1
|
Tucker SK, McLaurin DM, Hebert MD. Cajal body formation is regulated by coilin SUMOylation. J Cell Sci 2024; 137:jcs263447. [PMID: 39660502 DOI: 10.1242/jcs.263447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Cajal bodies (CBs) are membraneless organelles whose mechanism of formation is still not fully understood. Many proteins contribute to the formation of CBs, including Nopp140 (NOLC1), WRAP53 and coilin. Coilin is modified on multiple different lysine residues by SUMO, the small ubiquitin-like modifier. In addition to its accumulation in CBs, coilin is also found in the nucleoplasm, where its role is still being evaluated. Here, we demonstrate a novel mechanism of CB regulation by examining the interaction changes of coilin when its SUMOylation is disrupted. The impact of global SUMOylation inhibition and targeted disruption of coilin SUMOylation on CB formation was examined. We found that two types of global SUMOylation inhibition and expression of SUMO-deficient coilin mutants increased CB number but decreased CB size. Additionally, we saw via coimmunoprecipitation that a SUMO-deficient coilin mutant has altered interaction with Nopp140. This demonstrates increased mechanistic ties between CB formation and SUMOylation.
Collapse
Affiliation(s)
- Sara K Tucker
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Douglas M McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
2
|
Li Q, Liu Y, Zhang X. Biomolecular condensates in plant RNA silencing: insights into formation, function, and stress responses. THE PLANT CELL 2024; 36:227-245. [PMID: 37772963 PMCID: PMC10827315 DOI: 10.1093/plcell/koad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Biomolecular condensates are dynamic structures formed through diverse mechanisms, including liquid-liquid phase separation. These condensates have emerged as crucial regulators of cellular processes in eukaryotic cells, enabling the compartmentalization of specific biological reactions while allowing for dynamic exchange of molecules with the surrounding environment. RNA silencing, a conserved gene regulatory mechanism mediated by small RNAs (sRNAs), plays pivotal roles in various biological processes. Multiple types of biomolecular condensate, including dicing bodies, processing bodies, small interfering RNA bodies, and Cajal bodies, have been identified as key players in RNA silencing pathways. These biomolecular condensates provide spatial compartmentation for the biogenesis, loading, action, and turnover of small RNAs. Moreover, they actively respond to stresses, such as viral infections, and modulate RNA silencing activities during stress responses. This review summarizes recent advances in understanding of dicing bodies and other biomolecular condensates involved in RNA silencing. We explore their formation, roles in RNA silencing, and contributions to antiviral resistance responses. This comprehensive overview provides insights into the functional significance of biomolecular condensates in RNA silencing and expands our understanding of their roles in gene expression and stress responses in plants.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- HainanYazhou Bay Seed Lab, Sanya, China
| |
Collapse
|
3
|
Staněk D. Coilin and Cajal bodies. Nucleus 2023; 14:2256036. [PMID: 37682044 PMCID: PMC10494742 DOI: 10.1080/19491034.2023.2256036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
The nucleus of higher eukaryotes contains a number of structures that concentrate specific biomolecules and play distinct roles in nuclear metabolism. In recent years, the molecular mechanisms controlling their formation have been intensively studied. In this brief review, I focus on coilin and Cajal bodies. Coilin is a key scaffolding protein of Cajal bodies that is evolutionarily conserved in metazoans. Cajal bodies are thought to be one of the archetypal nuclear structures involved in the metabolism of several short non-coding nuclear RNAs. Yet surprisingly little is known about the structure and function of coilin, and a comprehensive model to explain the origin of Cajal bodies is also lacking. Here, I summarize recent results on Cajal bodies and coilin and discuss them in the context of the last three decades of research in this field.
Collapse
Affiliation(s)
- David Staněk
- Laboratory of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Kanno T, Chiou P, Wu MT, Lin WD, Matzke A, Matzke M. A GFP splicing reporter in a coilin mutant background reveals links between alternative splicing, siRNAs, and coilin function in Arabidopsis thaliana. G3 (BETHESDA, MD.) 2023; 13:jkad175. [PMID: 37539868 PMCID: PMC10542627 DOI: 10.1093/g3journal/jkad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 02/25/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Coilin is a scaffold protein essential for the structure of Cajal bodies, which are nucleolar-associated, nonmembranous organelles that coordinate the assembly of nuclear ribonucleoproteins (RNPs) including spliceosomal snRNPs. To study coilin function in plants, we conducted a genetic suppressor screen using a coilin (coi1) mutant in Arabidopsis thaliana and performed an immunoprecipitation-mass spectrometry analysis on coilin protein. The coi1 mutations modify alternative splicing of a GFP reporter gene, resulting in a hyper-GFP phenotype in young coi1 seedlings relative to the intermediate wild-type level. As shown here, this hyper-GFP phenotype is extinguished in older coi1 seedlings by posttranscriptional gene silencing triggered by siRNAs derived from aberrant splice variants of GFP pre-mRNA. In the coi1 suppressor screen, we identified suppressor mutations in WRAP53, a putative coilin-interacting protein; SMU2, a predicted splicing factor; and ZCH1, an incompletely characterized zinc finger protein. These suppressor mutations return the hyper-GFP fluorescence of young coi1 seedlings to the intermediate wild-type level. Additionally, coi1 zch1 mutants display more extensive GFP silencing and elevated levels of GFP siRNAs, suggesting the involvement of wild-type ZCH1 in siRNA biogenesis or stability. The immunoprecipitation-mass spectrometry analysis reinforced the roles of coilin in pre-mRNA splicing, nucleolar chromatin structure, and rRNA processing. The participation of coilin in these processes, at least some of which incorporate small RNAs, supports the hypothesis that coilin provides a chaperone for small RNA trafficking. Our study demonstrates the usefulness of the GFP splicing reporter for investigating alternative splicing, ribosome biogenesis, and siRNA-mediated silencing in the context of coilin function.
Collapse
Affiliation(s)
- Tatsuo Kanno
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Phebe Chiou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Ming-Tsung Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Genenet Technology (UK) Limited, 128 City Road, London EC1V 2NX, UK
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Antonius Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Marjori Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| |
Collapse
|
5
|
Taliansky ME, Love AJ, Kołowerzo-Lubnau A, Smoliński DJ. Cajal bodies: Evolutionarily conserved nuclear biomolecular condensates with properties unique to plants. THE PLANT CELL 2023; 35:3214-3235. [PMID: 37202374 PMCID: PMC10473218 DOI: 10.1093/plcell/koad140] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
Proper orchestration of the thousands of biochemical processes that are essential to the life of every cell requires highly organized cellular compartmentalization of dedicated microenvironments. There are 2 ways to create this intracellular segregation to optimize cellular function. One way is to create specific organelles, enclosed spaces bounded by lipid membranes that regulate macromolecular flux in and out of the compartment. A second way is via membraneless biomolecular condensates that form due to to liquid-liquid phase separation. Although research on these membraneless condensates has historically been performed using animal and fungal systems, recent studies have explored basic principles governing the assembly, properties, and functions of membraneless compartments in plants. In this review, we discuss how phase separation is involved in a variety of key processes occurring in Cajal bodies (CBs), a type of biomolecular condensate found in nuclei. These processes include RNA metabolism, formation of ribonucleoproteins involved in transcription, RNA splicing, ribosome biogenesis, and telomere maintenance. Besides these primary roles of CBs, we discuss unique plant-specific functions of CBs in RNA-based regulatory pathways such as nonsense-mediated mRNA decay, mRNA retention, and RNA silencing. Finally, we summarize recent progress and discuss the functions of CBs in responses to pathogen attacks and abiotic stresses, responses that may be regulated via mechanisms governed by polyADP-ribosylation. Thus, plant CBs are emerging as highly complex and multifunctional biomolecular condensates that are involved in a surprisingly diverse range of molecular mechanisms that we are just beginning to appreciate.
Collapse
Affiliation(s)
| | - Andrew J Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Agnieszka Kołowerzo-Lubnau
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| | - Dariusz Jan Smoliński
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| |
Collapse
|
6
|
Lett KE, McLaurin DM, Tucker SK, Hebert MD. The Cajal body marker protein coilin is SUMOylated and possesses SUMO E3 ligase-like activity. FRONTIERS IN RNA RESEARCH 2023; 1:1197990. [PMID: 39703804 PMCID: PMC11656447 DOI: 10.3389/frnar.2023.1197990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cajal bodies (CBs) are subnuclear domains that contribute to the biogenesis of several different classes of ribonucleoproteins (RNPs) including small nuclear RNPs. Only some cell types contain abundant CBs, such as neuronal cells and skeletal muscle, but CBs are invariant features of transformed cells. In contrast, coilin, the CB marker protein, is a ubiquitously expressed nuclear protein but the function of coilin in cell types that lack CBs is not well understood. We have previously shown that coilin promotes microRNA biogenesis by promoting phosphorylation of DGCR8, a component of the Microprocessor. Here we identify 7 additional residues of DGCR8 with decreased phosphorylation upon coilin knockdown. In addition to phosphorylation, the addition of a small ubiquitin-like modifier (SUMO) to DGCR8 also increases its stability. Because of coilin's role in the promotion of DGCR8 phosphorylation, we investigated whether coilin is involved in DGCR8 SUMOylation. We show that coilin knockdown results in global decrease of protein SUMOylation, including decreased DGCR8 and Sp100 (a PML body client protein) SUMOylation and decreased SMN expression. Alternatively, we found that coilin expression rescued Sp100 SUMOylation and increased DGCR8 and SMN levels in a coilin knockout cell line. Furthermore, we found that coilin facilitates RanGAP1 SUMOylation, interacts directly with components of the SUMOylation machinery (Ubc9 and SUMO2), and itself is SUMOylated in vitro and in vivo. In summary, we have identified coilin as a regulator of DGCR8 phosphorylation and a promotor of protein SUMOylation with SUMO E3 ligase-like activity.
Collapse
Affiliation(s)
- Katheryn E. Lett
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Douglas M. McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Sara K. Tucker
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D. Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
7
|
Abulfaraj AA, Alhoraibi HM, Mariappan K, Bigeard J, Zhang H, Almeida-Trapp M, Artyukh O, Abdulhakim F, Parween S, Pflieger D, Blilou I, Hirt H, Rayapuram N. Analysis of the Arabidopsis coilin mutant reveals a positive role of AtCOILIN in plant immunity. PLANT PHYSIOLOGY 2022; 190:745-761. [PMID: 35674377 PMCID: PMC9434284 DOI: 10.1093/plphys/kiac280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Biogenesis of ribonucleoproteins occurs in dynamic subnuclear compartments called Cajal bodies (CBs). COILIN is a critical scaffolding component essential for CB formation, composition, and activity. We recently showed that Arabidopsis (Arabidopsis thaliana) AtCOILIN is phosphorylated in response to bacterial elicitor treatment. Here, we further investigated the role of AtCOILIN in plant innate immunity. Atcoilin mutants are compromised in defense responses to bacterial pathogens. Besides confirming a role of AtCOILIN in alternative splicing (AS), Atcoilin showed differential expression of genes that are distinct from those of AS, including factors involved in RNA biogenesis, metabolism, plant immunity, and phytohormones. Atcoilin mutant plants have reduced levels of defense phytohormones. As expected, the mutant plants were more sensitive to the necrotrophic fungal pathogen Botrytis cinerea. Our findings reveal an important role for AtCOILIN in innate plant immunity.
Collapse
Affiliation(s)
- Aala A Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Hanna M Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21551 Jeddah, Saudi Arabia
| | - Kiruthiga Mariappan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jean Bigeard
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, Université de Paris, Orsay 91405, France
| | - Huoming Zhang
- Corelabs, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Marilia Almeida-Trapp
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Olga Artyukh
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Fatimah Abdulhakim
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Sabiha Parween
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Delphine Pflieger
- Universite Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048 38000, Grenoble, France
| | - Ikram Blilou
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | | | | |
Collapse
|
8
|
Muñoz-Díaz E, Sáez-Vásquez J. Nuclear dynamics: Formation of bodies and trafficking in plant nuclei. FRONTIERS IN PLANT SCIENCE 2022; 13:984163. [PMID: 36082296 PMCID: PMC9445803 DOI: 10.3389/fpls.2022.984163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 06/01/2023]
Abstract
The existence of the nucleus distinguishes prokaryotes and eukaryotes. Apart from containing most of the genetic material, the nucleus possesses several nuclear bodies composed of protein and RNA molecules. The nucleus is separated from the cytoplasm by a double membrane, regulating the trafficking of molecules in- and outwards. Here, we investigate the composition and function of the different plant nuclear bodies and molecular clues involved in nuclear trafficking. The behavior of the nucleolus, Cajal bodies, dicing bodies, nuclear speckles, cyclophilin-containing bodies, photobodies and DNA damage foci is analyzed in response to different abiotic stresses. Furthermore, we research the literature to collect the different protein localization signals that rule nucleocytoplasmic trafficking. These signals include the different types of nuclear localization signals (NLSs) for nuclear import, and the nuclear export signals (NESs) for nuclear export. In contrast to these unidirectional-movement signals, the existence of nucleocytoplasmic shuttling signals (NSSs) allows bidirectional movement through the nuclear envelope. Likewise, nucleolar signals are also described, which mainly include the nucleolar localization signals (NoLSs) controlling nucleolar import. In contrast, few examples of nucleolar export signals, called nucleoplasmic localization signals (NpLSs) or nucleolar export signals (NoESs), have been reported. The existence of consensus sequences for these localization signals led to the generation of prediction tools, allowing the detection of these signals from an amino acid sequence. Additionally, the effect of high temperatures as well as different post-translational modifications in nuclear and nucleolar import and export is discussed.
Collapse
Affiliation(s)
- Eduardo Muñoz-Díaz
- Centre National de la Recherche Scientifique (CNRS), Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
| | - Julio Sáez-Vásquez
- Centre National de la Recherche Scientifique (CNRS), Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
| |
Collapse
|
9
|
Lei Z, Wang L, Kim EY, Cho J. Phase separation of chromatin and small RNA pathways in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1256-1265. [PMID: 34585805 DOI: 10.1111/tpj.15517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Gene expression can be modulated by epigenetic mechanisms, including chromatin modifications and small regulatory RNAs. These pathways are unevenly distributed within a cell and usually take place in specific intracellular regions. Unfortunately, the fundamental driving force and biological relevance of such spatial differentiation is largely unknown. Liquid-liquid phase separation (LLPS) is a natural propensity of demixing liquid phases and has been recently suggested to mediate the formation of biomolecular condensates that are relevant to diverse cellular processes. LLPS provides a mechanistic explanation for the self-assembly of subcellular structures by which the efficiency and specificity of certain cellular reactions are achieved. In plants, LLPS has been observed for several key factors in the chromatin and small RNA pathways. For example, the formation of facultative and obligate heterochromatin involves the LLPS of multiple relevant factors. In addition, phase separation is observed in a set of proteins acting in microRNA biogenesis and the small interfering RNA pathway. In this Focused Review, we highlight and discuss the recent findings regarding phase separation in the epigenetic mechanisms of plants.
Collapse
Affiliation(s)
- Zhen Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Eun Yu Kim
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
10
|
Emenecker RJ, Holehouse AS, Strader LC. Emerging Roles for Phase Separation in Plants. Dev Cell 2020; 55:69-83. [PMID: 33049212 PMCID: PMC7577370 DOI: 10.1016/j.devcel.2020.09.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
The plant cell internal environment is a dynamic, intricate landscape composed of many intracellular compartments. Cells organize some cellular components through formation of biomolecular condensates-non-stoichiometric assemblies of protein and/or nucleic acids. In many cases, phase separation appears to either underly or contribute to the formation of biomolecular condensates. Many canonical membraneless compartments within animal cells form in a manner that is at least consistent with phase separation, including nucleoli, stress granules, Cajal bodies, and numerous additional bodies, regulated by developmental and environmental stimuli. In this Review, we examine the emerging roles for phase separation in plants. Further, drawing on studies carried out in other organisms, we identify cellular phenomenon in plants that might also arise via phase separation. We propose that plants make use of phase separation to a much greater extent than has been previously appreciated, implicating phase separation as an evolutionarily ancient mechanism for cellular organization.
Collapse
Affiliation(s)
- Ryan J Emenecker
- Department of Biology, Washington University, St. Louis, MO 63130, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, USA; Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, USA.
| | - Lucia C Strader
- Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, USA; Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA; Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
11
|
Zheng L, Hong P, Guo X, Li Y, Xie L. Rice stripe virus p2 Colocalizes and Interacts with Arabidopsis Cajal Bodies and Its Domains in Plant Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5182164. [PMID: 32685498 PMCID: PMC7317325 DOI: 10.1155/2020/5182164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 05/18/2020] [Indexed: 12/05/2022]
Abstract
p2 of rice stripe virus may translocate from the nucleus to the cytoplasm and recruit nucleolar functions to promote virus systemic movement. Cajal bodies (CBs) are nuclear components associated with the nucleolus, which play a major role in plant virus infection. Coilin, a marker protein of CBs, is essential for CB formation and function. Coilin contains three domains, the N-terminal, the center, and the C-terminal fragments. Using yeast two-hybrid, colocalization, and bimolecular fluorescence complementation (BiFC) approaches, we show that p2 interacts with the full-length of Arabidopsis thaliana coilin (Atcoilin), the center and C-terminal domain of Atcoilin in the nucleus. Moreover, the N-terminal is indispensable for Atcoilin to interact with Cajal bodies.
Collapse
Affiliation(s)
- Luping Zheng
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengxiang Hong
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaonan Guo
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yang Li
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Xie
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
12
|
Makhotenko AV, Khromov AV, Snigir EA, Makarova SS, Makarov VV, Suprunova TP, Kalinina NO, Taliansky ME. Functional Analysis of Coilin in Virus Resistance and Stress Tolerance of Potato Solanum tuberosum using CRISPR-Cas9 Editing. DOKL BIOCHEM BIOPHYS 2019; 484:88-91. [PMID: 31012023 DOI: 10.1134/s1607672919010241] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Indexed: 11/23/2022]
Abstract
The role of the nuclear protein coilin in the mechanisms of resistance of potato Solanum tuberosum cultivar Chicago to biotic and abiotic stresses was studied using the CRISPR-Cas9 technology. For the coilin gene editing, a complex consisting of the Cas9 endonuclease and a short guide RNA was immobilized on gold or chitosan microparticles and delivered into apical meristem cells by bioballistics or vacuum infiltration methods, respectively. Editing at least one allele of the coilin gene considerably increased the resistance of the edited lines to infection with the potato virus Y and their tolerance to salt and osmotic stress.
Collapse
Affiliation(s)
- A V Makhotenko
- Doka Gene Technologies Ltd, 141880, Rogachevo, Moscow oblast, Russia.,Moscow State University, 119234, Moscow, Russia
| | - A V Khromov
- Doka Gene Technologies Ltd, 141880, Rogachevo, Moscow oblast, Russia.,Moscow State University, 119234, Moscow, Russia
| | - E A Snigir
- Doka Gene Technologies Ltd, 141880, Rogachevo, Moscow oblast, Russia
| | - S S Makarova
- Doka Gene Technologies Ltd, 141880, Rogachevo, Moscow oblast, Russia.,Moscow State University, 119234, Moscow, Russia
| | - V V Makarov
- Doka Gene Technologies Ltd, 141880, Rogachevo, Moscow oblast, Russia
| | - T P Suprunova
- Doka Gene Technologies Ltd, 141880, Rogachevo, Moscow oblast, Russia
| | - N O Kalinina
- Doka Gene Technologies Ltd, 141880, Rogachevo, Moscow oblast, Russia. .,Moscow State University, 119234, Moscow, Russia.
| | - M E Taliansky
- Doka Gene Technologies Ltd, 141880, Rogachevo, Moscow oblast, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| |
Collapse
|
13
|
Podia V, Milioni D, Katsareli E, Valassakis C, Roussis A, Haralampidis K. Molecular and functional characterization of Arabidopsis thaliana VPNB1 gene involved in plant vascular development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:11-19. [PMID: 30466575 DOI: 10.1016/j.plantsci.2018.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 06/09/2023]
Abstract
Armadillo (ARM) repeat containing proteins constitute a large family in plants and are involved in diverse cellular functions, like signal transduction, proliferation and differentiation. In animals, ARM repeat proteins have been implicated in cancer development. In this study, we aimed in characterizing the VPNB1 gene from Arabidopsis thaliana and its role in plant development, by implementing a number of genetic and molecular approaches. AtVPNB1 encodes for an ARM repeat protein of unknown function, exclusively expressed in the cambium as well as in the differentiating xylem and phloem cells of the vascular system. Subcellular localization experiments showed that VPNB is confined in nucleoplasmic speckle-like structures unrelated to cajal bodies. Transgenic VPNB-impaired plants exhibit a slower growing phenotype and a non-canonical pattern of xylem tissue. On the contrary, VPNB overexpression lines display an inverted phenotype of increased growth, accompanied by an increased deposition of phloem and xylem cell layers. In line with the above data, qPCR analysis revealed a deregulation of several key master genes of secondary wall biosynthesis, underlining the involvement of VPNB1 in the regulation and differentiation of the root and shoot vascular tissue.
Collapse
Affiliation(s)
- Varvara Podia
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Botany, 15784 Athens, Greece.
| | - Dimitra Milioni
- Agricultural University of Athens, Department of Agricultural Biotechnology, Iera Odos 75, 11855 Athens, Greece.
| | - Efthimia Katsareli
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Botany, 15784 Athens, Greece.
| | - Chryssanthi Valassakis
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Botany, 15784 Athens, Greece.
| | - Andreas Roussis
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Botany, 15784 Athens, Greece.
| | - Kosmas Haralampidis
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Botany, 15784 Athens, Greece.
| |
Collapse
|
14
|
Love AJ, Yu C, Petukhova NV, Kalinina NO, Chen J, Taliansky ME. Cajal bodies and their role in plant stress and disease responses. RNA Biol 2017; 14:779-790. [PMID: 27726481 PMCID: PMC5519230 DOI: 10.1080/15476286.2016.1243650] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/19/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022] Open
Abstract
Cajal bodies (CBs) are distinct sub-nuclear structures that are present in eukaryotic living cells and are often associated with the nucleolus. CBs play important roles in RNA metabolism and formation of RNPs involved in transcription, splicing, ribosome biogenesis, and telomere maintenance. Besides these primary roles, CBs appear to be involved in additional functions that may not be directly related to RNA metabolism and RNP biogenesis. In this review, we assess possible roles of plant CBs in RNA regulatory pathways such as nonsense-mediated mRNA decay and RNA silencing. We also summarize recent progress and discuss new non-canonical functions of plant CBs in responses to stress and disease. It is hypothesized that CBs can regulate these responses via their interaction with poly(ADP ribose)polymerase (PARP), which is known to play an important role in various physiological processes including responses to biotic and abiotic stresses. It is suggested that CBs and their components modify PARP activities and functions.
Collapse
Affiliation(s)
- Andrew J. Love
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Chulang Yu
- State Key Laboratory Breeding Base for Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Natalia O. Kalinina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia
| | - Jianping Chen
- State Key Laboratory Breeding Base for Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Michael E. Taliansky
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
- State Key Laboratory Breeding Base for Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
15
|
Sawyer IA, Hager GL, Dundr M. Specific genomic cues regulate Cajal body assembly. RNA Biol 2017; 14:791-803. [PMID: 27715441 PMCID: PMC5519236 DOI: 10.1080/15476286.2016.1243648] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
The assembly of specialized sub-nuclear microenvironments known as nuclear bodies (NBs) is important for promoting efficient nuclear function. In particular, the Cajal body (CB), a prominent NB that facilitates spliceosomal snRNP biogenesis, assembles in response to genomic cues. Here, we detail the factors that regulate CB assembly and structural maintenance. These include the importance of transcription at nucleating gene loci, the grouping of these genes on human chromosomes 1, 6 and 17, as well as cell cycle and biochemical regulation of CB protein function. We also speculate on the correlation between CB formation and RNA splicing levels in neurons and cancer. The timing and location of these specific molecular events is critical to CB assembly and its contribution to genome function. However, further work is required to explore the emerging biophysical characteristics of CB assembly and the impact upon subsequent genome reorganization.
Collapse
Affiliation(s)
- Iain A. Sawyer
- Department of Cell Biology, Rosalind Franklin University of Medicine & Science, Chicago Medical School, North Chicago, IL, USA
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miroslav Dundr
- Department of Cell Biology, Rosalind Franklin University of Medicine & Science, Chicago Medical School, North Chicago, IL, USA
| |
Collapse
|
16
|
Staněk D, Fox AH. Nuclear bodies: news insights into structure and function. Curr Opin Cell Biol 2017; 46:94-101. [PMID: 28577509 DOI: 10.1016/j.ceb.2017.05.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/20/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
Abstract
The cell nucleus contains a number of different dynamic bodies that are variously composed of proteins and generally, but not always, specific RNA molecules. Recent studies have revealed new understanding about nuclear body formation and function in different aspects of nuclear metabolism. Here, we focus on findings describing the role of nuclear bodies in the biogenesis of specific ribonucleoprotein complexes, processing of key mRNAs, and subnuclear sequestration of protein factors. We highlight how nuclear bodies are involved in stress responses, innate immunity and tumorigenesis. We further review organization of nuclear bodies and principles that govern their assembly, highlighting the pivotal role of scaffolding noncoding RNAs, and liquid-liquid phase separation, which are transforming our picture of nuclear body formation.
Collapse
Affiliation(s)
- David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Archa H Fox
- School of Human Sciences and Molecular Sciences, The University of Western Australia and Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Crawley, 6009 Western Australia, Australia.
| |
Collapse
|
17
|
Abstract
Spliceosomal snRNPs are complex particles that proceed through a fascinating maturation pathway. Several steps of this pathway are closely linked to nuclear non-membrane structures called Cajal bodies. In this review, I summarize the last 20 y of research in this field. I primarily focus on snRNP biogenesis, specifically on the steps that involve Cajal bodies. I also evaluate the contribution of the Cajal body in snRNP quality control and discuss the role of snRNPs in Cajal body formation.
Collapse
Affiliation(s)
- David Staněk
- a Institute of Molecular Genetics, Czech Academy of Sciences , Prague , Czech Republic
| |
Collapse
|
18
|
Identification of Coilin Mutants in a Screen for Enhanced Expression of an Alternatively Spliced GFP Reporter Gene in Arabidopsis thaliana. Genetics 2016; 203:1709-20. [PMID: 27317682 PMCID: PMC4981272 DOI: 10.1534/genetics.116.190751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/09/2016] [Indexed: 02/02/2023] Open
Abstract
Coilin is a marker protein for subnuclear organelles known as Cajal bodies, which are sites of various RNA metabolic processes including the biogenesis of spliceosomal small nuclear ribonucleoprotein particles. Through self-associations and interactions with other proteins and RNA, coilin provides a structural scaffold for Cajal body formation. However, despite a conspicuous presence in Cajal bodies, most coilin is dispersed in the nucleoplasm and expressed in cell types that lack these organelles. The molecular function of coilin, particularly of the substantial nucleoplasmic fraction, remains uncertain. We identified coilin loss-of-function mutations in a genetic screen for mutants showing either reduced or enhanced expression of an alternatively spliced GFP reporter gene in Arabidopsis thaliana The coilin mutants feature enhanced GFP fluorescence and diminished Cajal bodies compared with wild-type plants. The amount of GFP protein is several-fold higher in the coilin mutants owing to elevated GFP transcript levels and more efficient splicing to produce a translatable GFP mRNA. Genome-wide RNA-sequencing data from two distinct coilin mutants revealed a small, shared subset of differentially expressed genes, many encoding stress-related proteins, and, unexpectedly, a trend toward increased splicing efficiency. These results suggest that coilin attenuates splicing and modulates transcription of a select group of genes. The transcriptional and splicing changes observed in coilin mutants are not accompanied by gross phenotypic abnormalities or dramatically altered stress responses, supporting a role for coilin in fine tuning gene expression. Our GFP reporter gene provides a sensitive monitor of coilin activity that will facilitate further investigations into the functions of this enigmatic protein.
Collapse
|
19
|
Brasil JN, Cabral LM, Eloy NB, Primo LMF, Barroso-Neto IL, Grangeiro LPP, Gonzalez N, Inzé D, Ferreira PCG, Hemerly AS. AIP1 is a novel Agenet/Tudor domain protein from Arabidopsis that interacts with regulators of DNA replication, transcription and chromatin remodeling. BMC PLANT BIOLOGY 2015; 15:270. [PMID: 26538092 PMCID: PMC4634149 DOI: 10.1186/s12870-015-0641-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/08/2015] [Indexed: 05/05/2023]
Abstract
BACKGROUND DNA replication and transcription are dynamic processes regulating plant development that are dependent on the chromatin accessibility. Proteins belonging to the Agenet/Tudor domain family are known as histone modification "readers" and classified as chromatin remodeling proteins. Histone modifications and chromatin remodeling have profound effects on gene expression as well as on DNA replication, but how these processes are integrated has not been completely elucidated. It is clear that members of the Agenet/Tudor family are important regulators of development playing roles not well known in plants. METHODS Bioinformatics and phylogenetic analyses of the Agenet/Tudor Family domain in the plant kingdom were carried out with sequences from available complete genomes databases. 3D structure predictions of Agenet/Tudor domains were calculated by I-TASSER server. Protein interactions were tested in two-hybrid, GST pulldown, semi-in vivo pulldown and Tandem Affinity Purification assays. Gene function was studied in a T-DNA insertion GABI-line. RESULTS In the present work we analyzed the family of Agenet/Tudor domain proteins in the plant kingdom and we mapped the organization of this family throughout plant evolution. Furthermore, we characterized a member from Arabidopsis thaliana named AIP1 that harbors Agenet/Tudor and DUF724 domains. AIP1 interacts with ABAP1, a plant regulator of DNA replication licensing and gene transcription, with a plant histone modification "reader" (LHP1) and with non modified histones. AIP1 is expressed in reproductive tissues and its down-regulation delays flower development timing. Also, expression of ABAP1 and LHP1 target genes were repressed in flower buds of plants with reduced levels of AIP1. CONCLUSIONS AIP1 is a novel Agenet/Tudor domain protein in plants that could act as a link between DNA replication, transcription and chromatin remodeling during flower development.
Collapse
Affiliation(s)
- Juliana Nogueira Brasil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Mors Cabral
- Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.
| | - Nubia B Eloy
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.
| | - Luiza M F Primo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Programa de Biologia Celular, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Letícia P Perdigão Grangeiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.
| | - Dirk Inzé
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.
| | - Paulo C G Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Adriana S Hemerly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Abstract
Initially identified as a marker of coiled bodies (now Cajal bodies or CBs), the protein coilin was discovered a quarter of century ago. Coilin is now known to scaffold the CB, but its structure and function are poorly understood. Nearly devoid of predicted structural motifs, coilin has numerous reported molecular interactions that must underlie its role in the formation and function of CBs. In this review, we summarize what we have learned in the past 25 years about coilin's structure, post-transcriptional modifications, and interactions with RNA and proteins. We show that genes with homology to human coilin are found in primitive metazoans and comment on differences among model organisms. Coilin's function in Cajal body formation and RNP metabolism will be discussed in the light of these developments.
Collapse
Affiliation(s)
- Martin Machyna
- a Department of Molecular Biophysics & Biochemistry ; Yale University ; New Haven , CT USA
| | | | | |
Collapse
|
21
|
Frege T, Uversky VN. Intrinsically disordered proteins in the nucleus of human cells. Biochem Biophys Rep 2015; 1:33-51. [PMID: 29124132 PMCID: PMC5668563 DOI: 10.1016/j.bbrep.2015.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/11/2015] [Indexed: 12/16/2022] Open
Abstract
Intrinsically disordered proteins are known to perform a variety of important functions such as macromolecular recognition, promiscuous binding, and signaling. They are crucial players in various cellular pathway and processes, where they often have key regulatory roles. Among vital cellular processes intimately linked to the intrinsically disordered proteins is transcription, an intricate biological performance predominantly developing inside the cell nucleus. With this work, we gathered information about proteins that exist in various compartments and sub-nuclear bodies of the nucleus of the human cells, with the goal of identifying which ones are highly disordered and which functions are ascribed to the disordered nuclear proteins.
Collapse
Affiliation(s)
- Telma Frege
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- GenomeNext LLC, 175 South 3rd Street, Suite 200, Columbus OH 43215, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer׳s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Biology, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
- Correspondence to: Department of Molecular, Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC07, Tampa, FL 33612, USA. Tel.: +1 813 974 5816; fax: +1 813 974 7357.
| |
Collapse
|
22
|
Petrovská B, Šebela M, Doležel J. Inside a plant nucleus: discovering the proteins. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1627-40. [PMID: 25697798 DOI: 10.1093/jxb/erv041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nuclear proteins are a vital component of eukaryotic cell nuclei and have a profound effect on the way in which genetic information is stored, expressed, replicated, repaired, and transmitted to daughter cells and progeny. Because of the plethora of functions, nuclear proteins represent the most abundant components of cell nuclei in all eukaryotes. However, while the plant genome is well understood at the DNA level, information on plant nuclear proteins remains scarce, perhaps with the exception of histones and a few other proteins. This lack of knowledge hampers efforts to understand how the plant genome is organized in the nucleus and how it functions. This review focuses on the current state of the art of the analysis of the plant nuclear proteome. Previous proteome studies have generally been designed to search for proteins involved in plant response to various forms of stress or to identify rather a modest number of proteins. Thus, there is a need for more comprehensive and systematic studies of proteins in the nuclei obtained at individual phases of the cell cycle, or isolated from various tissue types and stages of cell and tissue differentiation. All this in combination with protein structure, predicted function, and physical localization in 3D nuclear space could provide much needed progress in our understanding of the plant nuclear proteome and its role in plant genome organization and function.
Collapse
Affiliation(s)
- Beáta Petrovská
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 783 71 Olomouc, Czech Republic Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 783 71 Olomouc, Czech Republic
| |
Collapse
|
23
|
SART3-Dependent Accumulation of Incomplete Spliceosomal snRNPs in Cajal Bodies. Cell Rep 2015; 10:429-440. [PMID: 25600876 DOI: 10.1016/j.celrep.2014.12.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/18/2014] [Accepted: 12/13/2014] [Indexed: 12/16/2022] Open
Abstract
Cajal bodies (CBs) are evolutionarily conserved nuclear structures involved in the metabolism of spliceosomal small nuclear ribonucleoprotein particles (snRNPs). CBs are not present in all cell types, and the trigger for their formation is not yet known. Here, we depleted cells of factors required for the final steps of snRNP assembly and assayed for the presence of stalled intermediates in CBs. We show that depletion induces formation of CBs in cells that normally lack these nuclear compartments, suggesting that CB nucleation is triggered by an imbalance in snRNP assembly. Accumulation of stalled intermediates in CBs depends on the di-snRNP assembly factor SART3. SART3 is required for both the induction of CB formation as well as the tethering of incomplete snRNPs to coilin, the CB scaffolding protein. We propose a model wherein SART3 monitors tri-snRNP assembly and sequesters incomplete particles in CBs, thereby allowing cells to maintain a homeostatic balance of mature snRNPs in the nucleoplasm.
Collapse
|
24
|
Machyna M, Kehr S, Straube K, Kappei D, Buchholz F, Butter F, Ule J, Hertel J, Stadler PF, Neugebauer KM. The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies. Mol Cell 2014; 56:389-399. [PMID: 25514182 DOI: 10.1016/j.molcel.2014.10.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/25/2014] [Accepted: 10/02/2014] [Indexed: 12/21/2022]
Abstract
Coilin protein scaffolds Cajal bodies (CBs)-subnuclear compartments enriched in small nuclear RNAs (snRNAs)-and promotes efficient spliceosomal snRNP assembly. The molecular function of coilin, which is intrinsically disordered with no defined motifs, is poorly understood. We use UV crosslinking and immunoprecipitation (iCLIP) to determine whether mammalian coilin binds RNA in vivo and to identify targets. Robust detection of snRNA transcripts correlated with coilin ChIP-seq peaks on snRNA genes, indicating that coilin binding to nascent snRNAs is a site-specific CB nucleator. Surprisingly, several hundred small nucleolar RNAs (snoRNAs) were identified as coilin interactors, including numerous unannotated mouse and human snoRNAs. We show that all classes of snoRNAs concentrate in CBs. Moreover, snoRNAs lacking specific CB retention signals traffic through CBs en route to nucleoli, consistent with the role of CBs in small RNP assembly. Thus, coilin couples snRNA and snoRNA biogenesis, making CBs the cellular hub of small ncRNA metabolism.
Collapse
Affiliation(s)
- Martin Machyna
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Department of Molecular Biophysics & Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Korinna Straube
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Department of Molecular Biophysics & Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Dennis Kappei
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Frank Buchholz
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jana Hertel
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Karla M Neugebauer
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Department of Molecular Biophysics & Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
25
|
Niedojadło J, Kubicka E, Kalich B, Smoliński DJ. Poly(A) RNAs including coding proteins RNAs occur in plant Cajal bodies. PLoS One 2014; 9:e111780. [PMID: 25369024 PMCID: PMC4219776 DOI: 10.1371/journal.pone.0111780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022] Open
Abstract
The localisation of poly(A) RNA in plant cells containing either reticular (Allium cepa) or chromocentric (Lupinus luteus, Arabidopsis thaliana) nuclei was studied through in situ hybridisation. In both types of nuclei, the amount of poly(A) RNA was much greater in the nucleus than in the cytoplasm. In the nuclei, poly(A) RNA was present in structures resembling nuclear bodies. The molecular composition as well as the characteristic ultrastructure of the bodies containing poly(A) RNA demonstrated that they were Cajal bodies. We showed that some poly(A) RNAs in Cajal bodies code for proteins. However, examination of the localisation of active RNA polymerase II and in situ run-on transcription assays both demonstrated that CBs are not sites of transcription and that BrU-containing RNA accumulates in these structures long after synthesis. In addition, it was demonstrated that accumulation of poly(A) RNA occurs in the nuclei and CBs of hypoxia-treated cells. Our findings indicated that CBs may be involved in the later stages of poly(A) RNA metabolism, playing a role storage or retention.
Collapse
Affiliation(s)
- Janusz Niedojadło
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
- * E-mail:
| | - Ewa Kubicka
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Beata Kalich
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Dariusz J. Smoliński
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
26
|
Makarova SS, Solovyev AG, Morozov SY. RNA-binding properties of the plant protein Nt-4/1. BIOCHEMISTRY. BIOKHIMIIA 2014; 79:717-26. [PMID: 25108334 DOI: 10.1134/s000629791407013x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tobacco α-helical protein Nt-4/1 with unknown function forms ribonucleoprotein (RNP) complexes in vitro. Results obtained by retardation of RNP complexes in agarose gel were confirmed by Western-Northern hybridization. Several deletion and point mutants of Nt-4/1 were constructed, and the RNA-binding site was mapped in a positively charged region of the C-terminal domain of the protein. The results of this study and those described earlier support our hypothesis of the participation of Nt-4/1 protein in spreading RNA-containing pathogens in the plant.
Collapse
Affiliation(s)
- S S Makarova
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119234, Russia.
| | | | | |
Collapse
|
27
|
Enwerem II, Velma V, Broome HJ, Kuna M, Begum RA, Hebert MD. Coilin association with Box C/D scaRNA suggests a direct role for the Cajal body marker protein in scaRNP biogenesis. Biol Open 2014; 3:240-9. [PMID: 24659245 PMCID: PMC3988793 DOI: 10.1242/bio.20147443] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spliceosomal small nuclear ribonucleoproteins (snRNPs) are enriched in the Cajal body (CB). Guide RNAs, known as small Cajal body-specific RNAs (scaRNAs), direct modification of the small nuclear RNA (snRNA) component of the snRNP. The protein WRAP53 binds a sequence motif (the CAB box) found in many scaRNAs and the RNA component of telomerase (hTR) and targets these RNAs to the CB. We have previously reported that coilin, the CB marker protein, associates with certain non-coding RNAs. For a more comprehensive examination of the RNAs associated with coilin, we have sequenced the RNA isolated from coilin immunocomplexes. A striking preferential association of coilin with the box C/D scaRNAs 2 and 9, which lack a CAB box, was observed. This association varied by treatment condition and WRAP53 knockdown. In contrast, reduction of WRAP53 did not alter the level of coilin association with hTR. Additional studies showed that coilin degrades/processes scaRNA 2 and 9, associates with active telomerase and can influence telomerase activity. These findings suggest that coilin plays a novel role in the biogenesis of box C/D scaRNPs and telomerase.
Collapse
Affiliation(s)
- Isioma I Enwerem
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | | | | | |
Collapse
|
28
|
Shaw J, Love AJ, Makarova SS, Kalinina NO, Harrison BD, Taliansky ME. Coilin, the signature protein of Cajal bodies, differentially modulates the interactions of plants with viruses in widely different taxa. Nucleus 2014; 5:85-94. [PMID: 24637832 PMCID: PMC4028359 DOI: 10.4161/nucl.28315] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 12/28/2022] Open
Abstract
Cajal bodies (CBs) are distinct nuclear bodies physically and functionally associated with the nucleolus. In addition to their traditional function in coordinating maturation of certain nuclear RNAs, CBs participate in cell cycle regulation, development, and regulation of stress responses. A key "signature" component of CBs is coilin, the scaffolding protein essential for CB formation and function. Using an RNA silencing (loss-of-function) approach, we describe here new phenomena whereby coilin also affects, directly or indirectly, a variety of interactions between host plants and viruses that have RNA or DNA genomes. Moreover, the effects of coilin on these interactions are manifested differently: coilin contributes to plant defense against tobacco rattle virus (tobravirus), tomato black ring virus (nepovirus), barley stripe mosaic virus (hordeivirus), and tomato golden mosaic virus (begomovirus). In contrast, with potato virus Y (potyvirus) and turnip vein clearing virus (tobamovirus), coilin serves to increase virus pathogenicity. These findings show that interactions with coilin (or CBs) may involve diverse mechanisms with different viruses and that these mechanisms act at different phases of virus infection. Thus, coilin (CBs) has novel, unexpected natural functions that may be recruited or subverted by plant viruses for their own needs or, in contrast, are involved in plant defense mechanisms that suppress host susceptibility to the viruses.
Collapse
Affiliation(s)
- Jane Shaw
- Cell and Molecular Sciences; The James Hutton Institute; Dundee, UK
| | - Andrew J Love
- Cell and Molecular Sciences; The James Hutton Institute; Dundee, UK
| | - Svetlana S Makarova
- AN Belozersky Institute of Physico-Chemical Biology; Moscow State University; Moscow, Russia
| | - Natalia O Kalinina
- AN Belozersky Institute of Physico-Chemical Biology; Moscow State University; Moscow, Russia
| | - Bryan D Harrison
- Cell and Molecular Sciences; The James Hutton Institute; Dundee, UK
| | | |
Collapse
|