1
|
Sex differences in the auditory functions of rodents. Hear Res 2021; 419:108271. [PMID: 34074560 DOI: 10.1016/j.heares.2021.108271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND In humans, it is well known that females have better hearing than males. The mechanism of this influence of sex on auditory function in humans is not well understood. Testing the hypothesis of underlying mechanisms often relies on preclinical research, a field in which sex bias still exists unconsciously. Rodents are popular research models in hearing, thus it is crucial to understand the sex differences in these rodent models when studying health and disease in humans. OBJECTIVES This review aims to summarize the existing sex differences in the auditory functions of rodent species including mouse, rat, Guinea pig, Mongolian gerbil, and chinchilla. In addition, a concise summary of the hearing characteristics and the advantages and the drawbacks of conducting auditory experiments in each rodent species is provided. DESIGNS Manuscripts were identified in PubMed and Ovid Medline for the queries "Rodent", "Sex Characteristics", and "Hearing or Auditory Function". Manuscripts were included if they were original research, written in English, and use rodents. The content of each manuscript was screened for the sex of the rodents and the discussion of sex-based results. CONCLUSIONS The sex differences in auditory function of rodents are prevalent and influenced by multiple factors including physiological mechanisms, sex-based anatomical variations, and stimuli from the external environment. Such differences may play a role in understanding and explaining sex differences in hearing of humans and need to be taken into consideration for developing clinical therapies aim to improve auditory performances.
Collapse
|
2
|
胡 娜, 司 超, 张 治, 马 克, 张 亮. [Down-regulation of the Expression of Senescence Proteins P16 and P21 by Activating Connexin 43 in the Smooth Muscle of Spiral Modiolar Artery of Guinea Pigs]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:188-193. [PMID: 33829690 PMCID: PMC10408918 DOI: 10.12182/20210360504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To analyze the correlation between connexin 43 (Cx43) and the expression of P16 and P21, aging-related proteins, and to investigate the possible role of Cx43 in the development of cell senescence with an aging model prepared by D-galactose (D-gal) intervention in the vascular smooth muscle cells (VSMCs) of guinea pig spiral modiolar artery (SMA). METHODS The VSMCs of guinea pig SMA were cultured with the adhesion method, and the markers of VSMCs were detected with immunofluorescence technique. The experiment has a control group, a D-gal group, and a group that received D-gal and gap junction agonist AAP10 intervention, hereafter referred to as the AAP10 group. Cell Counting Kit-8 (CCK-8) was used to check VSMC activity and to determine the concentration and duration of D-gal intervention. The mRNA expression of Cx43 in each group was checked with qRT-PCR. The expression of Cx43, P16 and P21 proteins in each group was examined with the Western blot. The expression and distribution of P16 and P21 proteins were examined with immunofluorescence assay. RESULTS Immunofluorescence results showed that the positive expression rate of cell actin (α-SM-actin) was over 90%. CCK-8 results showed that the optimal concentration of D-gal intervention was 30 mg/mL and the intervention duration was 48 h. qRT-PCR test showed that the mRNA expression of Cx43 in VSMCs in the D-gal group was significantly lower than that in the control group ( P<0.01), while it is higher in the AAP10 group than that of the D-gal group ( P<0.01); Western blot assay showed that the Cx43 expression level in VSMCs in the D-gal group was significantly lower than that in the control group ( P<0.01) and the expression of P16 and P21 was significantly higher than that in the control group ( P<0.01), the expression of Cx43 protein in AAP10 group was significantly up-regulated compared with that in the D-gal group ( P<0.01), while the expression of P16 and P21 was down-regulated significantly ( P<0.01); The results of immunofluorescence showed that P16 and P21 were mainly expressed in the cell nucleus. Semi-quantitative analysis of fluorescence intensity showed that the level of P16 and P21 protein in the D-gal group was significantly higher than that in the control group, and the fluorescence intensity of AAP10 group was significantly lower than that in the D-gal group ( P<0.01). CONCLUSION Up-regulation of Cx43 expression can reverse the D-gal-induced abnormal expression of P16 and P21, two aging-related proteins, in SMA. It is suggested that Cx43 on SMA may be involved in D-gal-induced cell senescence, which provides a theoretical basis and possible intervention target for the delay of cell senescence.
Collapse
Affiliation(s)
- 娜 胡
- 石河子大学医学院 医学教学实验中心 (石河子 832000)Medical Teaching Experimental Center, Medicine School of Shihezi University, Shihezi 832000, China
| | - 超 司
- 石河子大学医学院 医学教学实验中心 (石河子 832000)Medical Teaching Experimental Center, Medicine School of Shihezi University, Shihezi 832000, China
| | - 治平 张
- 石河子大学医学院 医学教学实验中心 (石河子 832000)Medical Teaching Experimental Center, Medicine School of Shihezi University, Shihezi 832000, China
| | - 克涛 马
- 石河子大学医学院 医学教学实验中心 (石河子 832000)Medical Teaching Experimental Center, Medicine School of Shihezi University, Shihezi 832000, China
| | - 亮 张
- 石河子大学医学院 医学教学实验中心 (石河子 832000)Medical Teaching Experimental Center, Medicine School of Shihezi University, Shihezi 832000, China
| |
Collapse
|
3
|
Nunes KP, Webb RC. New insights into RhoA/Rho-kinase signaling: a key regulator of vascular contraction. Small GTPases 2020; 12:458-469. [PMID: 32970516 DOI: 10.1080/21541248.2020.1822721] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
While Rho-signalling controlling vascular contraction is a canonical mechanism, with the modern approaches used in research, we are advancing our understanding and details into this pathway are often uncovered. RhoA-mediated Rho-kinase is the major regulator of vascular smooth muscle cells and a key player manoeuvring other functions in these cells. The discovery of new interactions, such as oxidative stress and hydrogen sulphide with Rho signalling are emerging addition not only in the physiology of the smooth muscle, but especially in the pathophysiology of vascular diseases. Likewise, the interplay between ageing and Rho-kinase in the vasculature has been recently considered. Importantly, in smooth muscle contraction, this pathway may also be affected by sex hormones, and consequently, sex-differences. This review provides an overview of Rho signalling mediating vascular contraction and focuses on recent topics discussed in the literature affecting this pathway such as ageing, sex differences and oxidative stress.
Collapse
Affiliation(s)
- Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - R Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
4
|
Krishnamoorthy G, Reimann K, Wangemann P. Ryanodine-induced vasoconstriction of the gerbil spiral modiolar artery depends on the Ca 2+ sensitivity but not on Ca 2+ sparks or BK channels. BMC PHYSIOLOGY 2016; 16:6. [PMID: 27806708 PMCID: PMC5093982 DOI: 10.1186/s12899-016-0026-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/13/2016] [Indexed: 01/26/2023]
Abstract
Background In many vascular smooth muscle cells (SMCs), ryanodine receptor-mediated Ca2+ sparks activate large-conductance Ca2+-activated K+ (BK) channels leading to lowered SMC [Ca2+]i and vasodilation. Here we investigated whether Ca2+ sparks regulate SMC global [Ca2+]i and diameter in the spiral modiolar artery (SMA) by activating BK channels. Methods SMAs were isolated from adult female gerbils, loaded with the Ca2+-sensitive flourescent dye fluo-4 and pressurized using a concentric double-pipette system. Ca2+ signals and vascular diameter changes were recorded using a laser-scanning confocal imaging system. Effects of various pharmacological agents on Ca2+ signals and vascular diameter were analyzed. Results Ca2+ sparks and waves were observed in pressurized SMAs. Inhibition of Ca2+ sparks with ryanodine increased global Ca2+ and constricted SMA at 40 cmH2O but inhibition of Ca2+ sparks with tetracaine or inhibition of BK channels with iberiotoxin at 40 cmH2O did not produce a similar effect. The ryanodine-induced vasoconstriction observed at 40 cmH2O was abolished at 60 cmH2O, consistent with a greater Ca2+-sensitivity of constriction at 40 cmH2O than at 60 cmH2O. When the Ca2+-sensitivity of the SMA was increased by prior application of 1 nM endothelin-1, ryanodine induced a robust vasoconstriction at 60 cmH2O. Conclusions The results suggest that Ca2+ sparks, while present, do not regulate vascular diameter in the SMA by activating BK channels and that the regulation of vascular diameter in the SMA is determined by the Ca2+-sensitivity of constriction.
Collapse
Affiliation(s)
- Gayathri Krishnamoorthy
- Anatomy & Physiology Department, Cell Physiology Laboratory, Kansas State University, 228 Coles Hall, Manhattan, Kansas, 66506-5802, USA
| | - Katrin Reimann
- Anatomy & Physiology Department, Cell Physiology Laboratory, Kansas State University, 228 Coles Hall, Manhattan, Kansas, 66506-5802, USA.,Department of Otolaryngology-Head and Neck Surgery, Tübingen Hearing Research Centre, and Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Philine Wangemann
- Anatomy & Physiology Department, Cell Physiology Laboratory, Kansas State University, 228 Coles Hall, Manhattan, Kansas, 66506-5802, USA.
| |
Collapse
|
5
|
Khavandi K, Baylie RA, Sugden SA, Ahmed M, Csato V, Eaton P, Hill-Eubanks DC, Bonev AD, Nelson MT, Greenstein AS. Pressure-induced oxidative activation of PKG enables vasoregulation by Ca2+ sparks and BK channels. Sci Signal 2016; 9:ra100. [PMID: 27729550 DOI: 10.1126/scisignal.aaf6625] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activation of Ca2+-sensitive, large-conductance potassium (BK) channels in vascular smooth muscle cells (VSMCs) by local, ryanodine receptor-mediated Ca2+ signals (Ca2+ sparks) acts as a brake on pressure-induced (myogenic) vasoconstriction-a fundamental mechanism that regulates blood flow in small resistance arteries. We report that physiological intraluminal pressure within resistance arteries activated cGMP-dependent protein kinase (PKG) in VSMCs through oxidant-induced formation of an intermolecular disulfide bond between cysteine residues. Oxidant-activated PKG was required to trigger Ca2+ sparks, BK channel activity, and vasodilation in response to pressure. VSMCs from arteries from mice expressing a form of PKG that could not be activated by oxidants showed reduced Ca2+ spark frequency, and arterial preparations from these mice had decreased pressure-induced activation of BK channels. Thus, the absence of oxidative activation of PKG disabled the BK channel-mediated negative feedback regulation of vasoconstriction. Our results support the concept of a negative feedback control mechanism that regulates arterial diameter through mechanosensitive production of oxidants to activate PKG and enhance Ca2+ sparks.
Collapse
Affiliation(s)
- Kaivan Khavandi
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK.,King's College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, Saint Thomas' Hospital, London, SE1 7EH, UK
| | - Rachael A Baylie
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK
| | - Sarah A Sugden
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK
| | - Majid Ahmed
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK.,Department of Pharmacology, University of Vermont, Vermont, 05405-0068, USA
| | - Viktoria Csato
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK.,Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
| | - Philip Eaton
- King's College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, Saint Thomas' Hospital, London, SE1 7EH, UK
| | | | - Adrian D Bonev
- Department of Pharmacology, University of Vermont, Vermont, 05405-0068, USA
| | - Mark T Nelson
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK.,Department of Pharmacology, University of Vermont, Vermont, 05405-0068, USA
| | - Adam S Greenstein
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK
| |
Collapse
|
6
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
7
|
Intracellular acidification alters myogenic responsiveness and vasomotion of mouse middle cerebral arteries. J Cereb Blood Flow Metab 2014; 34:161-8. [PMID: 24192638 PMCID: PMC3887363 DOI: 10.1038/jcbfm.2013.192] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/24/2013] [Accepted: 10/06/2013] [Indexed: 11/08/2022]
Abstract
Intracellular pH (pHi) in the vascular wall modulates agonist-induced vasocontractile and vasorelaxant responses in mesenteric arteries, whereas effects on myogenic tone have been unsettled. We studied the role of Na(+),HCO3(-) cotransporter NBCn1 in mouse isolated middle cerebral arteries and the influence of pHi disturbances on myogenic tone. Na(+),HCO3(-) cotransport was abolished in arteries from NBCn1 knockout mice and steady-state pHi ∼0.3 units reduced compared with wild-type mice. Myogenic tone development was low under control conditions but increased on treatment with the NO-synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME). This effect of L-NAME was smaller in arteries from NBCn1 knockout than wild-type mice. Myogenic tone with L-NAME present was significantly lower in arteries from NBCn1 knockout than wild-type mice and was abolished by rho-kinase inhibitor Y-27632. The arteries displayed vasomotion, and this rhythmic contractile pattern was also attenuated in arteries from NBCn1 knockout mice. No differences in membrane potential or intracellular [Ca(2+)] were seen between arteries from NBCn1 knockout and wild-type mice. We propose that NO production and rho-kinase-dependent Ca(2+) sensitivity are reduced at low pHi in pressurized mouse middle cerebral arteries. This likely impedes the ability to adjust to changes in perfusion pressure and regulate cerebral blood flow.
Collapse
|