1
|
Van Keymeulen A. Mechanisms of Regulation of Cell Fate in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:167-184. [PMID: 39821026 DOI: 10.1007/978-3-031-70875-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This chapter focuses on the mechanisms of regulation of cell fate in breast development, occurring mainly after birth, as well as in breast cancer. First, we will review how the microenvironment of the breast, as well as external cues, plays a crucial role in mammary gland cell specification and will describe how it has been shown to reprogram non-mammary cells into mammary epithelial cells. Then we will focus on the transcription factors and master regulators which have been established to be determinant for basal (BC) and luminal cell (LC) identity, and will describe the experiments of ectopic expression or loss of function of these transcription factors which demonstrated that they were crucial for cell fate. We will also discuss how master regulators are involved in the fate choice of LCs between estrogen receptor (ER)-positive cells and ER- cells, which will give rise to alveolar cells upon pregnancy and lactation. We will describe how oncogene expression induces reprogramming and change of fate of mammary epithelial cells before tumor appearance, which could be an essential step in tumorigenesis. Finally, we will describe the involvement of master regulators of mammary epithelial cells in breast cancer.
Collapse
Affiliation(s)
- Alexandra Van Keymeulen
- Laboratory of Stem Cells and Cancer (LSCC), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
2
|
Thiery JP, Sheng G, Shu X, Runyan R. How studies in developmental epithelial-mesenchymal transition and mesenchymal-epithelial transition inspired new research paradigms in biomedicine. Development 2024; 151:dev200128. [PMID: 38300897 DOI: 10.1242/dev.200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Epithelial-mesenchymal transition (EMT) and its reverse mechanism, mesenchymal-epithelial transition (MET), are evolutionarily conserved mechanisms initially identified in studies of early metazoan development. EMT may even have been established in choanoflagellates, the closest unicellular relative of Metazoa. These crucial morphological transitions operate during body plan formation and subsequently in organogenesis. These findings have prompted an increasing number of investigators in biomedicine to assess the importance of such mechanisms that drive epithelial cell plasticity in multiple diseases associated with congenital disabilities and fibrosis, and, most importantly, in the progression of carcinoma. EMT and MET also play crucial roles in regenerative medicine, notably by contributing epigenetic changes in somatic cells to initiate reprogramming into stem cells and their subsequent differentiation into distinct lineages.
Collapse
Affiliation(s)
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Xiaodong Shu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Raymond Runyan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Mukerjee N, Nag S, Bhattacharya B, Alexiou A, Mirgh D, Mukherjee D, Adhikari MD, Anand K, Muthusamy R, Gorai S, Thorat N. Clinical impact of epithelial–mesenchymal transition for cancer therapy. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe epithelial–mesenchymal transition (EMT) represents a pivotal frontier in oncology, playing a central role in the metastatic cascade of cancer—a leading global health challenge. This comprehensive review delves into the complexities of EMT, a process where cancer cells gain exceptional mobility, facilitating their invasion into distant organs and the establishment of secondary malignancies. We thoroughly examine the myriad of factors influencing EMT, encompassing transcription factors, signalling pathways, metabolic alterations, microRNAs, long non‐coding RNAs, epigenetic changes, exosomal interactions and the intricate dynamics of the tumour microenvironment. Particularly, the review emphasises the advanced stages of EMT, crucial for the development of highly aggressive cancer phenotypes. During this phase, cancer cells penetrate the vascular barrier and exploit the bloodstream to propagate life‐threatening metastases through the mesenchymal–epithelial transition. We also explore EMT's significant role in fostering tumour dormancy, senescence, the emergence of cancer stem cells and the formidable challenge of therapeutic resistance. Our review transcends a mere inventory of EMT‐inducing elements; it critically assesses the current state of EMT‐focused clinical trials, revealing both the hurdles and significant breakthroughs. Highlighting the potential of EMT research, we project its transformative impact on the future of cancer therapy. This exploration is aimed at paving the way towards an era of effectively managing this relentless disease, positioning EMT at the forefront of innovative cancer research strategies.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Department of Microbiology West Bengal State University, Barasat Kolkata India
| | - Sagnik Nag
- Department of Bio‐Sciences School of Biosciences & Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Bikramjit Bhattacharya
- Department of Applied Microbiology School of Biosciences and Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Athanasios Alexiou
- Department of Science and Engineering Novel Global Community Educational Foundation Hebersham New South Wales Australia
| | - Divya Mirgh
- Vaccine and Immunotherapy Canter Massachusetts General Hospital Boston Massachusetts USA
| | | | - Manab Deb Adhikari
- Department of Biotechnology University of North Bengal Darjeeling West Bengal India
| | - Krishnan Anand
- Department of Chemical Pathology School of Pathology Faculty of Health Sciences University of the Free State Bloemfontein South Africa
| | - Raman Muthusamy
- Center for Global Health Research Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| | | | - Nanasaheb Thorat
- Limerick Digital Cancer Research Centre and Department of Physics Bernal Institute University of Limerick, Castletroy Limerick Ireland
| |
Collapse
|
4
|
Tessier CE, Dupuy AMM, Pelé T, Juin PP, Lees JA, Guen VJ. EMT and primary ciliogenesis: For better or worse in sickness and in health. Genesis 2024; 62:e23568. [PMID: 37946671 DOI: 10.1002/dvg.23568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Epithelial-mesenchymal transition (EMT) and primary ciliogenesis are two cell-biological programs that are essential for development of multicellular organisms and whose abnormal regulation results in many diseases (i.e., developmental anomalies and cancers). Emerging studies suggest an intricate interplay between these two processes. Here, we discuss physiological and pathological contexts in which their interconnections promote normal development or disease progression. We describe underlying molecular mechanisms of the interplay and EMT/ciliary signaling axes that influence EMT-related processes (i.e., stemness, motility and invasion). Understanding the molecular and cellular mechanisms of the relationship between EMT and primary ciliogenesis may provide new insights in the etiology of diseases related to EMT and cilia dysfunction.
Collapse
Affiliation(s)
- Camille E Tessier
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Aurore M M Dupuy
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Thomas Pelé
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Philippe P Juin
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- ICO René Gauducheau, Saint Herblain, France
| | - Jacqueline A Lees
- Koch Institute for Integrative Cancer Research @ MIT, Cambridge, Massachusetts, USA
| | - Vincent J Guen
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| |
Collapse
|
5
|
Knutsen E, Das Sajib S, Fiskaa T, Lorens J, Gudjonsson T, Mælandsmo GM, Johansen SD, Seternes OM, Perander M. Identification of a core EMT signature that separates basal-like breast cancers into partial- and post-EMT subtypes. Front Oncol 2023; 13:1249895. [PMID: 38111531 PMCID: PMC10726128 DOI: 10.3389/fonc.2023.1249895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular plasticity program critical for embryonic development and tissue regeneration, and aberrant EMT is associated with disease including cancer. The high degree of plasticity in the mammary epithelium is reflected in extensive heterogeneity among breast cancers. Here, we have analyzed RNA-sequencing data from three different mammary epithelial cell line-derived EMT models and identified a robust mammary EMT gene expression signature that separates breast cancers into distinct subgroups. Most strikingly, the basal-like breast cancers form two subgroups displaying partial-EMT and post-EMT gene expression patterns. We present evidence that key EMT-associated transcription factors play distinct roles at different stages of EMT in mammary epithelial cells.
Collapse
Affiliation(s)
- Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| | - Saikat Das Sajib
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Tonje Fiskaa
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - James Lorens
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Thorarinn Gudjonsson
- Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Hematology, Landspitali, University Hospital, Reykjavik, Iceland
| | - Gunhild M. Mælandsmo
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Steinar Daae Johansen
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Genomics Division, Faculty of Bioscience and Aquaculture, Nord University, Bodø, Norway
| | - Ole-Morten Seternes
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maria Perander
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
6
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
7
|
Callaway MK, Dos Santos CO. Gestational Breast Cancer - a Review of Outcomes, Pathophysiology, and Model Systems. J Mammary Gland Biol Neoplasia 2023; 28:16. [PMID: 37450228 PMCID: PMC10348943 DOI: 10.1007/s10911-023-09546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
The onset of pregnancy marks the start of offspring development, and represents the key physiological event that induces re-organization and specialization of breast tissue. Such drastic tissue remodeling has also been linked to epithelial cell transformation and the establishment of breast cancer (BC). While patient outcomes for BC overall continue to improve across subtypes, prognosis remains dismal for patients with gestational breast cancer (GBC) and post-partum breast cancer (PPBC), as pregnancy and lactation pose additional complications and barriers to several gold standard clinical approaches. Moreover, delayed diagnosis and treatment, coupled with the aggressive time-scale in which GBC metastasizes, inevitably contributes to the higher incidence of disease recurrence and patient mortality. Therefore, there is an urgent and evident need to better understand the factors contributing to the establishment and spreading of BC during pregnancy. In this review, we provide a literature-based overview of the diagnostics and treatments available to patients with BC more broadly, and highlight the treatment deficit patients face due to gestational status. Further, we review the current understanding of the molecular and cellular mechanisms driving GBC, and discuss recent advances in model systems that may support the identification of targetable approaches to block BC development and dissemination during pregnancy. Our goal is to provide an updated perspective on GBC, and to inform critical areas needing further exploration to improve disease outcome.
Collapse
Affiliation(s)
| | - Camila O Dos Santos
- , Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY, USA.
| |
Collapse
|
8
|
Verstappe J, Berx G. A role for partial epithelial-to-mesenchymal transition in enabling stemness in homeostasis and cancer. Semin Cancer Biol 2023; 90:15-28. [PMID: 36773819 DOI: 10.1016/j.semcancer.2023.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Stem cells have self-renewal capacities and the ability to give rise to differentiated cells thereby sustaining tissues during homeostasis and injury. This structural hierarchy extends to tumours which harbor stem-like cells deemed cancer stem cells that propagate the tumour and drive metastasis and relapse. The process of epithelial-to-mesenchymal transition (EMT), which plays an important role in development and cancer cell migration, was shown to be correlated with stemness in both homeostasis and cancer indicating that stemness can be acquired and is not necessarily an intrinsic trait. Nowadays it is experimentally proven that the activation of an EMT program does not necessarily drive cells towards a fully mesenchymal phenotype but rather to hybrid E/M states. This review offers the latest advances in connecting the EMT status and stem-cell state of both non-transformed and cancer cells. Recent literature clearly shows that hybrid EMT states have a higher probability of acquiring stem cell traits. The position of a cell along the EMT-axis which coincides with a stem cell-like state is known as the stemness window. We show how the original EMT-state of a cell dictates the EMT/MET inducing programmes required to reach stemness. Lastly we present the mechanism of stemness regulation and the regulatory feedback loops which position cells at a certain EMT state along the EMT axis.
Collapse
Affiliation(s)
- Jeroen Verstappe
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
9
|
SNAI2 Attenuated the Stem-like Phenotype by Reducing the Expansion of EPCAM high Cells in Cervical Cancer Cells. Int J Mol Sci 2023; 24:ijms24021062. [PMID: 36674577 PMCID: PMC9864029 DOI: 10.3390/ijms24021062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
SNAI2 (Snai2) is a zinc-finger transcriptional repressor that belongs to the Snail family. The accumulated evidence suggests that SNAI2 exhibits biphasic effects on regulating a stem-like phenotype in various types of cells, both normal and malignant. In this study, by exogenously expressing SNAI2 in SiHa cells, SNAI2 exhibited the capacity to inhibit a stem-like phenotype in cervical cancer cells. The SNAI2-overexpressing cells inhibited cell growth, tumorsphere formation, tumor growth, enhanced sensitivity to cisplatin, reduced stem cell-related factors' expression, and lowered tumor initiating frequency. In addition, the EPCAMhigh cells sorted from SiHa cells exhibited an enhanced capacity to maintain a stem-like phenotype. Further study demonstrated that the trans-suppression of EPCAM expression by SNAI2 led to blockage of the nuclear translocation of β-catenin, as well as reduction in SOX2 and c-Myc expression in SiHa and HeLa cells, but induction in SNAI2 knockdown cells (CaSki), which would be responsible for the attenuation of the stem-like phenotype in cervical cancer cells mediated by SNAI2. All of these results demonstrated that SNAI2 could attenuate the stem-like phenotype in cervical cancer cells through the EPCAM/β-catenin axis.
Collapse
|
10
|
Doffe F, Bonini F, Lakis E, Terry S, Chouaib S, Savagner P. Designing Organoid Models to Monitor Cancer Progression, Plasticity and Resistance: The Right Set Up for the Right Question. Cancers (Basel) 2022; 14:cancers14153559. [PMID: 35892818 PMCID: PMC9330027 DOI: 10.3390/cancers14153559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/25/2023] Open
Abstract
The recent trend in 3D cell modeling has fostered the emergence of a wide range of models, addressing very distinct goals ranging from the fundamental exploration of cell–cell interactions to preclinical assays for personalized medicine. It is clear that no single model will recapitulate the complexity and dynamics of in vivo situations. The key is to define the critical points, achieve a specific goal and design a model where they can be validated. In this report, we focused on cancer progression. We describe our model which is designed to emulate breast carcinoma progression during the invasive phase. We chose to provide topological clues to the target cells by growing them on microsupports, favoring a polarized epithelial organization before they are embedded in a 3D matrix. We then watched for cell organization and differentiation for these models, adding stroma cells then immune cells to follow and quantify cell responses to drug treatment, including quantifying cell death and viability, as well as morphogenic and invasive properties. We used model cell lines including Comma Dβ, MCF7 and MCF10A mammary epithelial cells as well as primary breast cancer cells from patient-derived xenografts (PDX). We found that fibroblasts impacted cell response to Docetaxel and Palbociclib. We also found that NK92 immune cells could target breast cancer cells within the 3D configuration, providing quantitative monitoring of cell cytotoxicity. We also tested several sources for the extracellular matrix and selected a hyaluronan-based matrix as a promising alternative to mouse tumor basement membrane extracts for primary human cancer cells. Overall, we validated a new 3D model designed for breast cancer for preclinical use in personalized medicine.
Collapse
Affiliation(s)
- Flora Doffe
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (F.D.); (S.T.); (S.C.)
| | - Fabien Bonini
- Department of Pathology and Immunology, Faculty of Medicine, University Geneva, 1205 Geneva, Switzerland;
| | | | - Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (F.D.); (S.T.); (S.C.)
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (F.D.); (S.T.); (S.C.)
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Pierre Savagner
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (F.D.); (S.T.); (S.C.)
- Correspondence:
| |
Collapse
|
11
|
GLIS1-3: Links to Primary Cilium, Reprogramming, Stem Cell Renewal, and Disease. Cells 2022; 11:cells11111833. [PMID: 35681527 PMCID: PMC9180737 DOI: 10.3390/cells11111833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
The GLI-Similar 1-3 (GLIS1-3) genes, in addition to encoding GLIS1-3 Krüppel-like zinc finger transcription factors, also generate circular GLIS (circGLIS) RNAs. GLIS1-3 regulate gene transcription by binding to GLIS binding sites in target genes, whereas circGLIS RNAs largely act as miRNA sponges. GLIS1-3 play a critical role in the regulation of many biological processes and have been implicated in various pathologies. GLIS protein activities appear to be regulated by primary cilium-dependent and -independent signaling pathways that via post-translational modifications may cause changes in the subcellular localization, proteolytic processing, and protein interactions. These modifications can affect the transcriptional activity of GLIS proteins and, consequently, the biological functions they regulate as well as their roles in disease. Recent studies have implicated GLIS1-3 proteins and circGLIS RNAs in the regulation of stemness, self-renewal, epithelial-mesenchymal transition (EMT), cell reprogramming, lineage determination, and differentiation. These biological processes are interconnected and play a critical role in embryonic development, tissue homeostasis, and cell plasticity. Dysregulation of these processes are part of many pathologies. This review provides an update on our current knowledge of the roles GLIS proteins and circGLIS RNAs in the control of these biological processes in relation to their regulation of normal physiological functions and disease.
Collapse
|
12
|
Han Y, Villarreal-Ponce A, Gutierrez G, Nguyen Q, Sun P, Wu T, Sui B, Berx G, Brabletz T, Kessenbrock K, Zeng YA, Watanabe K, Dai X. Coordinate control of basal epithelial cell fate and stem cell maintenance by core EMT transcription factor Zeb1. Cell Rep 2022; 38:110240. [PMID: 35021086 PMCID: PMC9894649 DOI: 10.1016/j.celrep.2021.110240] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/30/2021] [Accepted: 12/16/2021] [Indexed: 02/04/2023] Open
Abstract
Maintenance of undifferentiated, long-lived, and often quiescent stem cells in the basal compartment is important for homeostasis and regeneration of multiple epithelial tissues, but the molecular mechanisms that coordinately control basal cell fate and stem cell quiescence are elusive. Here, we report an epithelium-intrinsic requirement for Zeb1, a core transcriptional inducer of epithelial-to-mesenchymal transition, for mammary epithelial ductal side branching and for basal cell regenerative capacity. Our findings uncover an evolutionarily conserved role of Zeb1 in promoting basal cell fate over luminal differentiation. We show that Zeb1 loss results in increased basal cell proliferation at the expense of quiescence and self-renewal. Moreover, Zeb1 cooperates with YAP to activate Axin2 expression, and inhibition of Wnt signaling partially restores stem cell function to Zeb1-deficient basal cells. Thus, Zeb1 is a transcriptional regulator that maintains both basal cell fate and stem cell quiescence, and it functions in part through suppressing Wnt signaling.
Collapse
Affiliation(s)
- Yingying Han
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,These authors contributed equally
| | - Alvaro Villarreal-Ponce
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,These authors contributed equally
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Quy Nguyen
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Ting Wu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Benjamin Sui
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Geert Berx
- Molecular and Cellular Oncology Lab, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium,Cancer Research Institute Ghent, Ghent, Belgium
| | - Thomas Brabletz
- Department of Experimental Medicine, Nikolaus-Fiebiger-Center for Molecular Medicine I, University, Erlangen-Nuernberg Glueckstr. 6, 91054 Erlangen, Germany
| | - Kai Kessenbrock
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Yi Arial Zeng
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Kazuhide Watanabe
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,Lead contact,Correspondence:
| |
Collapse
|
13
|
Sun P, Han Y, Plikus M, Dai X. Altered Epithelial-mesenchymal Plasticity as a Result of Ovol2 Deletion Minimally Impacts the Self-renewal of Adult Mammary Basal Epithelial Cells. J Mammary Gland Biol Neoplasia 2021; 26:377-386. [PMID: 34984648 PMCID: PMC8858298 DOI: 10.1007/s10911-021-09508-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Stem-cell containing mammary basal epithelial cells exist in a quasi-mesenchymal transcriptional state characterized by simultaneous expression of typical epithelial genes and typical mesenchymal genes. Whether robust maintenance of such a transcriptional state is required for adult basal stem cells to fuel self-renewal and regeneration remains unclear. In this work, we utilized SMA-CreER to direct efficient basal cell-specific deletion of Ovol2, which encodes a transcription factor that inhibits epithelial-to-mesenchymal transition (EMT), in adult mammary gland. We identified a basal cell-intrinsic role of Ovol2 in promoting epithelial, and suppressing mesenchymal, molecular traits. Interestingly, Ovol2-deficient basal cells display minimal perturbations in their ability to support tissue homeostasis, colony formation, and transplant outgrowth. These findings underscore the ability of adult mammary basal cells to tolerate molecular perturbations associated with altered epithelia-mesenchymal plasticity without drastically compromising their self-renewal potential.
Collapse
Affiliation(s)
- Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, CA, Irvine, 92697, USA
| | - Yingying Han
- Department of Biological Chemistry, School of Medicine, University of California, CA, Irvine, 92697, USA
| | - Maksim Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, CA, Irvine, 92697, USA.
| |
Collapse
|
14
|
Segura-Bautista D, Maya-Nunez G, Aguilar-Rojas A, Huerta-Reyes M, Pérez-Solis MA. Contribution of Stemness-linked Transcription Regulators to the Progression of Breast Cancer. Curr Mol Med 2021; 22:766-778. [PMID: 34819003 DOI: 10.2174/1566524021666211124154803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
Although there are currently several factors that allow measuring the risk of having breast cancer or predicting its progression, the underlying causes of this malignancy have remained unknown. Several molecular studies have described some mechanisms involved in the progress of breast cancer. These have helped in identifying new targets with therapeutic potential. However, despite the therapeutic strategies implemented from the advances achieved in breast cancer research, a large percentage of patients with breast cancer die due to the spread of malignant cells to other tissues or organs, such as bones and lungs. Therefore, determining the processes that promote the migration of malignant cells remains one of the greatest challenges for oncological research. Several research groups have reported evidence on how the dedifferentiation of tumor cells leads to the acquisition of stemness characteristics, such as invasion, metastasis, the capability to evade the immunological response, and resistance to several cytotoxic drugs. These phenotypic changes have been associated with a complex reprogramming of gene expression in tumor cells during the Epithelial-Mesenchymal Transition (EMT). Considering the determining role that the transcriptional regulation plays in the expression of the specific characteristics and attributes of breast cancer during ETM, in the present work, we reviewed and analyzed several transcriptional mechanisms that support the mesenchymal phenotype. In the same way, we established the importance of transcription factors with a therapeutic perspective in the progress of breast cancer.
Collapse
Affiliation(s)
- David Segura-Bautista
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Guadalupe Maya-Nunez
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Arturo Aguilar-Rojas
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Maira Huerta-Reyes
- Medical Research Unit in Nephrological Diseases, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Marco Allan Pérez-Solis
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| |
Collapse
|
15
|
Imodoye SO, Adedokun KA, Muhammed AO, Bello IO, Muhibi MA, Oduola T, Oyenike MA. Understanding the Complex Milieu of Epithelial-Mesenchymal Transition in Cancer Metastasis: New Insight Into the Roles of Transcription Factors. Front Oncol 2021; 11:762817. [PMID: 34868979 PMCID: PMC8636732 DOI: 10.3389/fonc.2021.762817] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a physiological program during which polarised, immobile epithelial cells lose connection with their neighbours and are converted to migratory mesenchymal phenotype. Mechanistically, EMT occurs via a series of genetic and cellular events leading to the repression of epithelial-associated markers and upregulation of mesenchymal-associated markers. EMT is very crucial for many biological processes such as embryogenesis and ontogenesis during human development, and again it plays a significant role in wound healing during a programmed replacement of the damaged tissues. However, this process is often hijacked in pathological conditions such as tumour metastasis, which constitutes the most significant drawback in the fight against cancer, accounting for about 90% of cancer-associated mortality globally. Worse still, metastatic tumours are not only challenging to treat with the available conventional radiotherapy and surgical interventions but also resistant to several cytotoxic agents during treatment, owing to their anatomically diffuse localisation in the body system. As the quest to find an effective method of addressing metastasis in cancer intervention heightens, understanding the molecular interplay involving the signalling pathways, downstream effectors, and their interactions with the EMT would be an important requisite while the challenges of metastasis continue to punctuate. Unfortunately, the molecular underpinnings that govern this process remain to be completely illuminated. However, it is becoming increasingly clear that EMT, which initiates every episode of metastasis, significantly requires some master regulators called EMT transcription factors (EMT-TFs). Thus, this review critically examines the roles of TFs as drivers of molecular rewiring that lead to tumour initiation, progression, EMT, metastasis, and colonisation. In addition, it discusses the interaction of various signalling molecules and effector proteins with these factors. It also provides insight into promising therapeutic targets that may inhibit the metastatic process to overcome the limitation of "undruggable" cancer targets in therapeutic design and upturn the current spate of drug resistance. More so, it extends the discussion from the basic understanding of the EMT binary switch model, and ultimately unveiling the E/M cellular plasticity along a phenotypic spectrum via multiple trans-differentiations. It wraps up on how this knowledge update shapes the diagnostic and clinical approaches that may demand a potential shift in investigative paradigm using novel technologies such as single-cell analyses to improve overall patient survival.
Collapse
Affiliation(s)
- Sikiru O. Imodoye
- Department of Medical Laboratory Science, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Kamoru A. Adedokun
- Department of Oral Pathology, Dental University Hospital, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Abdurrasheed Ola Muhammed
- Department of Histopathology, School of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Ibrahim O. Bello
- Department of Biological Sciences, Southern Illinois University, Edwardsville, IL, United States
| | - Musa A. Muhibi
- Department of Medical Laboratory Science, Faculty of Applied Sciences, Edo State University, Uzairue, Nigeria
| | - Taofeeq Oduola
- Department of Chemical Pathology, School of Medical Laboratory Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Musiliu A. Oyenike
- Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| |
Collapse
|
16
|
Wilson MM, Callens C, Le Gallo M, Mironov S, Ding Q, Salamagnon A, Chavarria TE, Viel R, Peasah AD, Bhutkar A, Martin S, Godey F, Tas P, Kang HS, Juin PP, Jetten AM, Visvader JE, Weinberg RA, Attanasio M, Prigent C, Lees JA, Guen VJ. An EMT-primary cilium-GLIS2 signaling axis regulates mammogenesis and claudin-low breast tumorigenesis. SCIENCE ADVANCES 2021; 7:eabf6063. [PMID: 34705506 PMCID: PMC8550236 DOI: 10.1126/sciadv.abf6063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 09/08/2021] [Indexed: 05/14/2023]
Abstract
The epithelial-mesenchymal transition (EMT) and primary ciliogenesis induce stem cell properties in basal mammary stem cells (MaSCs) to promote mammogenesis, but the underlying mechanisms remain incompletely understood. Here, we show that EMT transcription factors promote ciliogenesis upon entry into intermediate EMT states by activating ciliogenesis inducers, including FGFR1. The resulting primary cilia promote ubiquitination and inactivation of a transcriptional repressor, GLIS2, which localizes to the ciliary base. We show that GLIS2 inactivation promotes MaSC stemness, and GLIS2 is required for normal mammary gland development. Moreover, GLIS2 inactivation is required to induce the proliferative and tumorigenic capacities of the mammary tumor–initiating cells (MaTICs) of claudin-low breast cancers. Claudin-low breast tumors can be segregated from other breast tumor subtypes based on a GLIS2-dependent gene expression signature. Collectively, our findings establish molecular mechanisms by which EMT programs induce ciliogenesis to control MaSC and MaTIC stemness, mammary gland development, and claudin-low breast cancer formation.
Collapse
Affiliation(s)
- Molly M. Wilson
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Céline Callens
- Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Rennes 1 University, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Svetlana Mironov
- Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique, Rennes, France
| | - Qiong Ding
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Amandine Salamagnon
- Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique, Rennes, France
| | - Tony E. Chavarria
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roselyne Viel
- Plateforme d’Histopathologie de Haute Précision (H2P2), Rennes, France
| | - Abena D. Peasah
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arjun Bhutkar
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - Sophie Martin
- INSERM U1242, Rennes 1 University, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Florence Godey
- INSERM U1242, Rennes 1 University, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Patrick Tas
- INSERM U1242, Rennes 1 University, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Hong Soon Kang
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Anton M. Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jane E. Visvader
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Robert A. Weinberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- MIT Department of Biology and the Whitehead Institute, Cambridge, MA, USA
| | - Massimo Attanasio
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Claude Prigent
- Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique, Rennes, France
- CRBM, CNRS, Université de Montpellier, Montpellier, France
| | - Jacqueline A. Lees
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vincent J. Guen
- Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique, Rennes, France
- CRCINA, INSERM, Université de Nantes, Nantes, France
| |
Collapse
|
17
|
Buart S, Terry S, Diop MK, Dessen P, Couvé S, Abdou A, Adam J, Thiery J, Savagner P, Chouaib S. The Most Common VHL Point Mutation R167Q in Hereditary VHL Disease Interferes with Cell Plasticity Regulation. Cancers (Basel) 2021; 13:3897. [PMID: 34359798 PMCID: PMC8345752 DOI: 10.3390/cancers13153897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/16/2023] Open
Abstract
Von Hippel-Lindau disease (VHL) is a rare hereditary syndrome due to mutations of the VHL tumor suppressor gene. Patients harboring the R167Q mutation of the VHL gene have a high risk of developing ccRCCs. We asked whether the R167Q mutation with critical aspects of pseudo-hypoxia interferes with tumor plasticity. For this purpose, we used wild-type VHL (WT-VHL) and VHL-R167Q reconstituted cells. We showed that WT-VHL and VHL-R167Q expression had a similar effect on cell morphology and colony formation. However, cells transfected with VHL-R167Q display an intermediate, HIF2-dependent, epithelial-mesenchymal phenotype. Using RNA sequencing, we showed that this mutation upregulates the expression of genes involved in the hypoxia pathway, indicating that such mutation is conferring an enhanced pseudo-hypoxic state. Importantly, this hypoxic state correlates with the induction of genes belonging to epithelial-mesenchymal transition (EMT) and stemness pathways, as revealed by GSEA TCGA analysis. Moreover, among these deregulated genes, we identified nine genes specifically associated with a poor patient survival in the TCGA KIRC dataset. Together, these observations support the hypothesis that a discrete VHL point mutation interferes with tumor plasticity and may impact cell behavior by exacerbating phenotypic switching. A better understanding of the role of this mutation might guide the search for more effective treatments to combat ccRCCs.
Collapse
Affiliation(s)
- Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (S.B.); (S.T.); (A.A.); (J.A.); (J.T.); (P.S.)
| | - Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (S.B.); (S.T.); (A.A.); (J.A.); (J.T.); (P.S.)
| | - M’boyba Khadija Diop
- Bioinformatics Core Facility, University of Paris-Saclay, 94805 Villejuif, France; (M.K.D.); (P.D.)
| | - Philippe Dessen
- Bioinformatics Core Facility, University of Paris-Saclay, 94805 Villejuif, France; (M.K.D.); (P.D.)
| | - Sophie Couvé
- EPHE, PSL Université, 75006 Paris, France;
- CNRS UMR 9019, Gustave Roussy, University Paris-Saclay, 94805 Villejuif, France
| | - Abdérémane Abdou
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (S.B.); (S.T.); (A.A.); (J.A.); (J.T.); (P.S.)
| | - Julien Adam
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (S.B.); (S.T.); (A.A.); (J.A.); (J.T.); (P.S.)
- Biology and Pathology Department, University Paris-Saclay, 94805 Villejuif, France
| | - Jérôme Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (S.B.); (S.T.); (A.A.); (J.A.); (J.T.); (P.S.)
| | - Pierre Savagner
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (S.B.); (S.T.); (A.A.); (J.A.); (J.T.); (P.S.)
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France; (S.B.); (S.T.); (A.A.); (J.A.); (J.T.); (P.S.)
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| |
Collapse
|
18
|
Rauner G, Kuperwasser C. Microenvironmental control of cell fate decisions in mammary gland development and cancer. Dev Cell 2021; 56:1875-1883. [PMID: 34256927 DOI: 10.1016/j.devcel.2021.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022]
Abstract
Cell fate decisions are critical for adequate tissue development, maintenance and regeneration. In the mammary gland, epithelial cell fates are tightly controlled by the microenvironment. Here, we review how cell fate decisions are regulated by components of the microenvironment during mammary gland development and how pathological changes in the microenvironment can alter cell fates, leading to malignancy. Specifically, we describe the current understanding of how mammary cell fate is controlled and directed by three elements: the extracellular matrix, the immune microenvironment, and hormones-and how these elements can converge to create microenvironments that promote a fourth element: DNA damage.
Collapse
Affiliation(s)
- Gat Rauner
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory for the Convergence of Biomedical, Physical, and Engineering Sciences, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
19
|
Pancreas morphogenesis and homeostasis depends on tightly regulated Zeb1 levels in epithelial cells. Cell Death Discov 2021; 7:138. [PMID: 34112759 PMCID: PMC8192546 DOI: 10.1038/s41420-021-00522-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023] Open
Abstract
The pancreas is comprised of exocrine and endocrine compartments releasing digestive enzymes into the duodenum and regulating blood glucose levels by insulin and glucagon release. Tissue homeostasis is depending on transcription factor networks, involving Ptf1α, Ngn3, Nkx6.1, and Sox9, which are already activated during organogenesis. However, proper organ function is challenged by diets of high sugar and fat content, increasing the risk of type 2 diabetes and other disorders. A detailed understanding of processes that are important for homeostasis and are impaired during type 2 diabetes is lacking. Here, we show that Zeb1—a transcription factor known for its pivotal role in epithelial-mesenchymal transition, cell plasticity, and metastasis in cancer—is expressed at low levels in epithelial cells of the pancreas and is crucial for organogenesis and pancreas function. Loss of Zeb1 in these cells result in an increase of islet mass, impaired glucose tolerance, and sensitizes to develop liver and pancreas steatosis during diabetes and obesity. Interestingly, moderate overexpression of Zeb1 results in severe pancreas agenesis and lethality after birth, due to islet insufficiency and lack of acinar structures. We show that Zeb1 induction interferes with proper differentiation, cell survival, and proliferation during pancreas formation, due to deregulated expression of endocrine-specific transcription factors. In summary, our analysis suggests a novel role of Zeb1 for homeostasis in epithelial cells that is indispensable for pancreas morphogenesis and proper organ function involving a tight regulation of Zeb1 expression.
Collapse
|
20
|
Slepicka PF, Somasundara AVH, Dos Santos CO. The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021; 114:93-112. [PMID: 33082117 PMCID: PMC8052380 DOI: 10.1016/j.semcdb.2020.09.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
21
|
Lambert AW, Weinberg RA. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer 2021; 21:325-338. [PMID: 33547455 DOI: 10.1038/s41568-021-00332-6] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Epithelial stem cells serve critical physiological functions in the generation, maintenance and repair of diverse tissues through their ability to self-renew and spawn more specialized, differentiated cell types. In an analogous fashion, cancer stem cells have been proposed to fuel the growth, progression and recurrence of many carcinomas. Activation of an epithelial-mesenchymal transition (EMT), a latent cell-biological programme involved in development and wound healing, has been linked to the formation of both normal and neoplastic stem cells, but the mechanistic basis underlying this connection remains unclear. In this Perspective, we outline the instances where aspects of an EMT have been implicated in normal and neoplastic epithelial stem cells and consider the involvement of this programme during tissue regeneration and repair. We also discuss emerging concepts and evidence related to the heterogeneous and plastic cell states generated by EMT programmes and how these bear on our understanding of cancer stem cell biology and cancer metastasis. A more comprehensive accounting of the still-elusive links between EMT programmes and the stem cell state will surely advance our understanding of both normal stem cell biology and cancer pathogenesis.
Collapse
Affiliation(s)
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- MIT Ludwig Center for Molecular Oncology, Cambridge, MA, USA.
| |
Collapse
|
22
|
Erfani S, Hua H, Pan Y, Zhou BP, Yang XH. The Context-Dependent Impact of Integrin-Associated CD151 and Other Tetraspanins on Cancer Development and Progression: A Class of Versatile Mediators of Cellular Function and Signaling, Tumorigenesis and Metastasis. Cancers (Basel) 2021; 13:cancers13092005. [PMID: 33919420 PMCID: PMC8122392 DOI: 10.3390/cancers13092005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Tetraspanins are a family of molecules abundantly expressed on the surface of normal or tumor cells. They have been implicated in recruiting or sequestering key molecular regulators of malignancy of a variety of human cancers, including breast and lung cancers, glioblastoma and leukemia. Yet, how their actions take place remains mysterious due to a lack of traditional platform for molecular interactions. The current review digs into this mystery by examining findings from recent studies of multiple tetraspanins, particularly CD151. The molecular basis for differential impact of tetraspanins on tumor development, progression, and spreading to secondary sites is highlighted, and the complexity and plasticity of their control over tumor cell activities and interaction with their surroundings is discussed. Finally, an outlook is provided regarding tetraspanins as candidate biomarkers and targets for the diagnosis and treatment of human cancer. Abstract As a family of integral membrane proteins, tetraspanins have been functionally linked to a wide spectrum of human cancers, ranging from breast, colon, lung, ovarian, prostate, and skin carcinomas to glioblastoma. CD151 is one such prominent member of the tetraspanin family recently suggested to mediate tumor development, growth, and progression in oncogenic context- and cell lineage-dependent manners. In the current review, we summarize recent advances in mechanistic understanding of the function and signaling of integrin-associated CD151 and other tetraspanins in multiple cancer types. We also highlight emerging genetic and epigenetic evidence on the intrinsic links between tetraspanins, the epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), and the Wnt/β-catenin pathway, as well as the dynamics of exosome and cellular metabolism. Finally, we discuss the implications of the highly plastic nature and epigenetic susceptibility of CD151 expression, function, and signaling for clinical diagnosis and therapeutic intervention for human cancer.
Collapse
Affiliation(s)
- Sonia Erfani
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Pharmacy Department, St. Elizabeth Healthcare, Edgewood, KY 41017, USA
| | - Hui Hua
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Yueyin Pan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Binhua P. Zhou
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Xiuwei H. Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-859-323-1996
| |
Collapse
|
23
|
Deckwirth V, Rajakylä EK, Cattavarayane S, Acheva A, Schaible N, Krishnan R, Valle-Delgado JJ, Österberg M, Björkenheim P, Sukura A, Tojkander S. Cytokeratin 5 determines maturation of the mammary myoepithelium. iScience 2021; 24:102413. [PMID: 34007958 PMCID: PMC8111680 DOI: 10.1016/j.isci.2021.102413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 12/06/2020] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
At invasion, transformed mammary epithelial cells expand into the stroma through a disrupted myoepithelial (ME) cell layer and basement membrane (BM). The intact ME cell layer has thus been suggested to act as a barrier against invasion. Here, we investigate the mechanisms behind the disruption of ME cell layer. We show that the expression of basal/ME proteins CK5, CK14, and α-SMA altered along increasing grade of malignancy, and their loss affected the maintenance of organotypic 3D mammary architecture. Furthermore, our data suggests that loss of CK5 prior to invasive stage causes decreased levels of Zinc finger protein SNAI2 (SLUG), a key regulator of the mammary epithelial cell lineage determination. Consequently, a differentiation bias toward luminal epithelial cell type was detected with loss of mature, α-SMA-expressing ME cells and reduced deposition of basement membrane protein laminin-5. Therefore, our data discloses the central role of CK5 in mammary epithelial differentiation and maintenance of normal ME layer.
Collapse
Affiliation(s)
- Vivi Deckwirth
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Eeva Kaisa Rajakylä
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Sandhanakrishnan Cattavarayane
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Anna Acheva
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Niccole Schaible
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ramaswamy Krishnan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Pia Björkenheim
- Veterinary Teaching Hospital, University of Helsinki, Helsinki 00014, Finland
| | - Antti Sukura
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Sari Tojkander
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| |
Collapse
|
24
|
Subbalakshmi AR, Sahoo S, Biswas K, Jolly MK. A Computational Systems Biology Approach Identifies SLUG as a Mediator of Partial Epithelial-Mesenchymal Transition (EMT). Cells Tissues Organs 2021; 211:689-702. [PMID: 33567424 DOI: 10.1159/000512520] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/19/2020] [Indexed: 01/25/2023] Open
Abstract
Epithelial-mesenchymal plasticity comprises reversible transitions among epithelial, hybrid epithelial/mesenchymal (E/M) and mesenchymal phenotypes, and underlies various aspects of aggressive tumor progression such as metastasis, therapy resistance, and immune evasion. The process of cells attaining one or more hybrid E/M phenotypes is termed as partial epithelial mesenchymal transition (EMT). Cells in hybrid E/M phenotype(s) can be more aggressive than those in either fully epithelial or mesenchymal state. Thus, identifying regulators of hybrid E/M phenotypes is essential to decipher the rheostats of phenotypic plasticity and consequent accelerators of metastasis. Here, using a computational systems biology approach, we demonstrate that SLUG (SNAIL2) - an EMT-inducing transcription factor - can inhibit cells from undergoing a complete EMT and thus stabilize them in hybrid E/M phenotype(s). It expands the parametric range enabling the existence of a hybrid E/M phenotype, thereby behaving as a phenotypic stability factor. Our simulations suggest that this specific property of SLUG emerges from the topology of the regulatory network it forms with other key regulators of epithelial-mesenchymal plasticity. Clinical data suggest that SLUG associates with worse patient prognosis across multiple carcinomas. Together, our results indicate that SLUG can stabilize hybrid E/M phenotype(s).
Collapse
Affiliation(s)
- Ayalur R Subbalakshmi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Kuheli Biswas
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India,
| |
Collapse
|
25
|
Ben Brahim C, Courageux C, Jolly A, Ouine B, Cartier A, de la Grange P, de Koning L, Leroy P. Proliferation Genes Repressed by TGF-β Are Downstream of Slug/Snail2 in Normal Bronchial Epithelial Progenitors and Are Deregulated in COPD. Stem Cell Rev Rep 2021; 17:703-718. [PMID: 33495975 DOI: 10.1007/s12015-021-10123-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Slug/Snail2 belongs to the Epithelial-Mesenchymal Transition (EMT)-inducing transcription factors involved in development and diseases. Slug is expressed in adult stem/progenitor cells of several epithelia, making it unique among these transcription factors. To investigate Slug role in human bronchial epithelium progenitors, we studied primary bronchial basal/progenitor cells in an air-liquid interface culture system that allows regenerating a bronchial epithelium. To identify Slug downstream genes we knocked down Slug in basal/progenitor cells from normal subjects and subjects with COPD, a respiratory disease presenting anomalies in the bronchial epithelium and high levels of TGF-β in the lungs. We show that normal and COPD bronchial basal/progenitors, even when treated with TGF-β, express both epithelial and mesenchymal markers, and that the epithelial marker E-cadherin is not a target of Slug and, moreover, positively correlates with Slug. We reveal that Slug downstream genes responding to both differentiation and TGF-β are different in normal and COPD progenitors, with in particular a set of proliferation-related genes that are among the genes repressed downstream of Slug in normal but not COPD. In COPD progenitors at the onset of differentiation in presence of TGF-β,we show that there is positive correlations between the effect of differentiation and TGF-β on proliferation-related genes and on Slug protein, and that their expression levels are higher than in normal cells. As well, the expression of Smad3 and β-Catenin, two molecules from TGF-βsignaling pathways, are higher in COPD progenitors, and our results indicate that proliferation-related genes and Slug protein are increased by different TGF-β-induced mechanisms.
Collapse
Affiliation(s)
- Chamseddine Ben Brahim
- INSERM UMR1152, Physiopathology and Epidemiology of Respiratory Diseases, Paris, France
- Faculty of Medicine, Paris Diderot University, Bichat Campus, Paris, France
| | - Charlotte Courageux
- INSERM UMR1152, Physiopathology and Epidemiology of Respiratory Diseases, Paris, France
- Faculty of Medicine, Paris Diderot University, Bichat Campus, Paris, France
| | | | - Bérengère Ouine
- Institut Curie, Department of Translational Research, RPPA platform, PSL Research University, Paris, France
| | - Aurélie Cartier
- Institut Curie, Department of Translational Research, RPPA platform, PSL Research University, Paris, France
| | | | - Leanne de Koning
- Institut Curie, Department of Translational Research, RPPA platform, PSL Research University, Paris, France
| | - Pascale Leroy
- INSERM UMR1152, Physiopathology and Epidemiology of Respiratory Diseases, Paris, France.
- Faculty of Medicine, Paris Diderot University, Bichat Campus, Paris, France.
| |
Collapse
|
26
|
Blanco-Gómez A, Hontecillas-Prieto L, Corchado-Cobos R, García-Sancha N, Salvador N, Castellanos-Martín A, Sáez-Freire MDM, Mendiburu-Eliçabe M, Alonso-López D, De Las Rivas J, Lorente M, García-Casas A, Del Carmen S, Abad-Hernández MDM, Cruz-Hernández JJ, Rodríguez-Sánchez CA, Claros-Ampuero J, García-Cenador B, García-Criado J, Orimo A, Gridley T, Pérez-Losada J, Castillo-Lluva S. Stromal SNAI2 Is Required for ERBB2 Breast Cancer Progression. Cancer Res 2020; 80:5216-5230. [PMID: 33023950 DOI: 10.1158/0008-5472.can-20-0278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/07/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
SNAI2 overexpression appears to be associated with poor prognosis in breast cancer, yet it remains unclear in which breast cancer subtypes this occurs. Here we show that excess SNAI2 is associated with a poor prognosis of luminal B HER2+/ERBB2+ breast cancers in which SNAI2 expression in the stroma but not the epithelium correlates with tumor proliferation. To determine how stromal SNAI2 might influence HER2+ tumor behavior, Snai2-deficient mice were crossed with a mouse line carrying the ErbB2/Neu protooncogene to generate HER2+/ERBB2+ breast cancer. Tumors generated in this model expressed SNAI2 in the stroma but not the epithelium, allowing for the role of stromal SNAI2 to be studied without interference from the epithelial compartment. The absence of SNAI2 in the stroma of HER2+/ERBB2+ tumors is associated with: (i) lower levels of cyclin D1 (CCND1) and reduced tumor epithelium proliferation; (ii) higher levels of AKT and a lower incidence of metastasis; (iii) lower levels of angiopoietin-2 (ANGPT2), and more necrosis. Together, these results indicate that the loss of SNAI2 in cancer-associated fibroblasts limits the production of some cytokines, which influences AKT/ERK tumor signaling and subsequent proliferative and metastatic capacity of ERBB2+ breast cancer cells. Accordingly, SNAI2 expression in the stroma enhanced the tumorigenicity of luminal B HER2+/ERBB2+ breast cancers. This work emphasizes the importance of stromal SNAI2 in breast cancer progression and patients' prognosis. SIGNIFICANCE: Stromal SNAI2 expression enhances the tumorigenicity of luminal B HER2+ breast cancers and can identify a subset of patients with poor prognosis, making SNAI2 a potential therapeutic target for this disease. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/23/5216/F1.large.jpg.
Collapse
Affiliation(s)
- Adrián Blanco-Gómez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain.,Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| | - Lourdes Hontecillas-Prieto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain.,Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| | - Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain.,Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| | - Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain.,Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| | - Nélida Salvador
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Químicas y Biológicas, Universidad Complutense, Madrid, Spain.,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Andrés Castellanos-Martín
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain.,Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| | - María Del Mar Sáez-Freire
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain.,Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| | - Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain.,Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| | - Diego Alonso-López
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain
| | - Javier De Las Rivas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain.,Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| | - Mar Lorente
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Químicas y Biológicas, Universidad Complutense, Madrid, Spain.,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Ana García-Casas
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Químicas y Biológicas, Universidad Complutense, Madrid, Spain.,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Sofía Del Carmen
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Anatomía Patológica, Universidad de Salamanca, Salamanca, Spain.,Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - María Del Mar Abad-Hernández
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Anatomía Patológica, Universidad de Salamanca, Salamanca, Spain.,Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Juan Jesús Cruz-Hernández
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain.,Servicio de Oncología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - César Augusto Rodríguez-Sánchez
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain.,Servicio de Oncología, Hospital Universitario de Salamanca, Salamanca, Spain
| | | | - Begoña García-Cenador
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - Javier García-Criado
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - Akira Orimo
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Thomas Gridley
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, Spain. .,Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, Spain
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Químicas y Biológicas, Universidad Complutense, Madrid, Spain. .,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
27
|
Gross KM, Zhou W, Breindel JL, Ouyang J, Jin DX, Sokol ES, Gupta PB, Huber K, Zou L, Kuperwasser C. Loss of Slug Compromises DNA Damage Repair and Accelerates Stem Cell Aging in Mammary Epithelium. Cell Rep 2020; 28:394-407.e6. [PMID: 31291576 DOI: 10.1016/j.celrep.2019.06.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 04/16/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
DNA damage activates checkpoints that limit the replicative potential of stem cells, including differentiation. These checkpoints protect against cancer development but also promote tissue aging. Because mice lacking Slug/Snai2 exhibit limited stem cell activity, including luminobasal differentiation, and are protected from mammary cancer, we reasoned that Slug might regulate DNA damage checkpoints in mammary epithelial cells. Here, we show that Slug facilitates efficient execution of RPA32-mediated DNA damage response (DDR) signaling. Slug deficiency leads to delayed phosphorylation of ataxia telangiectasia mutated and Rad3-related protein (ATR) and its effectors RPA32 and CHK1. This leads to impaired RAD51 recruitment to DNA damage sites and persistence of unresolved DNA damage. In vivo, Slug/Snai2 loss leads to increased DNA damage and premature aging of mammary epithelium. Collectively, our work demonstrates that the mammary stem cell regulator Slug controls DDR checkpoints by dually inhibiting differentiation and facilitating DDR repair, and its loss causes unresolved DNA damage and accelerated aging.
Collapse
Affiliation(s)
- Kayla M Gross
- Department of Developmental, Molecular, & Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Wenhui Zhou
- Department of Developmental, Molecular, & Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jerrica L Breindel
- Department of Biomedical Sciences, Quinnipiac University, Hamden, CT 06518, USA
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Dexter X Jin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ethan S Sokol
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Piyush B Gupta
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kathryn Huber
- Department of Radiation Oncology, Tufts Medical Center, Boston, MA 02111, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Molecular, & Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
28
|
Martignani E, Ala U, Sheehy PA, Thomson PC, Baratta M. Whole transcriptome analysis of bovine mammary progenitor cells by P-Cadherin enrichment as a marker in the mammary cell hierarchy. Sci Rep 2020; 10:14183. [PMID: 32843665 PMCID: PMC7447765 DOI: 10.1038/s41598-020-71179-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Adult bovine mammary stem cells possess the ability to regenerate in vivo clonal outgrowths that mimic functional alveoli. Commonly available techniques that involve immunophenotype-based cell sorting yield cell fractions that are moderately enriched, far from being highly purified. Primary bovine mammary epithelial cells segregated in four different populations according to the expression of P-Cadherin and CD49f. Sorted cells from each fraction were tested for the presence of lineage-restricted progenitors and stem cells. Only cells from the CD49fhigh/P-Cadherinneg subpopulation were able to give rise to both luminal- and myoepithelial-restricted colonies in vitro and generate organized outgrowths in vivo, which are hallmarks of stem cell activity. After whole transcriptome analysis, we found gene clusters to be differentially enriched that relate to cell-to-cell communication, metabolic processes, proliferation, migration and morphogenesis. When we analyzed only the genes that were differentially expressed in the stem cell enriched fraction, clusters of downregulated genes were related to proliferation, while among the upregulated expression, cluster of genes related to cell adhesion, migration and cytoskeleton organization were observed. Our results show that P-Cadherin separates mammary subpopulations differentially in progenitor cells or mammary stem cells. Further we provide a comprehensive observation of the gene expression differences among these cell populations which reinforces the assumption that bovine mammary stem cells are typically quiescent.
Collapse
Affiliation(s)
- E Martignani
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - U Ala
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - P A Sheehy
- Sydney School of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW, 2570, Australia
| | - P C Thomson
- School of Life and Environmental Sciences, The University of Sydney, 425 Werombi Road, Camden, NSW, 2570, Australia
| | - M Baratta
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, TO, Italy.
| |
Collapse
|
29
|
Lai X, Li Q, Wu F, Lin J, Chen J, Zheng H, Guo L. Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming. Front Cell Dev Biol 2020; 8:760. [PMID: 32850862 PMCID: PMC7423833 DOI: 10.3389/fcell.2020.00760] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on the generation of induced pluripotent stem cells (iPSCs) have established the connections among EMT, energy metabolism, DNA methylation, and histone modification. Since energy metabolism, DNA methylation, and histone modification are important for cancer development and there are common characteristics between cancer cells and stem cells, it is reasonable to identify mechanisms that have been established during both reprogramming and cancer progression. In the current review, we start from a brief review on EMT and related processes during cancer progression, and then switch to the EMT during somatic cell reprogramming. We summarize the connection between EMT and metabolic switch during reprogramming, and further review the involvements of DNA methylation and cell proliferation. The connections between EMT and mesenchymal-epithelial transition (MET) and cellular aspects including DNA methylation, histone modification and energy metabolism may provide potential new targets for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaowei Lai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Fang Wu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jiechun Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Hui Zheng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Lin Guo
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| |
Collapse
|
30
|
Dai X, Xin Y, Xu W, Tian X, Wei X, Zhang H. CBP-mediated Slug acetylation stabilizes Slug and promotes EMT and migration of breast cancer cells. SCIENCE CHINA-LIFE SCIENCES 2020; 64:563-574. [PMID: 32737855 DOI: 10.1007/s11427-020-1736-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/16/2020] [Indexed: 12/24/2022]
Abstract
Slug, a member of the Snail family of transcriptional repressors, plays a key role in cancer progression, cellular plasticity, and epithelial to mesenchymal transition (EMT). Slug is a fast-turnover protein and its stability is controlled by post-translational modifications. Here, we identified that Slug is acetylated by acetyltransferase CREB-binding protein (CBP) in breast cancer cells. CBP directly interacts with the C-terminal domain of Slug through its catalytic histone acetyltransferase (HAT) domain, leading to acetylation of Slug at lysines 166 and 211. Analysis with acetylation-specific antibodies revealed that Slug is highly acetylated in metastatic breast cancer cells. Notably, Slug acetylation, mediated by CBP at lysines 166 and 211, doubles its half-life and increases its stability. Further, acetylated Slug downregulates the expression of E-cadherin, the epithelial marker, and upregulates the expression of N-cadherin and vimentin, thereby promoting breast cancer cell migration. In conclusion, the present study demonstrates that CBP-mediated Slug acetylation increases its stability, promoting EMT and migration of breast cancer cells.
Collapse
Affiliation(s)
- Xiaoyan Dai
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanli Xin
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Weizhi Xu
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xinxia Tian
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xiaofan Wei
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Hongquan Zhang
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
31
|
Sterneck E, Poria DK, Balamurugan K. Slug and E-Cadherin: Stealth Accomplices? Front Mol Biosci 2020; 7:138. [PMID: 32760736 PMCID: PMC7371942 DOI: 10.3389/fmolb.2020.00138] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
During physiological epithelial-mesenchymal transition (EMT), which is important for embryogenesis and wound healing, epithelial cells activate a program to remodel their structure and achieve a mesenchymal fate. In cancer cells, EMT confers increased invasiveness and tumor-initiating capacity, which contribute to metastasis and resistance to therapeutics. However, cellular plasticity that navigates between epithelial and mesenchymal states and maintenance of a hybrid or partial E/M phenotype appears to be even more important for cancer progression. Besides other core EMT transcription factors, the well-characterized Snail-family proteins Snail (SNAI1) and Slug (SNAI2) play important roles in both physiological and pathological EMT. Often mentioned in unison, they do, however, differ in their functions in many scenarios. Indeed, Slug expression does not always correlate with complete EMT or loss of E-cadherin (CDH1). For example, Slug plays important roles in mammary epithelial cell progenitor cell lineage commitment and differentiation, DNA damage responses, hematopoietic stem cell self-renewal, and in pathologies such as pulmonary fibrosis and atherosclerosis. In this Perspective, we highlight Slug functions in mammary epithelial cells and breast cancer as a “non-EMT factor” in basal epithelial cells and stem cells with focus reports that demonstrate co-expression of Slug and E-cadherin. We speculate that Slug and E-cadherin may cooperate in normal mammary gland and breast cancer/stem cells and advocate for functional assessment of such Slug+/E-cadherinlow/+ (SNAI2+/CDH1low/+) “basal-like epithelial” cells. Thus, Slug may be regarded as less of an EMT factor than driver of the basal epithelial cell phenotype.
Collapse
Affiliation(s)
- Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Dipak K Poria
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
32
|
Kahounová Z, Remšík J, Fedr R, Bouchal J, Mičková A, Slabáková E, Binó L, Hampl A, Souček K. Slug-expressing mouse prostate epithelial cells have increased stem cell potential. Stem Cell Res 2020; 46:101844. [PMID: 32590255 DOI: 10.1016/j.scr.2020.101844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022] Open
Abstract
Deciphering the properties of adult stem cells is crucial for understanding of their role in healthy tissue and in cancer progression as well. Both stem cells and cancer stem cells have shown association with epithelial-to-mesenchymal transition (EMT) in various tissue types. Aiming to investigate the epithelial and mesenchymal phenotypic traits in adult mouse prostate, we sorted subpopulations of basal prostate stem cells (mPSCs) and assessed the expression levels of EMT regulators and markers with custom-designed gene expression array. The population of mPSCs defined by a Lin-/Sca-1+CD49fhi/Trop-2+ (LSC Trop-2+) surface phenotype was enriched in mesenchymal markers, especially EMT master regulator Slug, encoded by the Snai2 gene. To further dissect the role of Slug in mPSCs, we used transgenic Snai2tm1.1Wbg reporter mouse strain. Using this model, we confirmed the presence of mesenchymal traits and increase of organoid forming capacity in Slug+ population of mPSCs. The Slug+-derived organoids comprised all prostate epithelial cell types - basal, luminal, and neuroendocrine. Collectively, these data uncover the important role of Slug expression in the physiology of mouse prostate stem cells.
Collapse
Affiliation(s)
- Zuzana Kahounová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Ján Remšík
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Radek Fedr
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Alena Mičková
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Eva Slabáková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Lucia Binó
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Aleš Hampl
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic; Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
33
|
Wilson MM, Weinberg RA, Lees JA, Guen VJ. Emerging Mechanisms by which EMT Programs Control Stemness. Trends Cancer 2020; 6:775-780. [PMID: 32312682 DOI: 10.1016/j.trecan.2020.03.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/06/2023]
Abstract
Tissue regeneration relies on adult stem cells (SCs) that possess the ability to self-renew and produce differentiating progeny. In an analogous manner, the development of certain cancers depends on a subset of tumor cells, called cancer stem cells (CSCs), with SC-like properties. In addition to being responsible for tumorigenesis, CSCs exhibit elevated resistance to therapy and thus drive tumor relapse post-treatment. The epithelial-mesenchymal transition (EMT) programs promote SC and CSC stemness in many epithelial tissues. Here, we provide an overview of the mechanisms underlying the relationship between stemness and EMT programs, which may represent therapeutic vulnerabilities for the treatment of cancers.
Collapse
Affiliation(s)
- Molly M Wilson
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert A Weinberg
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Whitehead Institute, Cambridge, MA, USA
| | - Jacqueline A Lees
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vincent J Guen
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)- UMR 6290, F- 35000 Rennes, France.
| |
Collapse
|
34
|
Zhou W, Gross KM, Kuperwasser C. Molecular regulation of Snai2 in development and disease. J Cell Sci 2019; 132:132/23/jcs235127. [PMID: 31792043 DOI: 10.1242/jcs.235127] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The transcription factor Snai2, encoded by the SNAI2 gene, is an evolutionarily conserved C2H2 zinc finger protein that orchestrates biological processes critical to tissue development and tumorigenesis. Initially characterized as a prototypical epithelial-to-mesenchymal transition (EMT) transcription factor, Snai2 has been shown more recently to participate in a wider variety of biological processes, including tumor metastasis, stem and/or progenitor cell biology, cellular differentiation, vascular remodeling and DNA damage repair. The main role of Snai2 in controlling such processes involves facilitating the epigenetic regulation of transcriptional programs, and, as such, its dysregulation manifests in developmental defects, disruption of tissue homeostasis, and other disease conditions. Here, we discuss our current understanding of the molecular mechanisms regulating Snai2 expression, abundance and activity. In addition, we outline how these mechanisms contribute to disease phenotypes or how they may impact rational therapeutic targeting of Snai2 dysregulation in human disease.
Collapse
Affiliation(s)
- Wenhui Zhou
- Department of Developmental, Molecular & Chemical Biology, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA.,Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Kayla M Gross
- Department of Developmental, Molecular & Chemical Biology, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA.,Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Molecular & Chemical Biology, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA .,Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
35
|
Samocha A, Doh H, Kessenbrock K, Roose JP. Unraveling Heterogeneity in Epithelial Cell Fates of the Mammary Gland and Breast Cancer. Cancers (Basel) 2019; 11:E1423. [PMID: 31554261 PMCID: PMC6826786 DOI: 10.3390/cancers11101423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/22/2019] [Accepted: 09/22/2019] [Indexed: 12/14/2022] Open
Abstract
Fluidity in cell fate or heterogeneity in cell identity is an interesting cell biological phenomenon, which at the same time poses a significant obstacle for cancer therapy. The mammary gland seems a relatively straightforward organ with stromal cells and basal- and luminal- epithelial cell types. In reality, the epithelial cell fates are much more complex and heterogeneous, which is the topic of this review. Part of the complexity comes from the dynamic nature of this organ: the primitive epithelial tree undergoes extensively remodeling and expansion during puberty, pregnancy, and lactation and, unlike most other organs, the bulk of mammary gland development occurs late, during puberty. An active cell biological debate has focused on lineage commitment to basal- and luminal- epithelial cell fates by epithelial progenitor and stem cells; processes that are also relevant to cancer biology. In this review, we discuss the current understanding of heterogeneity in mammary gland and recent insights obtained through lineage tracing, signaling assays, and organoid cultures. Lastly, we relate these insights to cancer and ongoing efforts to resolve heterogeneity in breast cancer with single-cell RNAseq approaches.
Collapse
Affiliation(s)
- Alexandr Samocha
- Department of Anatomy, University of California, San Francisco, CA 94143, USA.
| | - Hanna Doh
- Department of Anatomy, University of California, San Francisco, CA 94143, USA.
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA.
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
36
|
Fu NY, Nolan E, Lindeman GJ, Visvader JE. Stem Cells and the Differentiation Hierarchy in Mammary Gland Development. Physiol Rev 2019; 100:489-523. [PMID: 31539305 DOI: 10.1152/physrev.00040.2018] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mammary gland is a highly dynamic organ that undergoes profound changes within its epithelium during puberty and the reproductive cycle. These changes are fueled by dedicated stem and progenitor cells. Both short- and long-lived lineage-restricted progenitors have been identified in adult tissue as well as a small pool of multipotent mammary stem cells (MaSCs), reflecting intrinsic complexity within the epithelial hierarchy. While unipotent progenitor cells predominantly execute day-to-day homeostasis and postnatal morphogenesis during puberty and pregnancy, multipotent MaSCs have been implicated in coordinating alveologenesis and long-term ductal maintenance. Nonetheless, the multipotency of stem cells in the adult remains controversial. The advent of large-scale single-cell molecular profiling has revealed striking changes in the gene expression landscape through ontogeny and the presence of transient intermediate populations. An increasing number of lineage cell-fate determination factors and potential niche regulators have now been mapped along the hierarchy, with many implicated in breast carcinogenesis. The emerging diversity among stem and progenitor populations of the mammary epithelium is likely to underpin the heterogeneity that characterizes breast cancer.
Collapse
Affiliation(s)
- Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Emma Nolan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey J Lindeman
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Visvader
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
37
|
Abstract
The transition of epithelial cells into a mesenchymal state (epithelial-to-mesenchymal transition or EMT) is a highly dynamic process implicated in various biological processes. During EMT, cells do not necessarily exist in 'pure' epithelial or mesenchymal states. There are cells with mixed (or hybrid) features of the two, which are termed as the intermediate cell states (ICSs). While the exact functions of ICS remain elusive, together with EMT it appears to play important roles in embryogenesis, tissue development, and pathological processes such as cancer metastasis. Recent single cell experiments and advanced mathematical modeling have improved our capability in identifying ICS and provided a better understanding of ICS in development and disease. Here, we review the recent findings related to the ICS in/or EMT and highlight the challenges in the identification and functional characterization of ICS.
Collapse
Affiliation(s)
- Yutong Sha
- Department of Mathematics, University of California, Irvine, CA 92697, United States of America
- Co-first authors
| | - Daniel Haensel
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, United States of America
- Co-first authors
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, United States of America
| | - Huijing Du
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, United States of America
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA 92697, United States of America
- Department of Development and Cell Biology, University of California, Irvine, CA 92697, United States of America
| |
Collapse
|
38
|
Gupta PB, Pastushenko I, Skibinski A, Blanpain C, Kuperwasser C. Phenotypic Plasticity: Driver of Cancer Initiation, Progression, and Therapy Resistance. Cell Stem Cell 2019; 24:65-78. [PMID: 30554963 PMCID: PMC7297507 DOI: 10.1016/j.stem.2018.11.011] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Our traditional understanding of phenotypic plasticity in adult somatic cells comprises dedifferentiation and transdifferentiation in the context of tissue regeneration or wound healing. Although dedifferentiation is central to tissue repair and stemness, this process inherently carries the risk of cancer initiation. Consequently, recent research suggests phenotypic plasticity as a new paradigm for understanding cancer initiation, progression, and resistance to therapy. Here, we discuss how cells acquire plasticity and the role of plasticity in initiating cancer, cancer progression, and metastasis and in developing therapy resistance. We also highlight the epithelial-to-mesenchymal transition (EMT) and known molecular mechanisms underlying plasticity and we consider potential therapeutic avenues.
Collapse
Affiliation(s)
- Piyush B Gupta
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Ievgenia Pastushenko
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels 1070, Belgium
| | - Adam Skibinski
- Department of Developmental, Chemical and Molecular Biology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA; Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St., Boston, MA 02111, USA
| | - Cedric Blanpain
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels 1070, Belgium; WELBIO, Université Libre de Bruxelles, Brussels 1070, Belgium.
| | - Charlotte Kuperwasser
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels 1070, Belgium; Department of Developmental, Chemical and Molecular Biology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA.
| |
Collapse
|
39
|
Liu R, Shi P, Zhou Z, Zhang H, Li W, Zhang H, Chen C. Krüpple-like factor 5 is essential for mammary gland development and tumorigenesis. J Pathol 2018; 246:497-507. [PMID: 30101462 DOI: 10.1002/path.5153] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/26/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
Abstract
Krüpple-like factor 5 (KLF5) is required for the development of the embryo and multiple organs, such as the lung and intestine. KLF5 plays a pro-proliferative and oncogenic role in several carcinomas, including breast cancer. However, its role in normal mammary gland development and oncogenesis has not been elucidated in vivo. In this study, we used mammary gland-specific Klf5 conditional knockout mice derived by mating Klf5-LoxP and MMTV-Cre mice. The genetic ablation of Klf5 suppresses mammary gland ductal elongation and lobuloalveolar formation. Klf5 deficiency inhibits mammary epithelial cell proliferation, survival, and stem cell maintenance. Klf5 promotes mammary stemness, at least partially, by directly promoting the transcription of Slug. Finally, Klf5 depletion suppressed PyMT-induced mammary gland tumor cell stemness, tumor initiation, and growth in vivo. Slug also mediated these functions of Klf5 in vivo. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, PR China
| | - Peiguo Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China
| | - Wei Li
- Department of Urology, First People's Hospital of Yunnan Province, Kunming, PR China
| | - Hong Zhang
- Department of Nuclear Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China
| |
Collapse
|
40
|
Rodilla V, Fre S. Cellular Plasticity of Mammary Epithelial Cells Underlies Heterogeneity of Breast Cancer. Biomedicines 2018; 6:biomedicines6040103. [PMID: 30388868 PMCID: PMC6315661 DOI: 10.3390/biomedicines6040103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
The hierarchical relationships between stem cells, lineage-committed progenitors, and differentiated cells remain unclear in several tissues, due to a high degree of cell plasticity, allowing cells to switch between different cell states. The mouse mammary gland, similarly to other tissues such as the prostate, the sweat gland, and the respiratory tract airways, consists of an epithelium exclusively maintained by unipotent progenitors throughout adulthood. Such unipotent progenitors, however, retain a remarkable cellular plasticity, as they can revert to multipotency during epithelial regeneration as well as upon oncogene activation. Here, we revise the current knowledge on mammary cell hierarchies in light of the most recent lineage tracing studies performed in the mammary gland and highlight how stem cell differentiation or reversion to multipotency are at the base of tumor development and progression. In addition, we will discuss the current knowledge about the interplay between tumor cells of origin and defined genetic mutations, leading to different tumor types, and its implications in choosing specific therapeutic protocols for breast cancer patients.
Collapse
Affiliation(s)
- Verónica Rodilla
- Preclinical Research Program, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain.
| | - Silvia Fre
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, F-75248 Paris CEDEX 05, France.
| |
Collapse
|
41
|
Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2018; 194:161-184. [PMID: 30268772 DOI: 10.1016/j.pharmthera.2018.09.007] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer metastasis and therapy resistance are the major unsolved clinical challenges, and account for nearly all cancer-related deaths. Both metastasis and therapy resistance are fueled by epithelial plasticity, the reversible phenotypic transitions between epithelial and mesenchymal phenotypes, including epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). EMT and MET have been largely considered as binary processes, where cells detach from the primary tumor as individual units with many, if not all, traits of a mesenchymal cell (EMT) and then convert back to being epithelial (MET). However, recent studies have demonstrated that cells can metastasize in ways alternative to traditional EMT paradigm; for example, they can detach as clusters, and/or occupy one or more stable hybrid epithelial/mesenchymal (E/M) phenotypes that can be the end point of a transition. Such hybrid E/M cells can integrate various epithelial and mesenchymal traits and markers, facilitating collective cell migration. Furthermore, these hybrid E/M cells may possess higher tumor-initiation and metastatic potential as compared to cells on either end of the EMT spectrum. Here, we review in silico, in vitro, in vivo and clinical evidence for the existence of one or more hybrid E/M phenotype(s) in multiple carcinomas, and discuss their implications in tumor-initiation, tumor relapse, therapy resistance, and metastasis. Together, these studies drive the emerging notion that cells in a hybrid E/M phenotype may occupy 'metastatic sweet spot' in multiple subtypes of carcinomas, and pathways linked to this (these) hybrid E/M state(s) may be relevant as prognostic biomarkers as well as a promising therapeutic targets.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Jason A Somarelli
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Maya Sheth
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Adrian Biddle
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Andrew J Armstrong
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Sharmila A Bapat
- National Center for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| |
Collapse
|
42
|
Nguyen HPT, Xiao L, Deane JA, Tan KS, Cousins FL, Masuda H, Sprung CN, Rosamilia A, Gargett CE. N-cadherin identifies human endometrial epithelial progenitor cells by in vitro stem cell assays. Hum Reprod 2018; 32:2254-2268. [PMID: 29040564 DOI: 10.1093/humrep/dex289] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 08/25/2017] [Indexed: 12/28/2022] Open
Abstract
STUDY QUESTION Is there a specific surface marker that identifies human endometrial epithelial progenitor cells with adult stem cell activity using in vitro assays? SUMMARY ANSWER N-cadherin isolates clonogenic, self-renewing human endometrial epithelial progenitor cells with high proliferative potential that differentiate into cytokeratin+ gland-like structures in vitro and identifies their location in some cells of gland profiles predominantly in basalis endometrium adjacent to the myometrium. WHAT IS KNOWN ALREADY Human endometrium contains a small population of clonogenic, self-renewing epithelial cells with high proliferative potential that differentiate into large gland-like structures, but their identity and location is unknown. Stage-specific embryonic antigen-1 (SSEA-1) distinguishes the epithelium of basalis from functionalis and is a marker of human post-menopausal (Post-M) endometrial epithelium. STUDY DESIGN, SIZE, DURATION Prospective observational study of endometrial epithelial cells obtained from hysterectomy samples taken from 50 pre-menopausal (Pre-M) and 24 Post-M women, of which 4 were from women who had taken daily estradiol valerate 2 mg/day for 8 weeks prior. PARTICIPANTS/MATERIALS, SETTING, METHODS Gene profiling was used to identify differentially expressed surface markers between fresh EpCAM (Epithelial Cell Adhesion Molecule)-magnetic bead-selected basalis-like epithelial cells from Post-M endometrium compared with predominantly functionalis epithelial cells from Pre-M endometrium and validated by qRT-PCR. In vitro clonogenicity and self-renewal assays were used to assess the stem/progenitor cell properties of magnetic bead-sorted N-cadherin+ and N-cadherin- epithelial cells. The cellular identity, location and phenotype of N-cadherin+ cells was assessed by dual colour immunofluorescence and confocal microscopy for cytokeratin, proliferative status (Ki-67), ERα, SSEA-1, SOX9 and epithelial mesenchymal transition (EMT) markers on full thickness human endometrium. MAIN RESULTS AND THE ROLE OF CHANCE CDH2 (N-cadherin gene) was one of 11 surface molecules highly expressed in Post-M compared to Pre-M endometrial epithelial cells. N-cadherin+ cells comprise a median 16.7% (n = 8) and 20.2% (n = 5) of Pre-M endometrial epithelial cells by flow cytometry and magnetic bead sorting, respectively. N-cadherin+ epithelial cells from Pre-M endometrium were more clonogenic than N-cadherin- cells (n = 12, P = 0.003), underwent more population doublings (n = 7), showed greater capacity for serial cloning (n = 7) and differentiated into cytokeratin+ gland-like organoids. N-cadherin immunolocalised to the lateral and apical membrane of epithelial cells in the bases of glands in the basalis of Pre-M endometrium and Post-M gland profiles, co-expressing cytokeratin, ERα but not SSEA-1 or SOX9, which localized on gland profiles proximal to N-cadherin+ cells. N-cadherin+ cells were quiescent (Ki-67-) in the basalis and in Post-M endometrial glands and co-localized with EMT markers vimentin and E-cadherin. LARGE SCALE DATA The raw and processed data files from the gene microarray have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus data set with accession number GSE35221. LIMITATIONS, REASONS FOR CAUTION This is a descriptive study in human endometrium only using in vitro stem cell assays. The differential ability of N-cadherin+ and N-cadherin-cells to generate endometrial glands in vivo was not determined. A small number of uterine tissues analysed contained adenomyosis for which N-cadherin has been implicated in epithelial-EMT. WIDER IMPLICATIONS OF THE FINDINGS A new marker enriching for human endometrial epithelial progenitor cells identifies a different and potentially more primitive cell population than SSEA-1, suggesting a potential hierarchy of epithelial differentiation in the basalis. Using N-cadherin as a marker, the molecular and cellular characteristics of epithelial progenitor cells and their role in endometrial proliferative disorders including endometriosis, adenomyosis and thin dysfunctional endometrium can be investigated. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by Cancer Council Victoria grant 491079 (C.E.G.) and Australian National Health and Medical Research Council grants 1021127 (C.E.G.), 1085435 (C.E.G., J.A.D.), 145780 and 288713 (C.N.S.), RD Wright Career Development Award 465121 (C.E.G.), Senior Research Fellowship 1042298 (C.E.G.), the Victorian Government's Operational Infrastructure Support and an Australian Postgraduate Award (HPTN), and China Council Scholarship (L.X.). The authors have nothing to declare.
Collapse
Affiliation(s)
- Hong P T Nguyen
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia
| | - L Xiao
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - James A Deane
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia
| | - Ker-Sin Tan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Fiona L Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia
| | - Hirotaka Masuda
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, Keio University, Tokyo 160-8582, Japan
| | - Carl N Sprung
- Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Anna Rosamilia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
43
|
Song H, Ci H, Xu J, Xu Z, Zhang Y, Wang Y, Wu S, Tao Y. Vasculogenic mimicry and expression of slug and vimentin correlate with metastasis and prognosis in non-small cell lung cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2749-2758. [PMID: 31938392 PMCID: PMC6958269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 06/10/2023]
Abstract
Background: Non-small cell lung cancer (NSCLC) has been the leading cause of cancer death in recent years, its morbidity and mortality were increasing yearly. The presence of vasculogenic mimicry (VM) is associated with a high tumor grade, short survival, invasion, and metastasis. Slug is a key regulating factor in the process of EMT. Vimentin is one of the cytoskeleton proteins that plays an important role in EMT. However, associations among VM, Slug and vimentin and their clinicopathologic significance in NSCLC are unclear. In this study, we analyzed associations among VM, Slug and vimentin in NSCLC, and their respective associations with clinicopathologic characteristics and survival in NSCLC. Methods: Positive expression of VM, Slug and vimentin in 198 whole NSCLC tissue samples were detected by immunohistochemical staining. Patients' clinical data were also collected. Results: Levels of VM, Slug and vimentin were significantly higher in NSCLC tissues than in normal lung tissues. Levels of VM, Slug and vimentin were positively associated with tumor grade, distant metastasis (DM), lymph node metastasis (LNM), and tumor-node metastasis (TNM) stage, and inversely with patients overall survival time (OST). In multivariate analysis, high expression of VM, Slug, vimentin, and tumor grade, DM, LNM, TNM stage, were potential to be independent prognostic factors for OST in patients with NSCLC. Conclusion: VM, Slug and vimentin affect NSCLC evolution; and the combined detection of VM, Slug and vimentin are valuable factors for metastasis and prognosis in NSCLC patients.
Collapse
Affiliation(s)
- Hong Song
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeBengbu 233000, Anhui Province, China
- Department of Pathology, The First Affiliated Hospital of Wannan Medical CollegeAnhui Province, China
| | - Hongfei Ci
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeBengbu 233000, Anhui Province, China
| | - Jing Xu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeBengbu 233000, Anhui Province, China
| | - Zhouyi Xu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeBengbu 233000, Anhui Province, China
| | - Yu Zhang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeBengbu 233000, Anhui Province, China
| | - Yichao Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeBengbu 233000, Anhui Province, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeBengbu 233000, Anhui Province, China
| | - Yisheng Tao
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeBengbu 233000, Anhui Province, China
| |
Collapse
|
44
|
Cheng L, Zang J, Dai HJ, Li F, Guo F. Ubiquitin ligase CHIP functions as an oncogene and activates the AKT signaling pathway in prostate cancer. Int J Oncol 2018; 53:203-214. [PMID: 29693147 DOI: 10.3892/ijo.2018.4377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/12/2018] [Indexed: 11/06/2022] Open
Abstract
Carboxyl terminus of Hsc-70-interacting protein (CHIP) is an E3 ubiquitin ligase that induces the ubiquitination and degradation of numerous tumor-associated proteins and serves as a suppressor or promoter in tumor progression. To date, the molecular mechanism of CHIP in prostate cancer remains unknown. Therefore, the present study investigated the biological function of CHIP in prostate cancer cells and obtained evidence that CHIP expression is upregulated in prostate cancer tissues. The CHIP vector was introduced into DU145 cancer cells and the cell biological behaviour was examined through a series of experiments, including cell growth, cell apoptosis and migration and invasion assays. The results indicated that the overexpression of CHIP in DU145 prostatic cancer cells promoted cell proliferation through activation of the protein kinase B (AKT) signaling pathway, which subsequently increased cyclin D1 protein levels and decreased p21 and p27 protein levels. The overexpression of CHIP significantly increased the migration and invasion of the DU145 cells, which is possible due to activation of the AKT signaling pathway and upregulation of vimentin. The expression level of CHIP was observed to be increased in human prostate cancer tissues compared with the adjacent normal tissue. Furthermore, the CHIP expression level exhibited a positively association with the Gleason score of the patents. These findings indicate that CHIP functions as an oncogene in prostate cancer.
Collapse
Affiliation(s)
- Li Cheng
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jin Zang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Han-Jue Dai
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Feng Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Feng Guo
- Department of Oncology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu 215001, P.R. China
| |
Collapse
|
45
|
Majorini MT, Manenti G, Mano M, De Cecco L, Conti A, Pinciroli P, Fontanella E, Tagliabue E, Chiodoni C, Colombo MP, Delia D, Lecis D. cIAP1 regulates the EGFR/Snai2 axis in triple-negative breast cancer cells. Cell Death Differ 2018; 25:2147-2164. [PMID: 29674627 PMCID: PMC6262016 DOI: 10.1038/s41418-018-0100-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 03/01/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022] Open
Abstract
Inhibitor of apoptosis (IAP) proteins constitute a family of conserved molecules that regulate both apoptosis and receptor signaling. They are often deregulated in cancer cells and represent potential targets for therapy. In our work, we investigated the effect of IAP inhibition in vivo to identify novel downstream genes expressed in an IAP-dependent manner that could contribute to cancer aggressiveness. To this end, immunocompromised mice engrafted subcutaneously with the triple-negative breast cancer MDA-MB231 cell line were treated with SM83, a Smac mimetic that acts as a pan-IAP inhibitor, and tumor nodules were profiled for gene expression. SM83 reduced the expression of Snai2, an epithelial-to-mesenchymal transition factor often associated with increased stem-like properties and metastatic potential especially in breast cancer cells. By testing several breast cancer cell lines, we demonstrated that Snai2 downregulation prevents cell motility and that its expression is promoted by cIAP1. In fact, the chemical or genetic inhibition of cIAP1 blocked epidermal growth factor receptor (EGFR)-dependent activation of the mitogen-activated protein kinase (MAPK) pathway and caused the reduction of Snai2 transcription levels. In a number of breast cancer cell lines, cIAP1 depletion also resulted in a reduction of EGFR protein levels which derived from the decrease of its gene transcription, though, paradoxically, the silencing of cIAP1 promoted EGFR protein stability rather than its degradation. Finally, we provided evidence that IAP inhibition displays an anti-tumor and anti-metastasis effect in vivo. In conclusion, our work indicates that IAP-targeted therapy could contribute to EGFR inhibition and to the reduction of its downstream mediators. This approach could be particularly effective in tumors characterized by high levels of EGFR and Snai2, such as triple-negative breast cancer.
Collapse
Affiliation(s)
- Maria Teresa Majorini
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Mechanisms of Cell Cycle Control Unit, Milan, Italy
| | - Giacomo Manenti
- Department of Predictive & Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Miguel Mano
- Functional Genomics and RNA-Based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, 3060-197, Portugal
| | - Loris De Cecco
- Functional Genomics and Bioinformatics Core Facility, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Annalisa Conti
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Mechanisms of Cell Cycle Control Unit, Milan, Italy.,Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Patrizia Pinciroli
- Functional Genomics and Bioinformatics Core Facility, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Enrico Fontanella
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Mechanisms of Cell Cycle Control Unit, Milan, Italy
| | - Elda Tagliabue
- Department of Experimental Oncology & Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Targeting Unit, Milan, Italy
| | - Claudia Chiodoni
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Immunology Unit, Milan, Italy
| | - Mario Paolo Colombo
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Immunology Unit, Milan, Italy
| | - Domenico Delia
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Mechanisms of Cell Cycle Control Unit, Milan, Italy
| | - Daniele Lecis
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Mechanisms of Cell Cycle Control Unit, Milan, Italy. .,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Immunology Unit, Milan, Italy.
| |
Collapse
|
46
|
McQueen CM, Schmitt EE, Sarkar TR, Elswood J, Metz RP, Earnest D, Rijnkels M, Porter WW. PER2 regulation of mammary gland development. Development 2018; 145:dev.157966. [PMID: 29490985 PMCID: PMC5897596 DOI: 10.1242/dev.157966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/19/2018] [Indexed: 12/24/2022]
Abstract
The molecular clock plays key roles in daily physiological functions, development and cancer. Period 2 (PER2) is a repressive element, which inhibits transcription activated by positive clock elements, resulting in diurnal cycling of genes. However, there are gaps in our understanding of the role of the clock in normal development outside of its time-keeping function. Here, we show that PER2 has a noncircadian function that is crucial to mammalian mammary gland development. Virgin Per2-deficient mice, Per2-/- , have underdeveloped glands, containing fewer bifurcations and terminal ducts than glands of wild-type mice. Using a transplantation model, we show that these changes are intrinsic to the gland and further identify changes in cell fate commitment. Per2-/- mouse mammary glands have a dual luminal/basal phenotypic character in cells of the ductal epithelium. We identified colocalization of E-cadherin and keratin 14 in luminal cells. Similar results were demonstrated using MCF10A and shPER2 MCF10A human cell lines. Collectively this study reveals a crucial noncircadian function of PER2 in mammalian mammary gland development, validates the Per2-/- model, and describes a potential role for PER2 in breast cancer.
Collapse
Affiliation(s)
- Cole M McQueen
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Emily E Schmitt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tapasree R Sarkar
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Jessica Elswood
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Richard P Metz
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - David Earnest
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Weston W Porter
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
47
|
Cui N, Yang WT, Zheng PS. Slug inhibits the proliferation and tumor formation of human cervical cancer cells by up-regulating the p21/p27 proteins and down-regulating the activity of the Wnt/β-catenin signaling pathway via the trans-suppression Akt1/p-Akt1 expression. Oncotarget 2018; 7:26152-67. [PMID: 27036045 PMCID: PMC5041971 DOI: 10.18632/oncotarget.8434] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/14/2016] [Indexed: 11/17/2022] Open
Abstract
Slug (Snai2) has been demonstrated to act as an oncogene or tumor suppressor in different human cancers, but the function of Slug in cervical cancer remains poorly understood. In this study, we demonstrated that Slug could suppress the proliferation of cervical cancer cells in vitro and tumor formation in vivo. Further experiments found that Slug could trans-suppress the expression of Akt1/p-Akt1 by binding to E-box motifs in the promoter of the Akt1 gene and then inhibit the cell proliferation and tumor formation of cervical cancer cells by up-regulating p21/p27 and/or down-regulating the activity of the Wnt/β-catenin signaling pathway. Therefore, Slug acts as a tumor suppressor during cervical carcinogenesis.
Collapse
Affiliation(s)
- Nan Cui
- Department of Reproductive Medicine, First Affiliated Hospital, Xi'an Jiaotong University Medical School, Xi'an, The People's Republic of China.,Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Medical School, Xi'an, The People's Republic of China
| | - Wen-Ting Yang
- Department of Reproductive Medicine, First Affiliated Hospital, Xi'an Jiaotong University Medical School, Xi'an, The People's Republic of China.,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, The People's Republic of China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, First Affiliated Hospital, Xi'an Jiaotong University Medical School, Xi'an, The People's Republic of China.,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, The People's Republic of China
| |
Collapse
|
48
|
Sikandar SS, Kuo AH, Kalisky T, Cai S, Zabala M, Hsieh RW, Lobo NA, Scheeren FA, Sim S, Qian D, Dirbas FM, Somlo G, Quake SR, Clarke MF. Role of epithelial to mesenchymal transition associated genes in mammary gland regeneration and breast tumorigenesis. Nat Commun 2017; 8:1669. [PMID: 29162812 PMCID: PMC5698470 DOI: 10.1038/s41467-017-01666-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/06/2017] [Indexed: 12/12/2022] Open
Abstract
Previous studies have proposed that epithelial to mesenchymal transition (EMT) in breast cancer cells regulates metastasis, stem cell properties and chemo-resistance; most studies were based on in vitro culture of cell lines and mouse transgenic cancer models. However, the identity and function of cells expressing EMT-associated genes in normal murine mammary gland homeostasis and human breast cancer still remains under debate. Using in vivo lineage tracing and triple negative breast cancer (TNBC) patient derived xenografts we demonstrate that the repopulating capacity in normal mammary epithelial cells and tumorigenic capacity in TNBC is independent of expression of EMT-associated genes. In breast cancer, while a subset of cells with epithelial and mesenchymal phenotypes have stem cell activity, in many cells that have lost epithelial characteristics with increased expression of mesenchymal genes, have decreased tumor-initiating capacity and plasticity. These findings have implications for the development of effective therapeutic agents targeting tumor-initiating cells.
Collapse
Affiliation(s)
- Shaheen S Sikandar
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Angera H Kuo
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Tomer Kalisky
- Department of Bioengineering, 318 Campus Drive, Stanford, CA, 94305, USA
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Shang Cai
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Maider Zabala
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Robert W Hsieh
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Neethan A Lobo
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Ferenc A Scheeren
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
- Department of Medical Oncology, Leiden University Medical Center, Leiden, RC, 2300, The Netherlands
| | - Sopheak Sim
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Frederick M Dirbas
- Department of Surgery, Stanford University School of Medicine, Stanford Cancer Institute, 875 Blake Wilbur Drive, Rm CC2235, Stanford, CA, 94305, USA
| | - George Somlo
- City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Stephen R Quake
- Department of Bioengineering, 318 Campus Drive, Stanford, CA, 94305, USA
| | - Michael F Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
49
|
The SIRT2 Deacetylase Stabilizes Slug to Control Malignancy of Basal-like Breast Cancer. Cell Rep 2017; 17:1302-1317. [PMID: 27783945 DOI: 10.1016/j.celrep.2016.10.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/06/2016] [Accepted: 10/02/2016] [Indexed: 12/14/2022] Open
Abstract
Overabundance of Slug protein is common in human cancer and represents an important determinant underlying the aggressiveness of basal-like breast cancer (BLBC). Despite its importance, this transcription factor is rarely mutated in BLBC, and the mechanism of its deregulation in cancer remains unknown. Here, we report that Slug undergoes acetylation-dependent protein degradation and identify the deacetylase SIRT2 as a key mediator of this post-translational mechanism. SIRT2 inhibition rapidly destabilizes Slug, whereas SIRT2 overexpression extends Slug stability. We show that SIRT2 deacetylates Slug protein at lysine residue K116 to prevent Slug degradation. Interestingly, SIRT2 is frequently amplified and highly expressed in BLBC. Genetic depletion and pharmacological inactivation of SIRT2 in BLBC cells reverse Slug stabilization, cause the loss of clinically relevant pathological features of BLBC, and inhibit tumor growth. Our results suggest that targeting SIRT2 may be a rational strategy for diminishing Slug abundance and its associated malignant traits in BLBC.
Collapse
|
50
|
EMT programs promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary ciliogenesis and Hedgehog signaling. Proc Natl Acad Sci U S A 2017; 114:E10532-E10539. [PMID: 29158396 DOI: 10.1073/pnas.1711534114] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue regeneration relies on adult stem cells (SCs) that possess the ability to self-renew and produce differentiating progeny. In an analogous manner, the development of certain carcinomas depends on a small subset of tumor cells, called "tumor-initiating cells" (TICs), with SC-like properties. Mammary SCs (MaSCs) reside in the basal compartment of the mammary epithelium, and their neoplastic counterparts, mammary TICs (MaTICs), are thought to serve as the TICs for the claudin-low subtype of breast cancer. MaSCs and MaTICs both use epithelial-mesenchymal transition (EMT) programs to acquire SC properties, but the mechanism(s) connecting EMT programs to stemness remain unclear. Here we show that this depends on primary cilia, which are nonmotile, cell-surface structures that serve as platforms for receiving cues and enable activation of various signaling pathways. We show that MaSC and MaTIC EMT programs induce primary cilia formation and Hedgehog (Hh) signaling, which has previously been implicated in both MaSC and MaTIC function. Moreover, ablation of these primary cilia is sufficient to repress Hh signaling, the stemness of MaSCs, and the tumor-forming potential of MaTICs. Together, our findings establish primary ciliogenesis and consequent Hh signaling as a key mechanism by which MaSC and MaTIC EMT programs promote stemness and thereby support mammary tissue outgrowth and tumors of basal origin.
Collapse
|