
Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, Vemuganti R, Luo Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog Neurobiol 2018; 163-164:59-78. [DOI: 10.1016/j.pneurobio.2017.08.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
|
16
|
Kaushik K, Sivadas A, Vellarikkal SK, Verma A, Jayarajan R, Pandey S, Sethi T, Maiti S, Scaria V, Sivasubbu S. RNA secondary structure profiling in zebrafish reveals unique regulatory features. BMC Genomics 2018; 19:147. [PMID: 29448945 PMCID: PMC5815192 DOI: 10.1186/s12864-018-4497-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 01/28/2018] [Indexed: 01/08/2023] Open
Abstract
Background RNA is known to play diverse roles in gene regulation. The clues for this regulatory function of RNA are embedded in its ability to fold into intricate secondary and tertiary structure. Results We report the transcriptome-wide RNA secondary structure in zebrafish at single nucleotide resolution using Parallel Analysis of RNA Structure (PARS). This study provides the secondary structure map of zebrafish coding and non-coding RNAs. The single nucleotide pairing probabilities of 54,083 distinct transcripts in the zebrafish genome were documented. We identified RNA secondary structural features embedded in functional units of zebrafish mRNAs. Translation start and stop sites were demarcated by weak structural signals. The coding regions were characterized by the three-nucleotide periodicity of secondary structure and display a codon base specific structural constrain. The splice sites of transcripts were also delineated by distinct signature signals. Relatively higher structural signals were observed at 3’ Untranslated Regions (UTRs) compared to Coding DNA Sequence (CDS) and 5’ UTRs. The 3′ ends of transcripts were also marked by unique structure signals. Secondary structural signals in long non-coding RNAs were also explored to better understand their molecular function. Conclusions Our study presents the first PARS-enabled transcriptome-wide secondary structure map of zebrafish, which documents pairing probability of RNA at single nucleotide precision. Our findings open avenues for exploring structural features in zebrafish RNAs and their influence on gene expression. Electronic supplementary material The online version of this article (10.1186/s12864-018-4497-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kriti Kaushik
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Ambily Sivadas
- G.N. Ramachandran Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Shamsudheen Karuthedath Vellarikkal
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Ankit Verma
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India
| | - Rijith Jayarajan
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India
| | - Satyaprakash Pandey
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Tavprithesh Sethi
- Indraprastha Institute of Information Technology, Delhi, 110020, India
| | - Souvik Maiti
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Vinod Scaria
- G.N. Ramachandran Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India.
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India.
| |
Collapse
|
17
|
Sarasamma S, Varikkodan MM, Liang ST, Lin YC, Wang WP, Hsiao CD. Zebrafish: A Premier Vertebrate Model for Biomedical Research in Indian Scenario. Zebrafish 2017; 14:589-605. [PMID: 29023224 DOI: 10.1089/zeb.2017.1447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The zebrafish (Danio rerio) is a versatile model organism that has been used in biomedical research for several decades to study a wide range of biological phenomena. There are many technical advantages of using zebrafish over other vertebrate models. They are readily available, hardy, easy, and inexpensive to maintain in the laboratory, have a short life cycle, and have excellent fecundity. Due to its optical clarity and reproducible capabilities, it has become one of the predominant models of human genetic diseases. Zebrafish research has made rapid strides in the United States and Europe, but in India the field is at an early stage and many researchers still remain unaware of the full research potential of this tiny fish. The zebrafish model system was introduced into India in the early 2000s. Up to now, more than 200 scientific referred articles have been published by Indian researchers. This review gives an overview of the current state of knowledge for zebrafish research in India, with the aim of promoting wider utilization of zebrafish for high level biological studies.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,2 Department of Bioscience Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,3 Department of Chemical Biology, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram, Kerala, India
| | - Muhammed Muhsin Varikkodan
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,2 Department of Bioscience Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,4 Department of Biotechnology and Genetic Engineering, Bharathidasan University , Tiruchirapalli, India
| | - Sung-Tzu Liang
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan
| | - Yen-Chang Lin
- 5 Graduate Institute of Biotechnology, Chinese Culture University , Taipei, Taiwan
| | - Wen-Pin Wang
- 6 Institute of Medical Sciences, Tzu-Chi University , Hualien, Taiwan .,7 Department of Molecular Biology and Human Genetics, Tzu-Chi University , Hualien, Taiwan
| | - Chung-Der Hsiao
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,8 Center for Biomedical Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,9 Center for Nanotechnology, Chung Yuan Christian University , Chung-Li, Taiwan
| |
Collapse
|
18
|
Gu W, Zhan H, Zhou XY, Yao L, Yan M, Chen A, Liu J, Ren X, Zhang X, Liu JX, Liu G. MicroRNA-22 regulates inflammation and angiogenesisviatargeting VE-cadherin. FEBS Lett 2017; 591:513-526. [DOI: 10.1002/1873-3468.12565] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Gu
- Department of Basic Veterinary Medicine; College of Animal Science and Veterinary Medicine; Huazhong Agricultural University; Wuhan Hubei China
| | - Huihui Zhan
- Department of Basic Veterinary Medicine; College of Animal Science and Veterinary Medicine; Huazhong Agricultural University; Wuhan Hubei China
| | - Xin-Ying Zhou
- Key Laboratory of Fresh Water Animal Breeding; College of Fisheries; Huazhong Agricultural University; Wuhan Hubei China
| | - Lun Yao
- Department of Basic Veterinary Medicine; College of Animal Science and Veterinary Medicine; Huazhong Agricultural University; Wuhan Hubei China
| | - Meiping Yan
- Department of Basic Veterinary Medicine; College of Animal Science and Veterinary Medicine; Huazhong Agricultural University; Wuhan Hubei China
| | - Ao Chen
- Department of Basic Veterinary Medicine; College of Animal Science and Veterinary Medicine; Huazhong Agricultural University; Wuhan Hubei China
| | - Jie Liu
- Department of Basic Veterinary Medicine; College of Animal Science and Veterinary Medicine; Huazhong Agricultural University; Wuhan Hubei China
| | - Xiaojiao Ren
- Department of Basic Veterinary Medicine; College of Animal Science and Veterinary Medicine; Huazhong Agricultural University; Wuhan Hubei China
| | - Xinhua Zhang
- Department of Basic Veterinary Medicine; College of Animal Science and Veterinary Medicine; Huazhong Agricultural University; Wuhan Hubei China
| | - Jing-Xia Liu
- Key Laboratory of Fresh Water Animal Breeding; College of Fisheries; Huazhong Agricultural University; Wuhan Hubei China
| | - Guoquan Liu
- Department of Basic Veterinary Medicine; College of Animal Science and Veterinary Medicine; Huazhong Agricultural University; Wuhan Hubei China
| |
Collapse
|
19
|
Bhattacharya M, Sharma AR, Sharma G, Patra BC, Nam JS, Chakraborty C, Lee SS. The crucial role and regulations of miRNAs in zebrafish development. PROTOPLASMA 2017; 254:17-31. [PMID: 26820151 DOI: 10.1007/s00709-015-0931-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
To comprehend the events during developmental biology, fundamental knowledge about the basic machinery of regulation is a prerequisite. MicroRNA (miRNAs) act as regulators in most of the biological processes and recently, it has been concluded that miRNAs can act as modulatory factors even during developmental process from lower to higher animal. Zebrafish, because of its favorable attributes like tiny size, transparent embryo, and rapid external embryonic development, has gained a preferable status among all other available experimental animal models. Currently, zebrafish is being utilized for experimental studies related to stem cells, regenerative molecular medicine as well drug discovery. Therefore, it is important to understand precisely about the various miRNAs that controls developmental biology of this vertebrate model. In here, we have discussed about the miRNA-controlled zebrafish developmental stages with a special emphasis on different miRNA families such as miR-430, miR-200, and miR-133. Moreover, we have also reviewed the role of various miRNAs during embryonic and vascular development stages of zebrafish. In addition, efforts have been made to summarize the involvement of miRNAs in the development of different body parts such as the brain, eye, heart, muscle, and fin, etc. In each section, we have tried to fulfill the gaps of zebrafish developmental biology with the help of available knowledge of miRNA research. We hope that precise knowledge about the miRNA-regulated developmental stages of zebrafish may further help the researchers to efficiently utilize this vertebrate model for experimental purpose.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Aquaculture Research Unit, Department of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Bidhan Chandra Patra
- Aquaculture Research Unit, Department of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Ju-Suk Nam
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea.
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, 201306, India.
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea.
- Department of Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, 200-704, Republic of Korea.
| |
Collapse
|
20
|
MicroRNA Regulation of Endothelial Junction Proteins and Clinical Consequence. Mediators Inflamm 2016; 2016:5078627. [PMID: 27999452 PMCID: PMC5143735 DOI: 10.1155/2016/5078627] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
Cellular junctions play a critical role in structural connection and signal communication between cells in various tissues. Although there are structural and functional varieties, cellular junctions include tight junctions, adherens junctions, focal adhesion junctions, and tissue specific junctions such as PECAM-1 junctions in endothelial cells (EC), desmosomes in epithelial cells, and hemidesmosomes in EC. Cellular junction dysfunction and deterioration are indicative of clinical diseases. MicroRNAs (miRNA) are ~20 nucleotide, noncoding RNAs that play an important role in posttranscriptional regulation for almost all genes. Unsurprisingly, miRNAs regulate junction protein gene expression and control junction structure integrity. In contrast, abnormal miRNA regulation of junction protein gene expression results in abnormal junction structure, causing related diseases. The major components of tight junctions include zonula occluden-1 (ZO-1), claudin-1, claudin-5, and occludin. The miRNA regulation of ZO-1 has been intensively investigated. ZO-1 and other tight junction proteins such as claudin-5 and occludin were positively regulated by miR-126, miR-107, and miR21 in different models. In contrast, ZO-1, claudin-5, and occludin were negatively regulated by miR-181a, miR-98, and miR150. Abnormal tight junction miRNA regulation accompanies cerebral middle artery ischemia, brain trauma, glioma metastasis, and so forth. The major components of adherens junctions include VE-cadherin, β-catenin, plakoglobin, P120, and vinculin. VE-cadherin and β-catenin were regulated by miR-9, miR-99b, miR-181a, and so forth. These regulations directly affect VE-cadherin-β-catenin complex stability and further affect embryo and tumor angiogenesis, vascular development, and so forth. miR-155 and miR-126 have been shown to regulate PECAM-1 and affect neutrophil rolling and EC junction integrity. In focal adhesion junctions, the major components are integrin β4, paxillin, and focal adhesion kinase (FAK). Integrin β4 has been regulated by miR-184, miR-205, and miR-9. Paxillin has been regulated by miR-137, miR-145, and miR-218 in different models. FAK has been regulated by miR-7, miR-138, and miR-135. Deregulation of miRNAs is caused by viral infections, tumorigenesis, and so forth. By regulation of posttranscription, miRNAs manipulate junction protein expression in all cellular processes and further determine cellular fate and development. Elucidation of these regulatory mechanisms will become a new alternative therapy for many diseases, such as cancers and inflammatory diseases.
Collapse
|
21
|
MicroRNAs in Hyperglycemia Induced Endothelial Cell Dysfunction. Int J Mol Sci 2016; 17:518. [PMID: 27070575 PMCID: PMC4848974 DOI: 10.3390/ijms17040518] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 01/15/2023] Open
Abstract
Hyperglycemia is closely associated with prediabetes and Type 2 Diabetes Mellitus. Hyperglycemia increases the risk of vascular complications such as diabetic retinopathy, diabetic nephropathy, peripheral vascular disease and cerebro/cardiovascular diseases. Under hyperglycemic conditions, the endothelial cells become dysfunctional. In this study, we investigated the miRNA expression changes in human umbilical vein endothelial cells exposed to different glucose concentrations (5, 10, 25 and 40 mM glucose) and at various time intervals (6, 12, 24 and 48 h). miRNA microarray analyses showed that there is a correlation between hyperglycemia induced endothelial dysfunction and miRNA expression. In silico pathways analyses on the altered miRNA expression showed that the majority of the affected biological pathways appeared to be associated to endothelial cell dysfunction and apoptosis. We found the expression of ten miRNAs (miR-26a-5p, -26b-5p, 29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -140-5p, -192-5p, -221-3p and -320a) to increase gradually with increasing concentration of glucose. These miRNAs were also found to be involved in endothelial dysfunction. At least seven of them, miR-29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -221-3p, -320a and -192-5p, can be correlated to endothelial cell apoptosis.
Collapse
|
22
|
Park-Windhol C, D'Amore PA. Disorders of Vascular Permeability. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:251-81. [PMID: 26907525 DOI: 10.1146/annurev-pathol-012615-044506] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endothelial barrier maintains vascular and tissue homeostasis and modulates many physiological processes, such as angiogenesis. Vascular barrier integrity can be disrupted by a variety of soluble permeability factors, and changes in barrier function can exacerbate tissue damage during disease progression. Understanding endothelial barrier function is critical for vascular homeostasis. Many of the signaling pathways promoting vascular permeability can also be triggered during disease, resulting in prolonged or uncontrolled vascular leak. It is believed that recovery of the normal vasculature requires diminishing this hyperpermeable state. Although the molecular mechanisms governing vascular leak have been studied over the last few decades, recent advances have identified new therapeutic targets that have begun to show preclinical and clinical promise. These approaches have been successfully applied to an increasing number of disease conditions. New perspectives regarding how vascular leak impacts the progression of various diseases are highlighted in this review.
Collapse
Affiliation(s)
- Cindy Park-Windhol
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114; , .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| | - Patricia A D'Amore
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114; , .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
23
|
Cao XC, Yu Y, Hou LK, Sun XH, Ge J, Zhang B, Wang X. miR-142-3p inhibits cancer cell proliferation by targeting CDC25C. Cell Prolif 2016; 49:58-68. [PMID: 26805039 DOI: 10.1111/cpr.12235] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES MicroRNAs (miRNAs) contribute to control of cell cycle progression and are frequently deregulated in cancer. The focus of this study was to determine effects of miR-142-3p on the cell cycle progression and cancer cell proliferation. MATERIALS AND METHODS RT-qPCR was performed to determine expression of miR-142-3p in a range of cancer cell lines and in clinical cancer specimens. To further understand its role, we restored its expression in cancer cell lines by transfection with miR-142-3p mimics or inhibitors. Effects of miR-142-3p on cell cycle progression and cell proliferation were also determined. RESULTS miR-142-3p was down-regulated in both cancer cell lines and cancer specimens. Its overexpression suppressed proliferation, whereas its depletion promoted it. In addition, miR-142-3p lead to cell cycle arrest in G2/M. Moreover, CDC25C was identified as being a target of miR-142-3p, ectopic expression of which reversed suppression of cell proliferation. CONCLUSIONS Our observations suggest that miR-142-3p functioned as a tumor suppressor by targeting CDC25C.
Collapse
Affiliation(s)
- Xu-Chen Cao
- First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Yue Yu
- First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Li-Kun Hou
- First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Xiao-Hu Sun
- First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Jie Ge
- First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Bin Zhang
- First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Xin Wang
- First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| |
Collapse
|
24
|
Muthukumarasamy KM, Handore KL, Kakade DN, Shinde MV, Ranjan S, Kumar N, Sehrawat S, Sachidanandan C, Reddy DS. Identification of noreremophilane-based inhibitors of angiogenesis using zebrafish assays. Org Biomol Chem 2016; 14:1569-78. [DOI: 10.1039/c5ob01594d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel class of noreremophilane inhibitors of angiogenesis identified from zebrafish whole organism screens.
Collapse
Affiliation(s)
| | - Kishor L. Handore
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Division of Organic Chemistry
- Pune
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Dipti N. Kakade
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Division of Organic Chemistry
- Pune
- India
| | - Madhuri V. Shinde
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Division of Organic Chemistry
- Pune
- India
| | - Shashi Ranjan
- CSIR-Institute of Genomics & Integrative Biology (CSIR-IGIB)
- New Delhi
- India
| | - Naveen Kumar
- Vascular Biology Lab
- Department of Life Sciences
- School of Natural Sciences
- Shiv Nadar University
- India
| | - Seema Sehrawat
- Vascular Biology Lab
- Department of Life Sciences
- School of Natural Sciences
- Shiv Nadar University
- India
| | | | - D. Srinivasa Reddy
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Division of Organic Chemistry
- Pune
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
25
|
Direct regulation of p53 by miR-142a-3p mediates the survival of hematopoietic stem and progenitor cells in zebrafish. Cell Discov 2015; 1:15027. [PMID: 27462426 PMCID: PMC4860776 DOI: 10.1038/celldisc.2015.27] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/11/2015] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem and progenitor cells have the capacity to self-renew and differentiate into all blood cell lineages, and thus sustain life-long homeostasis of the hematopoietic system. Although intensive studies have focused on the orchestrated genetic network of hematopoietic stem and progenitor cell specification and expansion, relatively little is known on the regulation of hematopoietic stem and progenitor cell survival during embryogenesis. Here, we generated two types of miR-142a-3p genetic mutants in zebrafish and showed that the loss-of-function mutants displayed severe reduction of hematopoietic stem and progenitor cells. Further analysis showed that the diminished proliferation and excessive apoptosis in miR-142a-3p mutants were attributed to the increased p53 signaling. Mechanistically, we demonstrated that miR-142a-3p directly targets p53 during hematopoietic stem and progenitor cell development, and the hematopoietic stem and progenitor cell survival defect in miR-142a-3p mutants could be rescued by loss of p53. Therefore, our work reveals the significance of the miR-142a-3p-p53 pathway in controlling hematopoietic stem and progenitor cell survival, and thus advances our understanding of the role of p53 in vertebrate hematopoiesis.
Collapse
|
26
|
Global transcriptional and miRNA insights into bases of heterosis in hybridization of Cyprinidae. Sci Rep 2015; 5:13847. [PMID: 26346824 PMCID: PMC4561955 DOI: 10.1038/srep13847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/07/2015] [Indexed: 01/06/2023] Open
Abstract
Hybrid Megalobrama amblycephala × Culter alburnus represents a population newly formed by interspecific crossing between two different genera. Here we assessed the expression pattern of mRNA and small RNA in newly formed F1, F2 and their progenitors. Large amounts of nonadditively expressed protein-coding genes showed parental expression level dominance (ELD). Interestingly, the ELD pattern could inherit from F1 to F2, which guaranteed a stable appearance in progenies. The ELD-B genes were found to contribute to cell development, while the ELD-T genes were enriched in function of stress and adaptability. microRNAs (miRNA) also had similar expression patterns to genes. A high proportion of miRNAs showed nonadditive expression upon hybridization, and were found to target important genes with diverse roles potentially involved in stress adaption and development. Taken together, the gene and miRNA expression divergence contributes to heterosis in the newly formed hybrid, promising the successful existence of hybrid speciation.
Collapse
|
27
|
Haque S, Kaushik K, Leonard VE, Kapoor S, Sivadas A, Joshi A, Scaria V, Sivasubbu S. Short stories on zebrafish long noncoding RNAs. Zebrafish 2015; 11:499-508. [PMID: 25110965 DOI: 10.1089/zeb.2014.0994] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The recent re-annotation of the transcriptome of human and other model organisms, using next-generation sequencing approaches, has unravelled a hitherto unknown repertoire of transcripts that do not have a potential to code for proteins. These transcripts have been largely classified into an amorphous class popularly known as long noncoding RNAs (lncRNA). This discovery of lncRNAs in human and other model systems have added a new layer to the understanding of gene regulation at the transcriptional and post-transcriptional levels. In recent years, three independent studies have discovered a number of lncRNAs expressed in different stages of zebrafish development and adult tissues using a high-throughput RNA sequencing approach, significantly adding to the repertoire of genes known in zebrafish. A subset of these transcripts also shows distinct and specific spatiotemporal patterns of gene expression, pointing to a tight regulatory control and potential functional roles in development, organogenesis, and/ or homeostasis. This review provides an overview of the lncRNAs in zebrafish and discusses how their discovery could provide new insights into understanding biology, explaining mutant phenotypes, and helping in potentially modeling disease processes.
Collapse
Affiliation(s)
- Shadabul Haque
- 1 Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology , Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The endothelium forms a selective semi-permeable barrier controlling bidirectional transfer between blood vessel and irrigated tissues. This crucial function relies on the dynamic architecture of endothelial cell–cell junctions, and in particular, VE -cadherin-mediated contacts. VE -cadherin indeed chiefly organizes the opening and closing of the endothelial barrier, and is central in permeability changes. In this review, the way VE -cadherin-based contacts are formed and maintained is first presented, including molecular traits of its expression, partners, and signaling. In a second part, the mechanisms by which VE -cadherin adhesion can be disrupted, leading to cell–cell junction weakening and endothelial permeability increase, are described. Overall, the molecular basis for VE -cadherin control of the endothelial barrier function is of high interest for biomedical research, as vascular leakage is observed in many pathological conditions and human diseases.
Collapse
|
29
|
Shehata BM, Cundiff CA, Lee K, Sabharwal A, Lalwani MK, Davis AK, Agrawal V, Sivasubbu S, Iannucci GJ, Gibson G. Exome sequencing of patients with histiocytoid cardiomyopathy reveals a de novo NDUFB11 mutation that plays a role in the pathogenesis of histiocytoid cardiomyopathy. Am J Med Genet A 2015; 167A:2114-21. [PMID: 25921236 DOI: 10.1002/ajmg.a.37138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 04/06/2015] [Indexed: 11/11/2022]
Abstract
Histiocytoid cardiomyopathy (Histiocytoid CM) is a rare form of cardiomyopathy observed predominantly in newborn females that is fatal unless treated early in life. We have performed whole exome sequencing on five parent-proband trios and identified nuclear-encoded mitochondrial protein mutations in three cases. The molecular genetic basis of Histiocytoid CM remains unknown despite several hypotheses in medical literature. The findings presented in this manuscript may represent components of genetic etiologies for this heterogeneous disease. Two probands had de novo non-sense mutations in the second exon of the X-linked nuclear gene NDUFB11. A third proband was doubly heterozygous for inherited rare variants in additional components of complex I, NDUFAF2 and NDUFB9, confirming that Histiocytoid CM is genetically heterogeneous. In a fourth case, the proband with Histiocytoid CM inherited a mitochondrial mutation from her heteroplasmic mother, as did her brother who presented with cardiac arrhythmia. Strong candidate recessive or compound heterozygous variants were not found for this individual or for the fifth case. Although NDUFB11 has not been implicated before in cardiac pathology, morpholino-mediated knockdown of ndufb11 in zebrafish embryos generated defective cardiac tissue with cardiomegaly, looping defects, and arrhythmia which suggests the role of NDUFB11 in the pathogenesis of this abnormal cardiac pathology. Taken together, the unbiased whole exome sequencing approach confirms the suspected genetic heterogeneity of Histiocytoid CM. Therefore, the novel NDUFB11 mutation may cause a complex 1 deficiency in synergy with additional unknown mtDNA variants.
Collapse
Affiliation(s)
| | - Caitlin A Cundiff
- School of Medicine, Emory University, Atlanta, Georgia.,School of Biology, CSIR Georgia Institute of Technology, Atlanta, Georgia
| | - Kevin Lee
- School of Biology, CSIR Georgia Institute of Technology, Atlanta, Georgia
| | - Ankit Sabharwal
- Genomics and Molecular Medicine, Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhavan, New Delhi, India
| | - Mukesh Kumar Lalwani
- Genomics and Molecular Medicine, Institute of Genomics and Integrative Biology, Delhi, India
| | | | - Vartika Agrawal
- School of Biology, CSIR Georgia Institute of Technology, Atlanta, Georgia
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine, Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhavan, New Delhi, India
| | | | - Greg Gibson
- School of Medicine, Emory University, Atlanta, Georgia.,School of Biology, CSIR Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
30
|
DNA Methylation Is Involved in the Expression of miR-142-3p in Fibroblasts and Induced Pluripotent Stem Cells. Stem Cells Int 2014; 2014:101349. [PMID: 25544846 PMCID: PMC4269320 DOI: 10.1155/2014/101349] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/04/2014] [Accepted: 11/14/2014] [Indexed: 01/19/2023] Open
Abstract
MicroRNAs are differentially expressed in cells and regulate multiple biological processes. We have been analyzing comprehensive expression patterns of microRNA in human and mouse embryonic stem and induced pluripotent stem cells. We determined microRNAs specifically expressed in these pluripotent stem cells, and miR-142-3p is one of such microRNAs. miR-142-3p is expressed at higher levels in induced pluripotent stem cells relative to fibroblasts in mice. Level of expression of miR142-3p decreased during embryoid body formation from induced pluripotent stem cells. Loss-of-function analyses of miR-142-3p suggested that miR-142-3p plays roles in the proliferation and differentiation of induced pluripotent stem cells. CpG motifs were found in the 5′ genomic region of the miR-142-3p; they were highly methylated in fibroblasts, but not in undifferentiated induced pluripotent stem cells. Treating fibroblasts with 5-aza-2′-deoxycytidine increased the expression of miR-142-3p significantly and reduced methylation at the CpG sites, suggesting that the expression of miR-142-3p is suppressed by DNA methylation in fibroblasts. Luciferase analysis using various lengths of the 5′ genomic region of miR142-3p indicated that CpGs in the proximal enhancer region may play roles in suppressing the expression of miR-142-3p in fibroblasts.
Collapse
|
31
|
Abstract
MicroRNAs (miRNAs) are transcriptional and posttranscriptional regulators involved in nearly all known biological processes in distant eukaryotic clades. Their discovery and functional characterization have broadened our understanding of biological regulatory mechanisms in animals and plants. They show both evolutionary conserved and unique features across Metazoa. Here, we present the current status of the knowledge about the role of miRNA in development, growth, and physiology of teleost fishes, in comparison to other vertebrates. Infraclass Teleostei is the most abundant group among vertebrate lineage. Fish are an important component of aquatic ecosystems and human life, being the prolific source of animal proteins worldwide and a vertebrate model for biomedical research. We review miRNA biogenesis, regulation, modifications, and mechanisms of action. Specific sections are devoted to the role of miRNA in teleost development, organogenesis, tissue differentiation, growth, regeneration, reproduction, endocrine system, and responses to environmental stimuli. Each section discusses gaps in the current knowledge and pinpoints the future directions of research on miRNA in teleosts.
Collapse
Affiliation(s)
| | - Igor Babiak
- Faculty of Aquaculture and Biosciences, University of Nordland, Bodø, Norway
| |
Collapse
|
32
|
Su Z, Si W, Li L, Zhou B, Li X, Xu Y, Xu C, Jia H, Wang QK. MiR-144 regulates hematopoiesis and vascular development by targeting meis1 during zebrafish development. Int J Biochem Cell Biol 2014; 49:53-63. [PMID: 24448023 DOI: 10.1016/j.biocel.2014.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/24/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022]
Abstract
Hematopoiesis is a dynamic process by which peripheral blood lineages are developed. It is a process tightly regulated by many intrinsic and extrinsic factors, including transcriptional factors and signaling molecules. However, the epigenetic regulation of hematopoiesis, for example, regulation via microRNAs (miRNAs), remains incompletely understood. Here we show that miR-144 regulates hematopoiesis and vascular development in zebrafish. Overexpression of miR-144 inhibited primitive hematopoiesis as demonstrated by a reduced number of circulating blood cells, reduced o-dianisidine staining of hemoglobin, and reduced expression of hbαe1, hbβe1, gata1 and pu.1. Overexpression of miR-144 also inhibited definitive hematopoiesis as shown by reduced expression of runx1 and c-myb. Mechanistically, miR-144 regulates hematopoiesis by repressing expression of meis1 involved in hematopoiesis. Both real-time RT-PCR and Western blot analyses showed that overexpression of miR-144 repressed expression of meis1. Bioinformatic analysis predicts a target binding sequence for miR-144 at the 3'-UTR of meis1. Deletion of the miR-144 target sequence eliminated the repression of meis1 expression mediated by miR-144. The miR-144-mediated abnormal phenotypes were partially rescued by co-injection of meis1 mRNA and could be almost completely rescued by injection of both meis1 and gata1 mRNA. Finally, because meis1 is involved in vascular development, we tested the effect of miR-144 on vascular development. Overexpression of miR-144 resulted in abnormal vascular development of intersegmental vessels in transgenic zebrafish with Flk1p-EGFP, and the defect was rescued by co-injection of meis1 mRNA. These findings establish miR-144 as a novel miRNA that regulates hematopoiesis and vascular development by repressing expression of meis1.
Collapse
Affiliation(s)
- Zhenhong Su
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China; Key Laboratory of Kidney Disease Pathogenesis and Intervention of Hubei Province, Key Discipline of Pharmacy of Hubei Department of Education, Medical College, Hubei Polytechnic University, Huangshi, Hubei, PR China
| | - Wenxia Si
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lei Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bisheng Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiuchun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yan Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China; Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
33
|
Kaushik K, Leonard VE, KV S, Lalwani MK, Jalali S, Patowary A, Joshi A, Scaria V, Sivasubbu S. Dynamic expression of long non-coding RNAs (lncRNAs) in adult zebrafish. PLoS One 2013; 8:e83616. [PMID: 24391796 PMCID: PMC3877055 DOI: 10.1371/journal.pone.0083616] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/05/2013] [Indexed: 01/27/2023] Open
Abstract
Long non-coding RNAs (lncRNA) represent an assorted class of transcripts having little or no protein coding capacity and have recently gained importance for their function as regulators of gene expression. Molecular studies on lncRNA have uncovered multifaceted interactions with protein coding genes. It has been suggested that lncRNAs are an additional layer of regulatory switches involved in gene regulation during development and disease. LncRNAs expressing in specific tissues or cell types during adult stages can have potential roles in form, function, maintenance and repair of tissues and organs. We used RNA sequencing followed by computational analysis to identify tissue restricted lncRNA transcript signatures from five different tissues of adult zebrafish. The present study reports 442 predicted lncRNA transcripts from adult zebrafish tissues out of which 419 were novel lncRNA transcripts. Of these, 77 lncRNAs show predominant tissue restricted expression across the five major tissues investigated. Adult zebrafish brain expressed the largest number of tissue restricted lncRNA transcripts followed by cardiovascular tissue. We also validated the tissue restricted expression of a subset of lncRNAs using independent methods. Our data constitute a useful genomic resource towards understanding the expression of lncRNAs in various tissues in adult zebrafish. Our study is thus a starting point and opens a way towards discovering new molecular interactions of gene expression within the specific adult tissues in the context of maintenance of organ form and function.
Collapse
Affiliation(s)
- Kriti Kaushik
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhavan, New Delhi, India
| | - Vincent Elvin Leonard
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Shamsudheen KV
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Mukesh Kumar Lalwani
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Saakshi Jalali
- G.N. Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhavan, New Delhi, India
| | - Ashok Patowary
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Adita Joshi
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Vinod Scaria
- G.N. Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhavan, New Delhi, India
- * E-mail: (VS); (SS)
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhavan, New Delhi, India
- * E-mail: (VS); (SS)
| |
Collapse
|
34
|
Abstract
The endothelium forms a selective semi-permeable barrier controlling bidirectional transfer between blood vessel and irrigated tissues. This crucial function relies on the dynamic architecture of endothelial cell-cell junctions, and in particular, VE-cadherin-mediated contacts. VE-cadherin indeed chiefly organizes the opening and closing of the endothelial barrier, and is central in permeability changes. In this review, the way VE-cadherin-based contacts are formed and maintained is first presented, including molecular traits of its expression, partners, and signaling. In a second part, the mechanisms by which VE-cadherin adhesion can be disrupted, leading to cell-cell junction weakening and endothelial permeability increase, are described. Overall, the molecular basis for VE-cadherin control of the endothelial barrier function is of high interest for biomedical research, as vascular leakage is observed in many pathological conditions and human diseases.
Collapse
Affiliation(s)
- Julie Gavard
- Cnrs; UMR8104; Paris, France; Inserm; U1016; Paris, France; Universite Paris Descartes; Sorbonne Paris Cite; Paris, France
| |
Collapse
|
35
|
Ciau-Uitz A, Wang L, Patient R, Liu F. ETS transcription factors in hematopoietic stem cell development. Blood Cells Mol Dis 2013; 51:248-55. [DOI: 10.1016/j.bcmd.2013.07.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/04/2013] [Indexed: 01/08/2023]
|
36
|
Lu X, Li X, He Q, Gao J, Gao Y, Liu B, Liu F. miR-142-3p regulates the formation and differentiation of hematopoietic stem cells in vertebrates. Cell Res 2013; 23:1356-68. [PMID: 24165894 DOI: 10.1038/cr.2013.145] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/19/2013] [Accepted: 09/17/2013] [Indexed: 01/02/2023] Open
Abstract
Previous studies on developmental hematopoiesis have mainly focused on signaling and transcription factors, while the appreciation of epigenetic regulation including that of microRNAs is recent. Here, we show that in zebrafish and mouse, miR-142-3p is specifically expressed in hematopoietic stem cells (HSCs). Knockdown of miR-142a-3p in zebrafish led to a reduced population of HSCs in the aorta-gonad-mesonephros (AGM) region as well as T-cell defects in the thymus. Mechanistically, miR-142a-3p regulates HSC formation and differentiation through the repression of interferon regulatory factor 7 (irf7)-mediated inflammation signaling. Finally, we show that miR-142-3p is also involved in the development of HSCs in mouse AGM, suggesting that it has a highly conserved role in vertebrates. Together, these findings unveil the pivotal roles that miR-142a-3p plays in the formation and differentiation of HSCs by repressing irf7 signaling.
Collapse
Affiliation(s)
- Xinyan Lu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Jalali S, Bhartiya D, Lalwani MK, Sivasubbu S, Scaria V. Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One 2013; 8:e53823. [PMID: 23405074 PMCID: PMC3566149 DOI: 10.1371/journal.pone.0053823] [Citation(s) in RCA: 360] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 12/06/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are a recently discovered class of non-protein coding RNAs, which have now increasingly been shown to be involved in a wide variety of biological processes as regulatory molecules. The functional role of many of the members of this class has been an enigma, except a few of them like Malat and HOTAIR. Little is known regarding the regulatory interactions between noncoding RNA classes. Recent reports have suggested that lncRNAs could potentially interact with other classes of non-coding RNAs including microRNAs (miRNAs) and modulate their regulatory role through interactions. We hypothesized that lncRNAs could participate as a layer of regulatory interactions with miRNAs. The availability of genome-scale datasets for Argonaute targets across human transcriptome has prompted us to reconstruct a genome-scale network of interactions between miRNAs and lncRNAs. RESULTS We used well characterized experimental Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) datasets and the recent genome-wide annotations for lncRNAs in public domain to construct a comprehensive transcriptome-wide map of miRNA regulatory elements. Comparative analysis revealed that in addition to targeting protein-coding transcripts, miRNAs could also potentially target lncRNAs, thus participating in a novel layer of regulatory interactions between noncoding RNA classes. Furthermore, we have modeled one example of miRNA-lncRNA interaction using a zebrafish model. We have also found that the miRNA regulatory elements have a positional preference, clustering towards the mid regions and 3' ends of the long noncoding transcripts. We also further reconstruct a genome-wide map of miRNA interactions with lncRNAs as well as messenger RNAs. CONCLUSIONS This analysis suggests widespread regulatory interactions between noncoding RNAs classes and suggests a novel functional role for lncRNAs. We also present the first transcriptome scale study on miRNA-lncRNA interactions and the first report of a genome-scale reconstruction of a noncoding RNA regulatory interactome involving lncRNAs.
Collapse
Affiliation(s)
- Saakshi Jalali
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Deeksha Bhartiya
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Mukesh Kumar Lalwani
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| |
Collapse
|