1
|
Haq F, Sabari S, Háček J, Brisuda A, Ambite I, Cavalera M, Esmaeili P, Wan MLY, Ahmadi S, Babjuk M, Svanborg C. Clinical and molecular response to alpha1-oleate treatment in patients with bladder cancer. Cancer Med 2024; 13:e70149. [PMID: 39254154 PMCID: PMC11386334 DOI: 10.1002/cam4.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The tumoricidal complex alpha1-oleate targets bladder cancer cells, triggering rapid, apoptosis-like tumor cell death. Clinical effects of alpha1-oleate were recently observed in patients with non-muscle invasive bladder cancer (NMIBC), using a randomized, placebo-controlled study protocol. AIMS To investigate if there are dose-dependent effects of alpha1-oleate. MATERIALS AND METHODS Here, patients with NMIBC were treated by intravesical instillation of increasing concentrations of alpha1-oleate (1.7, 8.5, or 17 mM) and the treatment response was defined relative to a placebo group. RESULTS Strong, dose-dependent anti-tumor effects were detected in alpha1-oleate treated patients for a combination of molecular and clinical indicators; a complete or partial response was detected in 88% of tumors treated with 8.5 mM compared to 47% of tumors treated with 1.7 mM of alpha1-oleate. Uptake of alpha1-oleate by the tumor triggered rapid shedding of tumor cells into the urine and cell death by an apoptosis-like mechanism. RNA sequencing of tissue biopsies confirmed the activation of apoptotic cell death and strong inhibition of cancer gene networks, including bladder cancer related genes. Drug-related side effects were not recorded, except for local irritation at the site of instillation. DISCUSSION AND CONCLUSIONS These dose-dependent anti-tumor effects of alpha1-oleate are promising and support the potential of alpha1-oleate treatment in patients with NMIBC.
Collapse
Affiliation(s)
- Farhan Haq
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversitySweden
| | - Samudra Sabari
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversitySweden
| | - Jaromir Háček
- Department of Pathology and Molecular MedicineMotol University Hospital, 2nd Faculty of Medicine, Charles University PrahaPragueCzech Republic
| | - Antonín Brisuda
- Department of UrologyMotol University Hospital, 2nd Faculty of Medicine, Charles University PrahaPragueCzech Republic
| | - Ines Ambite
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversitySweden
| | - Michele Cavalera
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversitySweden
| | - Parisa Esmaeili
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversitySweden
| | - Murphy Lam Yim Wan
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversitySweden
| | - Shahram Ahmadi
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversitySweden
| | - Marek Babjuk
- Department of UrologyMotol University Hospital, 2nd Faculty of Medicine, Charles University PrahaPragueCzech Republic
| | - Catharina Svanborg
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversitySweden
| |
Collapse
|
2
|
Mustafa M, Sarfraz S, Saleem G, Khan TA, Shahid D, Taj S, Amir N. Beyond Milk and Nurture: Breastfeeding's Powerful Impact on Breast Cancer. Geburtshilfe Frauenheilkd 2024; 84:541-554. [PMID: 38884025 PMCID: PMC11175834 DOI: 10.1055/a-2313-0637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/21/2024] [Indexed: 06/18/2024] Open
Abstract
Breast cancer (BC) stands as a global concern, given its high incidence and impact on women's mortality. This complex disease has roots in various risk factors, some modifiable and others not. Understanding and identifying these factors can be instrumental in both preventing BC and improving survival rates. Remarkably, women's reproductive behaviors have emerged as critical determinants of BC susceptibility. Numerous studies have shed light on how aspects including age of menarche, first pregnancy and menopause along with number of pregnancies, hormone replacement therapies, can influence one's risk of developing BC. Furthermore, the act of breastfeeding and its duration have shown an inverse relationship with BC risk. This review delves into the biological and molecular mechanisms associated with breastfeeding that contribute to BC protection. It highlights the role of endocrine processes triggered by suckling stimulation, the gradual onset of lactational amenorrhea, delayed weaning, reduced lifetime menstrual cycles, chromosomal repair mechanisms, and immunological events throughout the lactation cycle. These insights provide a potential explanation for the protective effects conferred by breastfeeding against breast carcinomas.
Collapse
Affiliation(s)
- Muhammad Mustafa
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Sadaf Sarfraz
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Gullelalah Saleem
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Touqeer Ahmad Khan
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Damiya Shahid
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Saba Taj
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Noor Amir
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
3
|
Hien TT, Ambite I, Wan MLY, Cavalera M, Esmaeili P, Chaudhuri A, Sabari S, Babjuk M, Svanborg C. Long-term prevention of bladder cancer progression by alpha1-oleate alone or in combination with chemotherapy. Int J Cancer 2023; 153:584-599. [PMID: 36891980 DOI: 10.1002/ijc.34500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023]
Abstract
Bladder cancer is common and one of the most costly cancer forms, due to a lack of curative therapies. Recently, clinical safety and efficacy of the alpha1-oleate complex was demonstrated in a placebo-controlled study of nonmuscle invasive bladder cancer. Our study investigated if long-term therapeutic efficacy is improved by repeated treatment cycles and by combining alpha1-oleate with low-dose chemotherapy. Rapidly growing bladder tumors were treated by intravesical instillation of alpha1-oleate, Epirubicin or Mitomycin C alone or in combination. One treatment cycle arrested tumor growth, with a protective effect lasting at least 4 weeks in mice receiving 8.5 mM of alpha1-oleate alone or 1.7 mM of alpha-oleate combined with Epirubicin or Mitomycin C. Repeated treatment cycles extended protection, defined by a lack of bladder pathology and a virtual absence of bladder cancer-specific gene expression. Synergy with Epirubicin was detected at the lower alpha1-oleate concentration and in vitro, alpha1-oleate was shown to enhance the uptake and nuclear translocation of Epirubicin, by tumor cells. Effects at the chromatin level affecting cell proliferation were further suggested by reduced BrdU incorporation. In addition, alpha1-oleate triggered DNA fragmentation, defined by the TUNEL assay. The results suggest that bladder cancer development may be prevented long-term in the murine model, by alpha1-oleate alone or in combination with low-dose Epirubicin. In addition, the combination of alpha1-oleate and Epirubicin reduced the size of established tumors. Exploring these potent preventive and therapeutic effects will be of immediate interest in patients with bladder cancer.
Collapse
Affiliation(s)
- Tran Thi Hien
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ines Ambite
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Murphy Lam Yim Wan
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Michele Cavalera
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Parisa Esmaeili
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Arunima Chaudhuri
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Samudra Sabari
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Marek Babjuk
- Department of Urology, Motol Hospital and Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Chetta KE, Alcorn JL, Baatz JE, Wagner CL. Cytotoxic Lactalbumin-Oleic Acid Complexes in the Human Milk Diet of Preterm Infants. Nutrients 2021; 13:4336. [PMID: 34959888 PMCID: PMC8707396 DOI: 10.3390/nu13124336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022] Open
Abstract
Frozen storage is necessary to preserve expressed human milk for critically ill and very preterm infants. Milk pasteurization is essential for donor milk given to this special population. Due to these storage and processing conditions, subtle changes occur in milk nutrients. These changes may have clinical implications. Potentially, bioactive complexes of unknown significance could be found in human milk given to preterm infants. One such complex, a cytotoxic α-lactalbumin-oleic acid complex named "HAMLET," (Human Alpha-Lactalbumin Made Lethal to Tumor cells) is a folding variant of alpha-lactalbumin that is bound to oleic acid. This complex, isolated from human milk casein, has specific toxicity to both carcinogenic cell lines and immature non-transformed cells. Both HAMLET and free oleic acid trigger similar apoptotic mechanisms in tissue and stimulate inflammation via the NF-κB and MAPK p38 signaling pathways. This protein-lipid complex could potentially trigger various inflammatory pathways with unknown consequences, especially in immature intestinal tissues. The very preterm population is dependent on human milk as a medicinal and broadly bioactive nutriment. Therefore, HAMLET's possible presence and bioactive role in milk should be addressed in neonatal research. Through a pediatric lens, HAMLET's discovery, formation and bioactive benefits will be reviewed.
Collapse
Affiliation(s)
- Katherine E. Chetta
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA; (J.E.B.); (C.L.W.)
| | - Joseph L. Alcorn
- Department of Pediatrics, Division of Neonatology and Pediatric Research Center, The University of Texas Health & Science Center at Houston, 6631 Fannin Street MSB 3.252, Houston, TX 77030, USA;
| | - John E. Baatz
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA; (J.E.B.); (C.L.W.)
| | - Carol L. Wagner
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA; (J.E.B.); (C.L.W.)
| |
Collapse
|
5
|
Bladder cancer therapy using a conformationally fluid tumoricidal peptide complex. Nat Commun 2021; 12:3427. [PMID: 34103518 PMCID: PMC8187399 DOI: 10.1038/s41467-021-23748-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/15/2021] [Indexed: 02/05/2023] Open
Abstract
Partially unfolded alpha-lactalbumin forms the oleic acid complex HAMLET, with potent tumoricidal activity. Here we define a peptide-based molecular approach for targeting and killing tumor cells, and evidence of its clinical potential (ClinicalTrials.gov NCT03560479). A 39-residue alpha-helical peptide from alpha-lactalbumin is shown to gain lethality for tumor cells by forming oleic acid complexes (alpha1-oleate). Nuclear magnetic resonance measurements and computational simulations reveal a lipid core surrounded by conformationally fluid, alpha-helical peptide motifs. In a single center, placebo controlled, double blinded Phase I/II interventional clinical trial of non-muscle invasive bladder cancer, all primary end points of safety and efficacy of alpha1-oleate treatment are reached, as evaluated in an interim analysis. Intra-vesical instillations of alpha1-oleate triggers massive shedding of tumor cells and the tumor size is reduced but no drug-related side effects are detected (primary endpoints). Shed cells contain alpha1-oleate, treated tumors show evidence of apoptosis and the expression of cancer-related genes is inhibited (secondary endpoints). The results are especially encouraging for bladder cancer, where therapeutic failures and high recurrence rates create a great, unmet medical need.
Collapse
|
6
|
Hsu DJ, Leshchev D, Kosheleva I, Kohlstedt KL, Chen LX. Unfolding bovine α-lactalbumin with T-jump: Characterizing disordered intermediates via time-resolved x-ray solution scattering and molecular dynamics simulations. J Chem Phys 2021; 154:105101. [PMID: 33722011 PMCID: PMC7943248 DOI: 10.1063/5.0039194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
The protein folding process often proceeds through partially folded transient states. Therefore, a structural understanding of these disordered states is crucial for developing mechanistic models of the folding process. Characterization of unfolded states remains challenging due to their disordered nature, and incorporating multiple methods is necessary. Combining the time-resolved x-ray solution scattering (TRXSS) signal with molecular dynamics (MD), we are able to characterize transient partially folded states of bovine α-lactalbumin, a model system widely used for investigation of molten globule states, during its unfolding triggered by a temperature jump. We track the unfolding process between 20 µs and 70 ms and demonstrate that it passes through three distinct kinetic states. The scattering signals associated with these transient species are then analyzed with TRXSS constrained MD simulations to produce protein structures that are compatible with the input signals. Without utilizing any experimentally extracted kinetic information, the constrained MD simulation successfully drove the protein to an intermediate molten globule state; signals for two later disordered states are refined to terminal unfolded states. From our examination of the structural characteristics of these disordered states, we discuss the implications disordered states have on the folding process, especially on the folding pathway. Finally, we discuss the potential applications and limitations of this method.
Collapse
Affiliation(s)
- Darren J. Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Denis Leshchev
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kevin L. Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Lin X. Chen
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
7
|
α-Lactalbumin, Amazing Calcium-Binding Protein. Biomolecules 2020; 10:biom10091210. [PMID: 32825311 PMCID: PMC7565966 DOI: 10.3390/biom10091210] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
α-Lactalbumin (α-LA) is a small (Mr 14,200), acidic (pI 4–5), Ca2+-binding protein. α-LA is a regulatory component of lactose synthase enzyme system functioning in the lactating mammary gland. The protein possesses a single strong Ca2+-binding site, which can also bind Mg2+, Mn2+, Na+, K+, and some other metal cations. It contains several distinct Zn2+-binding sites. Physical properties of α-LA strongly depend on the occupation of its metal binding sites by metal ions. In the absence of bound metal ions, α-LA is in the molten globule-like state. The binding of metal ions, and especially of Ca2+, increases stability of α-LA against the action of heat, various denaturing agents and proteases, while the binding of Zn2+ to the Ca2+-loaded protein decreases its stability and causes its aggregation. At pH 2, the protein is in the classical molten globule state. α-LA can associate with membranes at neutral or slightly acidic pH at physiological temperatures. Depending on external conditions, α-LA can form amyloid fibrils, amorphous aggregates, nanoparticles, and nanotubes. Some of these aggregated states of α-LA can be used in practical applications such as drug delivery to tissues and organs. α-LA and some of its fragments possess bactericidal and antiviral activities. Complexes of partially unfolded α-LA with oleic acid are cytotoxic to various tumor and bacterial cells. α-LA in the cytotoxic complexes plays a role of a delivery carrier of cytotoxic fatty acid molecules into tumor and bacterial cells across the cell membrane. Perhaps in the future the complexes of α-LA with oleic acid will be used for development of new anti-cancer drugs.
Collapse
|
8
|
Hien TT, Ambite I, Butler D, Wan MLY, Tran TH, Höglund U, Babjuk M, Svanborg C. Bladder cancer therapy without toxicity-A dose-escalation study of alpha1-oleate. Int J Cancer 2020; 147:2479-2492. [PMID: 32319672 DOI: 10.1002/ijc.33019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/20/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
Potent chemotherapeutic agents are required to counteract the aggressive behavior of cancer cells and patients often experience severe side effects, due to tissue toxicity. Our study addresses if a better balance between efficacy and toxicity can be attained using the tumoricidal complex alpha1-oleate, formed by a synthetic, alpha-helical peptide comprising the N-terminal 39 amino acids of alpha-lactalbumin and the fatty acid oleic acid. Bladder cancer was established, by intravesical instillation of MB49 cells on day 0 and the treatment group received five instillations of alpha1-oleate (1.7-17 mM) on days 3 to 11. A dose-dependent reduction in tumor size, bladder size and bladder weight was recorded in the alpha1-oleate treated group, compared to sham-treated mice. Tumor markers Ki-67, Cyclin D1 and VEGF were inhibited in a dose-dependent manner, as was the expression of cancer-related genes. Remarkably, toxicity for healthy tissue was not detected in alpha1-oleate-treated, tumor-bearing mice or healthy mice or rabbits, challenged with increasing doses of the active complex. The results define a dose-dependent therapeutic effect of alpha1-oleate in a murine bladder cancer model.
Collapse
Affiliation(s)
- Tran Thi Hien
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ines Ambite
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniel Butler
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Murphy Lam Yim Wan
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Tuan Hiep Tran
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Marek Babjuk
- Department of Urology, Hospital Motol and Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Rath EM, Cheng YY, Pinese M, Sarun KH, Hudson AL, Weir C, Wang YD, Håkansson AP, Howell VM, Liu GJ, Reid G, Knott RB, Duff AP, Church WB. BAMLET kills chemotherapy-resistant mesothelioma cells, holding oleic acid in an activated cytotoxic state. PLoS One 2018; 13:e0203003. [PMID: 30157247 PMCID: PMC6114908 DOI: 10.1371/journal.pone.0203003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma is an aggressive cancer with poor prognosis. Here we have investigated in vitro efficacy of BAMLET and BLAGLET complexes (anti-cancer complexes consisting of oleic acid and bovine α-lactalbumin or β-lactoglobulin respectively) in killing mesothelioma cells, determined BAMLET and BLAGLET structures, and investigated possible biological mechanisms. We performed cell viability assays on 16 mesothelioma cell lines. BAMLET and BLAGLET having increasing oleic acid content inhibited human and rat mesothelioma cell line proliferation at decreasing doses. Most of the non-cancer primary human fibroblasts were more resistant to BAMLET than were human mesothelioma cells. BAMLET showed similar cytotoxicity to cisplatin-resistant, pemetrexed-resistant, vinorelbine-resistant, and parental rat mesothelioma cells, indicating the BAMLET anti-cancer mechanism may be different to drugs currently used to treat mesothelioma. Cisplatin, pemetrexed, gemcitabine, vinorelbine, and BAMLET, did not demonstrate a therapeutic window for mesothelioma compared with immortalised non-cancer mesothelial cells. We demonstrated by quantitative PCR that ATP synthase is downregulated in mesothelioma cells in response to regular dosing with BAMLET. We sought structural insight for BAMLET and BLAGLET activity by performing small angle X-ray scattering, circular dichroism, and scanning electron microscopy. Our results indicate the structural mechanism by which BAMLET and BLAGLET achieve increased cytotoxicity by holding increasing amounts of oleic acid in an active cytotoxic state encapsulated in increasingly unfolded protein. Our structural studies revealed similarity in the molecular structure of the protein components of these two complexes and in their encapsulation of the fatty acid, and differences in the microscopic structure and structural stability. BAMLET forms rounded aggregates and BLAGLET forms long fibre-like aggregates whose aggregation is more stable than that of BAMLET due to intermolecular disulphide bonds. The results reported here indicate that BAMLET and BLAGLET may be effective second-line treatment options for mesothelioma.
Collapse
Affiliation(s)
- Emma M. Rath
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute (ADRI), Concord, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| | - Mark Pinese
- Kinghorn Cancer Centre and Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Kadir H. Sarun
- Asbestos Diseases Research Institute (ADRI), Concord, NSW, Australia
| | - Amanda L. Hudson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Christopher Weir
- Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Yiwei D. Wang
- Burns Research, ANZAC Research Institute, Concord Hospital, University of Sydney, Concord, NSW, Australia
| | | | - Viive M. Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Guo Jun Liu
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, Australia
- Brain and Mind Centre and Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Asbestos Diseases Research Institute (ADRI), Concord, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| | - Robert B. Knott
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, Australia
| | - Anthony P. Duff
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, Australia
| | - W. Bret Church
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Quantitative Phase Imaging for Label-Free Analysis of Cancer Cells—Focus on Digital Holographic Microscopy. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Rath EM, Duff AP, Gilbert EP, Doherty G, Knott RB, Church WB. Neutron scattering shows a droplet of oleic acid at the center of the BAMLET complex. Proteins 2017; 85:1371-1378. [PMID: 28380660 DOI: 10.1002/prot.25298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/10/2017] [Accepted: 03/27/2017] [Indexed: 01/13/2023]
Abstract
The anti-cancer complex, Bovine Alpha-lactalbumin Made LEthal to Tumors (BAMLET), has intriguing broad-spectrum anti-cancer activity. Although aspects of BAMLET's anti-cancer mechanism are still not known, it is understood that it involves the oleic acid or oleate component of BAMLET being preferentially released into cancer cell membranes leading to increased membrane permeability and lysis. The structure of the protein component of BAMLET has previously been elucidated by small angle X-ray scattering (SAXS) to be partially unfolded and dramatically enlarged. However, the structure of the oleic acid component of BAMLET and its disposition with respect to the protein component was not revealed as oleic acid has the same X-ray scattering length density (SLD) as water. Employing the difference in the neutron SLDs of hydrogen and deuterium, we carried out solvent contrast variation small angle neutron scattering (SANS) experiments of hydrogenated BAMLET in deuterated water buffers, to reveal the size, shape, and disposition of the oleic acid component of BAMLET. Our resulting analysis and models generated from SANS and SAXS data indicate that oleic acid forms a spherical droplet of oil incompletely encapsulated by the partially unfolded protein component. This model provides insight into the anti-cancer mechanism of this cache of lipid. The model also reveals a protein component "tail" not associated with the oleic acid component that is able to interact with the tail of other BAMLET molecules, providing a plausible explanation of how BAMLET readily forms aggregates. Proteins 2017; 85:1371-1378. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emma M Rath
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Anthony P Duff
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia
| | - Elliot P Gilbert
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia
| | - Greg Doherty
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia
| | - Robert B Knott
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia
| | - W Bret Church
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Ho JC, Nadeem A, Svanborg C. HAMLET – A protein-lipid complex with broad tumoricidal activity. Biochem Biophys Res Commun 2017; 482:454-458. [DOI: 10.1016/j.bbrc.2016.10.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
|
13
|
Chaudhuri A, Prasanna X, Agiru P, Chakraborty H, Rydström A, Ho JCS, Svanborg C, Sengupta D, Chattopadhyay A. Protein-dependent Membrane Interaction of A Partially Disordered Protein Complex with Oleic Acid: Implications for Cancer Lipidomics. Sci Rep 2016; 6:35015. [PMID: 27731329 PMCID: PMC5059734 DOI: 10.1038/srep35015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022] Open
Abstract
Bovine α-lactalbumin (BLA) forms cytotoxic complexes with oleic acid (OA) that perturbs tumor cell membranes, but molecular determinants of these membrane-interactions remain poorly understood. Here, we aim to obtain molecular insights into the interaction of BLA/BLA-OA complex with model membranes. We characterized the folding state of BLA-OA complex using tryptophan fluorescence and resolved residue-specific interactions of BLA with OA using molecular dynamics simulation. We integrated membrane-binding data using a voltage-sensitive probe and molecular dynamics (MD) to demonstrate the preferential interaction of the BLA-OA complex with negatively charged membranes. We identified amino acid residues of BLA and BLA-OA complex as determinants of these membrane interactions using MD, functionally corroborated by uptake of the corresponding α-LA peptides across tumor cell membranes. The results suggest that the α-LA component of these cytotoxic complexes confers specificity for tumor cell membranes through protein interactions that are maintained even in the lipid complex, in the presence of OA.
Collapse
Affiliation(s)
- Arunima Chaudhuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | - Priyanka Agiru
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Anna Rydström
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - James C. S. Ho
- Centre for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University, 637553 Singapore
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | |
Collapse
|
14
|
Woods KN, Pfeffer J. Using THz Spectroscopy, Evolutionary Network Analysis Methods, and MD Simulation to Map the Evolution of Allosteric Communication Pathways in c-Type Lysozymes. Mol Biol Evol 2016; 33:40-61. [PMID: 26337549 PMCID: PMC4693973 DOI: 10.1093/molbev/msv178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It is now widely accepted that protein function is intimately tied with the navigation of energy landscapes. In this framework, a protein sequence is not described by a distinct structure but rather by an ensemble of conformations. And it is through this ensemble that evolution is able to modify a protein's function by altering its landscape. Hence, the evolution of protein functions involves selective pressures that adjust the sampling of the conformational states. In this work, we focus on elucidating the evolutionary pathway that shaped the function of individual proteins that make-up the mammalian c-type lysozyme subfamily. Using both experimental and computational methods, we map out specific intermolecular interactions that direct the sampling of conformational states and accordingly, also underlie shifts in the landscape that are directly connected with the formation of novel protein functions. By contrasting three representative proteins in the family we identify molecular mechanisms that are associated with the selectivity of enhanced antimicrobial properties and consequently, divergent protein function. Namely, we link the extent of localized fluctuations involving the loop separating helices A and B with shifts in the equilibrium of the ensemble of conformational states that mediate interdomain coupling and concurrently moderate substrate binding affinity. This work reveals unique insights into the molecular level mechanisms that promote the progression of interactions that connect the immune response to infection with the nutritional properties of lactation, while also providing a deeper understanding about how evolving energy landscapes may define present-day protein function.
Collapse
|
15
|
Pedersen JN, Pedersen JS, Otzen DE. The Use of Liprotides To Stabilize and Transport Hydrophobic Molecules. Biochemistry 2015; 54:4815-23. [PMID: 26158206 DOI: 10.1021/acs.biochem.5b00547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, it has been shown that different complexes consisting of protein and fatty acids, which we call liprotides, have common functional and structural features. Liprotides can transfer their fatty acid content to membranes, highlighting the potential to incorporate other small molecules and help transfer them to membranes. In this study, this potential was explored with regard to the poorly water-soluble vitamin E compound α-tocopherol (Toc). Uptake into liprotides increased Toc solubility and chemical stability. The liprotide-Toc complexes retained the characteristic liprotide structure with a core of fatty acid surrounded by protein. Toc and fatty acid could be transferred to artificial vesicles upon being incorporated into the liprotide complex. Extending this work, we found that free tryptophan and the vitamin A precursor retinaldehyde could also be incorporated in the liprotides; however, other small molecules failed to be taken up, and we conclude that successful incorporation requires a hydrophobic terminal moiety that can be accommodated within the micelle interior of the liprotides. Nevertheless, our work suggests that liprotides are able to stabilize and transport a number of otherwise insoluble small molecules with significant potential health benefits.
Collapse
Affiliation(s)
- Jannik N Pedersen
- †Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Jan S Pedersen
- ‡Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Daniel E Otzen
- †Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
16
|
Peter B, Nador J, Juhasz K, Dobos A, Körösi L, Székács I, Patko D, Horvath R. Incubator proof miniaturized Holomonitor to in situ monitor cancer cells exposed to green tea polyphenol and preosteoblast cells adhering on nanostructured titanate surfaces: validity of the measured parameters and their corrections. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:067002. [PMID: 26057033 DOI: 10.1117/1.jbo.20.6.067002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/07/2015] [Indexed: 05/10/2023]
Abstract
The in situ observation of cell movements and morphological parameters over longer periods of time under physiological conditions is critical in basic cell research and biomedical applications. The quantitative phase-contrast microscope applied in this study has a remarkably small size, therefore it can be placed directly into a humidified incubator. Here, we report on the successful application of this M4 Holomonitor to observe cancer cell motility, motility speed, and migration in the presence of the green tea polyphenol, epigallocatechin gallate, as well as to monitor the adhesion of preosteoblast cells on nanostructured titanate coatings, relevant for biomedical applications. A special mechanical stage was developed to position the sample into that range of the optical arrangement where digital autofocusing works with high reproducibility and precision. By in-depth analyzing the obtained single cell morphological parameters, we show that the limited vertical resolution of the optical setup results in underestimated single cell contact area and volume and overestimated single cell averaged thickness. We propose a simple model to correct the recorded data to obtain more precise single cell parameters. We compare the results with the kinetic data recorded by a surface sensitive optical biosensor, optical waveguide lightmode spectroscopy.
Collapse
Affiliation(s)
- Beatrix Peter
- University of Pannonia, Doctoral School of Molecular and Nanotechnologies, 8200 Veszprém, HungarybNanobiosensorics Group, Hungarian Academy of Sciences, Institute for Technical Physics and Materials Science, 1121 Budapest, Hungary
| | - Judit Nador
- University of Pannonia, Doctoral School of Molecular and Nanotechnologies, 8200 Veszprém, HungarybNanobiosensorics Group, Hungarian Academy of Sciences, Institute for Technical Physics and Materials Science, 1121 Budapest, Hungary
| | - Krisztina Juhasz
- University of Pannonia, Doctoral School of Molecular and Nanotechnologies, 8200 Veszprém, HungarybNanobiosensorics Group, Hungarian Academy of Sciences, Institute for Technical Physics and Materials Science, 1121 Budapest, Hungary
| | - Agnes Dobos
- Nanobiosensorics Group, Hungarian Academy of Sciences, Institute for Technical Physics and Materials Science, 1121 Budapest, Hungary
| | | | - Inna Székács
- Nanobiosensorics Group, Hungarian Academy of Sciences, Institute for Technical Physics and Materials Science, 1121 Budapest, Hungary
| | - Daniel Patko
- University of Pannonia, Doctoral School of Molecular and Nanotechnologies, 8200 Veszprém, HungarybNanobiosensorics Group, Hungarian Academy of Sciences, Institute for Technical Physics and Materials Science, 1121 Budapest, Hungary
| | - Robert Horvath
- University of Pannonia, Doctoral School of Molecular and Nanotechnologies, 8200 Veszprém, HungarybNanobiosensorics Group, Hungarian Academy of Sciences, Institute for Technical Physics and Materials Science, 1121 Budapest, Hungary
| |
Collapse
|
17
|
Boekema EJ. A passive function of mitochondrial ATP synthase: target for tumor killer HAMLET. J Mol Biol 2015; 427:1863-5. [PMID: 25754830 DOI: 10.1016/j.jmb.2015.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Egbert J Boekema
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
18
|
Ho J, Sielaff H, Nadeem A, Svanborg C, Grüber G. The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET. J Mol Biol 2015; 427:1866-74. [PMID: 25681694 DOI: 10.1016/j.jmb.2015.01.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits α (non-catalytic) and β (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5μM. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active α3β3γ complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-α3β3γ complex interaction. Whereas the α3β3γ complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes.
Collapse
Affiliation(s)
- James Ho
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Hendrik Sielaff
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Aftab Nadeem
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden.
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
19
|
Tay MYF, Saw WG, Zhao Y, Chan KWK, Singh D, Chong Y, Forwood JK, Ooi EE, Grüber G, Lescar J, Luo D, Vasudevan SG. The C-terminal 50 amino acid residues of dengue NS3 protein are important for NS3-NS5 interaction and viral replication. J Biol Chem 2014; 290:2379-94. [PMID: 25488659 DOI: 10.1074/jbc.m114.607341] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dengue virus multifunctional proteins NS3 protease/helicase and NS5 methyltransferase/RNA-dependent RNA polymerase form part of the viral replication complex and are involved in viral RNA genome synthesis, methylation of the 5'-cap of viral genome, and polyprotein processing among other activities. Previous studies have shown that NS5 residue Lys-330 is required for interaction between NS3 and NS5. Here, we show by competitive NS3-NS5 interaction ELISA that the NS3 peptide spanning residues 566-585 disrupts NS3-NS5 interaction but not the null-peptide bearing the N570A mutation. Small angle x-ray scattering study on NS3(172-618) helicase and covalently linked NS3(172-618)-NS5(320-341) reveals a rigid and compact formation of the latter, indicating that peptide NS5(320-341) engages in specific and discrete interaction with NS3. Significantly, NS3:Asn-570 to alanine mutation introduced into an infectious DENV2 cDNA clone did not yield detectable virus by plaque assay even though intracellular double-stranded RNA was detected by immunofluorescence. Detection of increased negative-strand RNA synthesis by real time RT-PCR for the NS3:N570A mutant suggests that NS3-NS5 interaction plays an important role in the balanced synthesis of positive- and negative-strand RNA for robust viral replication. Dengue virus infection has become a global concern, and the lack of safe vaccines or antiviral treatments urgently needs to be addressed. NS3 and NS5 are highly conserved among the four serotypes, and the protein sequence around the pinpointed amino acids from the NS3 and NS5 regions are also conserved. The identification of the functionally essential interaction between the two proteins by biochemical and reverse genetics methods paves the way for rational drug design efforts to inhibit viral RNA synthesis.
Collapse
Affiliation(s)
- Moon Y F Tay
- From the Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wuan Geok Saw
- the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yongqian Zhao
- From the Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore, the NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Kitti W K Chan
- From the Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Daljit Singh
- From the Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yuwen Chong
- From the Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jade K Forwood
- the School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Eng Eong Ooi
- From the Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Gerhard Grüber
- the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Julien Lescar
- the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 138673, Singapore, and
| | - Dahai Luo
- the Lee Kong Chian School of Medicine, Nanyang Technological University, 61 Biopolis Drive, Proteos Building, 07-03, Singapore 138673, Singapore
| | - Subhash G Vasudevan
- From the Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore, the NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore,
| |
Collapse
|
20
|
Rath EM, Duff AP, Håkansson AP, Knott RB, Church WB. Small-angle X-ray scattering of BAMLET at pH 12: a complex of α-lactalbumin and oleic acid. Proteins 2014; 82:1400-8. [PMID: 24408789 DOI: 10.1002/prot.24508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/04/2013] [Accepted: 12/26/2013] [Indexed: 11/11/2022]
Abstract
BAMLET (Bovine Alpha-lactalbumin Made LEthal to Tumors) is a member of the family of the HAMLET-like complexes, a novel class of protein-based anti-cancer complexes that incorporate oleic acid and deliver it to cancer cells. Small angle X-ray scattering (SAXS) was performed on the complex at pH 12, examining the high pH structure as a function of oleic acid added. The SAXS data for BAMLET species prepared with a range of oleic acid concentrations indicate extended, irregular, partially unfolded protein conformations that vary with the oleic acid concentration. Increases in oleic acid concentration correlate with increasing radius of gyration without an increase in maximum particle dimension, indicating decreasing protein density. The models for the highest oleic acid content BAMLET indicate an unusual coiled elongated structure that contrasts with apo-α-lactalbumin at pH 12, which is an elongated globular molecule, suggesting that oleic acid inhibits the folding or collapse of the protein component of BAMLET to the globular form. Circular dichroism of BAMLET and apo-α-lactalbumin was performed and the results suggest that α-lactalbumin and BAMLET unfold in a continuum of increasing degree of unfolded states. Taken together, these results support a model in which BAMLET retains oleic acid by non-specific association in the core of partially unfolded protein, and represent a new type of lipoprotein structure.
Collapse
Affiliation(s)
- Emma M Rath
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, 2006, Australia
| | | | | | | | | |
Collapse
|
21
|
Cytotoxicity of bovine α-lactalbumin: Oleic acid complexes correlates with the disruption of lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2691-9. [DOI: 10.1016/j.bbamem.2013.07.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 12/21/2022]
|
22
|
Nemashkalova EL, Kazakov AS, Khasanova LM, Permyakov EA, Permyakov SE. Structural characterization of more potent alternatives to HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid. Biochemistry 2013; 52:6286-99. [PMID: 23947814 DOI: 10.1021/bi400643s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HAMLET is a complex of human α-lactalbumin (hLA) with oleic acid (OA) that kills various tumor cells and strains of Streptococcus pneumoniae. More potent protein-OA complexes were previously reported for bovine α-lactalbumin (bLA) and β-lactoglobulin (bLG), and pike parvalbumin (pPA), and here we explore their structural features. The concentration dependencies of the tryptophan fluorescence of hLA, bLA, and bLG complexes with OA reveal their disintegration at protein concentrations below the micromolar level. Chemical cross-linking experiments provide evidence that association with OA shifts the distribution of oligomeric forms of hLA, bLA, bLG, and pPA toward higher-order oligomers. This effect is confirmed for bLA and bLG using the dynamic light scattering method, while pPA is shown to associate with OA vesicles. Like hLA binding, OA binding increases the affinity of bLG for small unilamellar dipalmitoylphosphatidylcholine vesicles, while pPA efficiently binds to the vesicles irrespective of OA binding. The association of OA with bLG and pPA increases their α-helix and cross-β-sheet content and resistance to enzymatic proteolysis, which is indicative of OA-induced protein structuring. The lack of excess heat sorption during melting of bLG and pPA in complex with OA and the presence of a cooperative thermal transition at the level of their secondary structure suggest that the OA-bound forms of bLG and pPA lack a fixed tertiary structure but exhibit a continuous thermal transition. Overall, despite marked differences, the HAMLET-like complexes that were studied exhibit a common feature: a tendency toward protein oligomerization. Because OA-induced oligomerization has been reported for other proteins, this phenomenon is inherent to many proteins.
Collapse
Affiliation(s)
- Ekaterina L Nemashkalova
- Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region 142290, Russia
| | | | | | | | | |
Collapse
|
23
|
The biological activities of protein/oleic acid complexes reside in the fatty acid. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1125-43. [DOI: 10.1016/j.bbapap.2013.02.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/12/2022]
|