1
|
Karst H, Riera Llobet A, Joëls M, van der Veen R. Complex housing in adulthood state-dependently affects the excitation-inhibition balance in the infralimbic prefrontal cortex of male C57Bl/6 mice. Behav Brain Res 2025; 476:115233. [PMID: 39233145 DOI: 10.1016/j.bbr.2024.115233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
The prefrontal cortex (PFC) plays an important role in social behavior and is sensitive to stressful circumstances. Challenging life conditions might change PFC function and put individuals at risk for maladaptive social behavior. The excitation-inhibition (EI) balance of prefrontal neurons appears to play a crucial role in this process. Here, we examined how a challenging life condition in C57BL/6JolaHsd mice, i.e. group-housing 6 mice in a complex environment for 10 days in adulthood, changes the EI-balance of infralimbic prefrontal neurons in layer 2/3, compared to standard pair-housing. Slices were prepared from "undisturbed" mice, i.e. the first mouse taken from the cage, or mice taken ∼15 min later, who were mildly aroused after removal of the first mouse. We observed a housing-condition by arousal-state interaction, with in the complex housing group an elevated EI-balance in undisturbed and reduced EI-balance in mildly aroused animals, while no differences were observed in standard housed animals. The change was explained by a shift in mIPSC and mEPSC frequency, while amplitudes remained unaffected. Female mice showed no housing-by-state interaction, but a main effect of housing was found for mIPSCs, with a higher frequency in complex- versus standard-housed females. No effects were observed in males who were complex-housed from a young age onwards. Explorative investigations support a potential mediating role of corticosterone in housing effects on the EI-balance of males. We argue that taking the arousal state of individuals into account is necessary to better understand the consequences of exposure to challenging life conditions for prefrontal function.
Collapse
Affiliation(s)
- Henk Karst
- University of Amsterdam, Swammerdam Institute of Life Science, Amsterdam, the Netherlands; Utrecht University, University Medical Center Utrecht, Translational Neuroscience, Utrecht, the Netherlands
| | - Arianna Riera Llobet
- University of Amsterdam, Swammerdam Institute of Life Science, Amsterdam, the Netherlands
| | - Marian Joëls
- Utrecht University, University Medical Center Utrecht, Translational Neuroscience, Utrecht, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rixt van der Veen
- University of Amsterdam, Swammerdam Institute of Life Science, Amsterdam, the Netherlands; Centre for Urban Mental Health (UMH), University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Khalil MH. The BDNF-Interactive Model for Sustainable Hippocampal Neurogenesis in Humans: Synergistic Effects of Environmentally-Mediated Physical Activity, Cognitive Stimulation, and Mindfulness. Int J Mol Sci 2024; 25:12924. [PMID: 39684635 DOI: 10.3390/ijms252312924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
This paper bridges critical gaps through proposing a novel, environmentally mediated brain-derived neurotrophic factor (BDNF)-interactive model that promises to sustain adult hippocampal neurogenesis in humans. It explains how three environmental enrichment mechanisms (physical activity, cognitive stimulation, and mindfulness) can integratively regulate BDNF and other growth factors and neurotransmitters to support neurogenesis at various stages, and how those mechanisms can be promoted by the physical environment. The approach enables the isolation of specific environmental factors and their molecular effects to promote sustainable BDNF regulation by testing the environment's ability to increase BDNF immediately or shortly before it is consumed for muscle repair or brain update. This model offers a novel, feasible method to research environment enrichment and neurogenesis dynamics in real-world human contexts at the immediate molecular level, overcoming the confounds of complex environment settings and challenges of long-term exposure and structural plasticity changes. The model promises to advance understanding of environmental influences on the hippocampus to enhance brain health and cognition. This work bridges fundamental gaps in methodology and knowledge to facilitate more research on the enrichment-neuroplasticity interplay for humans without methodological limitations.
Collapse
|
3
|
Calder AE, Hase A, Hasler G. Effects of psychoplastogens on blood levels of brain-derived neurotrophic factor (BDNF) in humans: a systematic review and meta-analysis. Mol Psychiatry 2024:10.1038/s41380-024-02830-z. [PMID: 39613915 DOI: 10.1038/s41380-024-02830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Peripheral levels of brain-derived neurotrophic factor (BDNF) are often used as a biomarker for the rapid plasticity-promoting effects of ketamine, psychedelics, and other psychoplastogens in humans. However, studies analyzing peripheral BDNF after psychoplastogen exposure show mixed results. In this meta-analysis, we aimed to test whether the rapid upregulation of neuroplasticity seen in preclinical studies is detectable using peripheral BDNF in humans. METHODS This analysis was pre-registered (PROSPERO ID: CRD42022333096) and funded by the University of Fribourg. We systematically searched PubMed, Web of Science, and PsycINFO to meta-analyze the effects of all available psychoplastogens on peripheral BDNF levels in humans, including ketamine, esketamine, LSD, psilocybin, ayahuasca, DMT, MDMA, scopolamine, and rapastinel. Risk of bias was assessed using Cochrane Risk of Bias Tools. Using meta-regressions and mixed effects models, we additionally analyzed the impact of several potential moderators. RESULTS We included 29 studies and found no evidence that psychoplastogens elevate peripheral BDNF levels in humans (SMD = 0.024, p = 0.64). This result was not affected by drug, dose, blood fraction, participant age, or psychiatric diagnoses. In general, studies with better-controlled designs and fewer missing values reported smaller effect sizes. Later measurement timepoints showed minimally larger effects on BDNF. CONCLUSION These data suggest that peripheral BDNF levels do not change after psychoplastogen administration in humans. It is possible that peripheral BDNF is not an informative marker of rapid changes in neuroplasticity, or that preclinical findings on psychoplastogens and neuroplasticity may not translate to human subjects. Limitations of this analysis include the reliability and validity of BDNF measurement and low variation in some potential moderators. More precise methods of measuring rapid changes in neuroplasticity, including neuroimaging and stimulation-based methods, are recommended for future studies attempting to translate preclinical findings to humans.
Collapse
Affiliation(s)
- Abigail E Calder
- Molecular Psychiatry Lab, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Adrian Hase
- Molecular Psychiatry Lab, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Gregor Hasler
- Molecular Psychiatry Lab, Department of Medicine, University of Fribourg, Fribourg, Switzerland.
- Fribourg Mental Health Network, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.
- Lake Lucerne Institute, Vitznau, Switzerland.
| |
Collapse
|
4
|
Miranda M, Navas MC, Zanoni Saad MB, Piromalli Girado D, Weisstaub N, Bekinschtein P. Environmental enrichment in middle age rats improves spatial and object memory discrimination deficits. Front Behav Neurosci 2024; 18:1478656. [PMID: 39494036 PMCID: PMC11528545 DOI: 10.3389/fnbeh.2024.1478656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Changes in memory performance are one of the main symptoms of normal aging. The storage of similar experiences as different memories (ie. behavioral pattern separation), becomes less efficient as aging progresses. Studies have focused on hippocampus dependent spatial memories and their role in the aging related deficits in behavioral pattern separation (BPS) by targeting high similarity interference conditions. However, parahippocampal cortices such as the perirhinal cortex are also particularly vulnerable to aging. Middle age is thought to be the stage where mild mnemonic deficits begin to emerge. Therefore, a better understanding of the timing of the spatial and object domain memory impairment could shed light over how plasticity changes in the parahipocampal-hippocampal system affects mnemonic function in early aging. In the present work, we compared the performance of young and middle-aged rats in both spatial (spontaneous location recognition) and non-spatial (spontaneous object recognition) behavioral pattern separation tasks to understand the comparative progression of these deficits from early stages of aging. Moreover, we explored the impact of environmental enrichment (EE) as an intervention with important translational value. Although a bulk of studies have examined the contribution of EE for preventing age related memory decline in diverse cognitive domains, there is limited knowledge of how this intervention could specifically impact on BPS function in middle-aged animals. Here we evaluate the effects of EE as modulator of BPS, and its ability to revert the deficits caused by normal aging at early stages. We reveal a domain-dependent impairment in behavioral pattern separation in middle-aged rats, with spatial memories affected independently of the similarity of the experiences and object memories only affected when the stimuli are similar, an effect that could be linked to the higher interference seen in this group. Moreover, we found that EE significantly enhanced behavioral performance in middle-aged rats in the spatial and object domain, and this improvement is specific of the high similarity load condition. In conclusion, these results suggest that memory is differentially affected by aging in the object and spatial domains, but that BPS function is responsive to an EE intervention in a multidomain manner.
Collapse
|
5
|
Voinescu A, Papaioannou T, Petrini K, Stanton Fraser D. Exergaming for dementia and mild cognitive impairment. Cochrane Database Syst Rev 2024; 9:CD013853. [PMID: 39319863 PMCID: PMC11423707 DOI: 10.1002/14651858.cd013853.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
BACKGROUND Dementia and mild cognitive impairment are significant contributors to disability and dependency in older adults. Current treatments for managing these conditions are limited. Exergaming, a novel technology-driven intervention combining physical exercise with cognitive tasks, is a potential therapeutic approach. OBJECTIVES To assess the effects of exergaming interventions on physical and cognitive outcomes, and activities of daily living, in people with dementia and mild cognitive impairment. SEARCH METHODS On 22 December 2023, we searched the Cochrane Dementia and Cognitive Improvement Group's register, MEDLINE (Ovid SP), Embase (Ovid SP), PsycINFO (Ovid SP), CINAHL (EBSCOhost), Web of Science Core Collection (Clarivate), LILACS (BIREME), ClinicalTrials.gov, and the WHO (World Health Organization) meta-register the International Clinical Trials Registry Portal. SELECTION CRITERIA We included randomised controlled trials (RCTs) that recruited individuals diagnosed with dementia or mild cognitive impairment (MCI). Exergaming interventions involved participants being engaged in physical activity of at least moderate intensity, and used immersive and non-immersive virtual reality (VR) technology and real-time interaction. We planned to classify comparators as inactive control group (e.g. no treatment, waiting list), active control group (e.g. standard treatment, non-specific active control), or alternative treatment (e.g. physical activity, computerised cognitive training). Outcomes were to be measured using validated instruments. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies for inclusion, extracted data, assessed the risk of bias using the Cochrane risk of bias tool RoB 2, and assessed the certainty of the evidence using GRADE. We consulted a third author if required. Where possible, we pooled outcome data using a fixed-effect or random-effects model. We expressed treatment effects as standardised mean differences (SMDs) for continuous outcomes and as risk ratios (RRs) for dichotomous outcomes, along with 95% confidence intervals (CIs). When data could not be pooled, we presented a narrative synthesis. MAIN RESULTS We included 11 studies published between 2014 and 2023. Six of these studies were pre-registered. Seven studies involved 308 participants with mild cognitive impairment, and five studies included 228 individuals with dementia. One of the studies presented data for both MCI and dementia separately. Most comparisons exhibited a high risk or some concerns of bias. We have only low or very low certainty about all the results presented below. Effects of exergaming interventions for people with dementia Compared to a control group Exergaming may improve global cognitive functioning at the end of treatment, but the evidence is very uncertain (SMD 1.47, 95% 1.04 to 1.90; 2 studies, 113 participants). The evidence is very uncertain about the effects of exergaming at the end of treatment on global physical functioning (SMD -0.20, 95% -0.57 to 0.17; 2 studies, 113 participants) or activities of daily living (ADL) (SMD -0.28, 95% -0.65 to 0.09; 2 studies, 113 participants). The evidence is very uncertain about adverse effects due to the small sample size and no events. Findings are based on two studies (113 participants), but data could not be pooled; both studies reported no adverse reactions linked to the intervention or control group. Compared to an alternative treatment group At the end of treatment, the evidence is very uncertain about the effects of exergaming on global physical functioning (SMD 0.14, 95% -0.30 to 0.58; 2 studies, 85 participants) or global cognitive functioning (SMD 0.11, 95% -0.33 to 0.55; 2 studies, 85 participants). For ADL, only one study was available (n = 67), which provided low-certainty evidence of little to no difference between exergaming and exercise. The evidence is very uncertain about adverse effects of exergaming compared with alternative treatment (RR 7.50, 95% CI 0.41 to 136.52; 2 studies, 2/85 participants). Effects of exergaming interventions for people with mild cognitive impairment (MCI) Compared to a control group Exergaming may improve global cognitive functioning at the end of treatment for people with MCI, but the evidence is very uncertain, (SMD 0.79, 95% 0.05 to 1.53; 2 studies, 34 participants). The evidence is very uncertain about the effects of exergaming at the end of treatment on global physical functioning (SMD 0.27, 95% -0.41 to 0.94; 2 studies, 34 participants) and ADL (SMD 0.51, 95% -0.01 to 1.03; 2 studies, 60 participants). The evidence is very uncertain about the effects of exergaming on adverse effects due to a small sample size and no events (0/14 participants). Findings are based on one study. Compared to an alternative treatment group The evidence is very uncertain about global physical functioning at the end of treatment. Only one study was included (n = 45). For global cognitive functioning, we included four studies (n = 235 participants), but due to considerable heterogeneity (I² = 96%), we could not pool results. The evidence is very uncertain about the effects of exergaming on global cognitive functioning. No study evaluated ADL outcomes. The evidence is very uncertain about adverse effects of exergaming due to the small sample size and no events (n = 123 participants). Findings are based on one study. AUTHORS' CONCLUSIONS Overall, the evidence is very uncertain about the effects of exergaming on global physical and cognitive functioning, and ADL. There may be an improvement in global cognitive functioning at the end of treatment for both people with dementia and people with MCI, but the evidence is very uncertain. The potential benefit is observed only when exergaming is compared with a control intervention (e.g. usual care, listening to music, health education), and not when compared with an alternative treatment with a specific effect, such as physical activity (e.g. standing and sitting exercises or cycling). The evidence is very uncertain about the effects of exergaming on adverse effects. All sessions took place in a controlled and supervised environment. Therefore, we do not know if exergaming can be safely used in a home environment, unsupervised.
Collapse
Affiliation(s)
| | | | - Karin Petrini
- Department of Psychology, University of Bath, Bath, UK
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, UK
| | | |
Collapse
|
6
|
Liu G, Xie C, Li J, Jiang X, Tang H, Li C, Zhang K. Enriched environment treatment promotes neurofunctional recovery by regulating the ALK5/Smad2/3/Gadd45β signaling pathway in rats with cerebral ischemia /reperfusion injury. Neurochem Int 2024; 178:105806. [PMID: 39025366 DOI: 10.1016/j.neuint.2024.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
It has been demonstrated that an enriched environment (EE) treatment can alter neuroplasticity in neurodegenerative diseases. However, the role of EE treatment in ischemic stroke remains unclear. Previous findings have revealed that EE treatment can promote cerebral activin-receptor-like-kinase-5 (ALK5) expression after cerebral ischemia/reperfusion (I/R) injury. ALK5 has been identified as a potential mediator of neuroplasticity through its modulation of Smad2/3 and Gadd45β. Therefore, the aim of this study was to investigate whether EE treatment could promote neurofunctional recovery by regulating the ALK5/Smad2/3/Gadd45β pathway. The study utilized the rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). The ALK5/Smad2/3/Gadd45β signaling pathway changes were evaluated using western blotting (WB). Brain injury was assessed by infarct volume and neurobehavioral scores. The effect of EE treatment on neurogenesis was evaluated using Doublecortin (DCX) and Nestin, axonal plasticity with biotinylated dextran amine (BDA) nerve tracing, and dendritic plasticity was assessed using Golgi-Cox staining. EE treatment has been demonstrated to modulate the Smad2/3/Gadd45β pathway by regulating the expression of ALK5. The protective effects of EE treatment on brain infarct volume, neurological function, newborn neurons, dendritic and axonal plasticity following cerebral I/R injury were counteracted by ALK5 silencing. EE treatment can enhance neurofunctional recovery after cerebral I/R injury, which is achieved by regulating the ALK5/Smad2/3/Gadd45β signaling pathway to promote neuroplasticity.
Collapse
Affiliation(s)
- Gang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, Sichuan Province, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jiani Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xia Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hao Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Changqing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Keming Zhang
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China.
| |
Collapse
|
7
|
Khalil MH. Neurosustainability. Front Hum Neurosci 2024; 18:1436179. [PMID: 39268220 PMCID: PMC11390526 DOI: 10.3389/fnhum.2024.1436179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
While the human brain has evolved extraordinary abilities to dominate nature, modern living has paradoxically trapped it in a contemporary "cage" that stifles neuroplasticity. Within this modern environment lurk unseen natural laws with power to sustain the human brain's adaptive capacities - if consciously orchestrated into the environments we design. For too long our contemporary environments have imposed an unyielding static state, while still neglecting the brain's constant adaptive nature as it evolves to dominate the natural world with increasing sophistication. The theory introduced in this article aims to go back in nature without having to go back in time, introducing and expounding Neurosustainability as a novel paradigm seeing beyond the contemporary confines to architect environments and brains in parallel. Its integrated neuro-evidenced framework proposes four enrichment scopes-spatial, natural, aesthetic, and social-each holding multifaceted attributes promising to sustain regions like the hippocampus, cortex and amygdala. Neurosustainability aims to liberate the quintessential essence of nature to sustain and enhance neuroplastic processes through a cycle that begins with design and extends through epigenetic changes. This paradigm shift aims to foster cognitive health and wellness by addressing issues like stress, depression, anxiety and cognitive decline common in the contemporary era thereby offering a path toward a more neurosustainable era aiming to nurture the evolution of the human brain now and beyond.
Collapse
Affiliation(s)
- Mohamed Hesham Khalil
- Department of Architecture, Faculty of Architecture and History of Art, School of Arts and Humanities, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Khalil MH. Environmental enrichment: a systematic review on the effect of a changing spatial complexity on hippocampal neurogenesis and plasticity in rodents, with considerations for translation to urban and built environments for humans. Front Neurosci 2024; 18:1368411. [PMID: 38919908 PMCID: PMC11196820 DOI: 10.3389/fnins.2024.1368411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Hippocampal neurogenesis is critical for improving learning, memory, and spatial navigation. Inhabiting and navigating spatial complexity is key to stimulating adult hippocampal neurogenesis (AHN) in rodents because they share similar hippocampal neuroplasticity characteristics with humans. AHN in humans has recently been found to persist until the tenth decade of life, but it declines with aging and is influenced by environmental enrichment. This systematic review investigated the impact of spatial complexity on neurogenesis and hippocampal plasticity in rodents, and discussed the translatability of these findings to human interventions. Methods Comprehensive searches were conducted on three databases in English: PubMed, Web of Science, and Scopus. All literature published until December 2023 was screened and assessed for eligibility. A total of 32 studies with original data were included, and the process is reported in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and checklist. Results The studies evaluated various models of spatial complexity in rodents, including environmental enrichment, changes to in-cage elements, complex layouts, and navigational mazes featuring novelty and intermittent complexity. A regression equation was formulated to synthesize key factors influencing neurogenesis, such as duration, physical activity, frequency of changes, diversity of complexity, age, living space size, and temperature. Conclusion Findings underscore the cognitive benefits of spatial complexity interventions and inform future translational research from rodents to humans. Home-cage enrichment and models like the Hamlet complex maze and the Marlau cage offer insight into how architectural design and urban navigational complexity can impact neurogenesis in humans. In-space changing complexity, with and without physical activity, is effective for stimulating neurogenesis. While evidence on intermittent spatial complexity in humans is limited, data from the COVID-19 pandemic lockdowns provide preliminary evidence. Existing equations relating rodent and human ages may allow for the translation of enrichment protocol durations from rodents to humans.
Collapse
|
9
|
Li Y, Lu J, Zhang J, Gui W, Xie W. Molecular insights into enriched environments and behavioral improvements in autism: a systematic review and meta-analysis. Front Psychiatry 2024; 15:1328240. [PMID: 38362032 PMCID: PMC10867156 DOI: 10.3389/fpsyt.2024.1328240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Aims Autism is a multifaceted developmental disorder of the nervous system, that necessitates novel therapeutic approaches beyond traditional medications and psychosomatic therapy, such as appropriate sensory integration training. This systematic mapping review aims to synthesize existing knowledge on enriching environmental interventions as an alternative avenue for improving autism, guiding future research and practice. Method A comprehensive search using the terms ASD and Enriched Environment was conducted across PubMed, EMBASE, ISI, Cochrane, and OVID databases. Most of the literature included in this review was derived from animal model experiments, with a particular focus on assessing the effect of EE on autism-like behavior, along with related pathways and molecular mechanisms. Following extensive group discussion and screening, a total of 19 studies were included for analysis. Results Enriched environmental interventions exhibited the potential to induce both behavioral and biochemical changes, ameliorating autism-like behaviors in animal models. These improvements were attributed to the targeting of BDNF-related pathways, enhanced neurogenesis, and the regulation of glial inflammation. Conclusion This paper underscores the positive impact of enriched environmental interventions on autism through a review of existing literature. The findings contribute to a deeper understanding of the underlying brain mechanisms associated with this intervention.
Collapse
Affiliation(s)
- Yutong Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jing Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jing Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenxin Gui
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Weijie Xie
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Smith KB, Murack M, Sharani SA, Ismail N. Environmental Enrichment Cage for Laboratory Mice: A Downloadable Alternative. Curr Protoc 2024; 4:e913. [PMID: 38230543 DOI: 10.1002/cpz1.913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Environmentally enriched housing (EE) provides a stimulating and species-typical environment that enhances brain plasticity and cognition, while reducing disease severity in laboratory animals. However, standardizing EE protocols has been challenging due to issues such as variability, high pricing, or limited laboratory space. To address these challenges, we present a replicable and cost-efficient cage protocol that is accessible to researchers with limited resources and space constraints. The protocol is designed to provide a stimulating and species-typical environment for the animals. It incorporates elements such as social interaction, physical exercise, cognitive stimulation, manipulable objects, environmental variability, and sensory stimulation. As evidenced in our previous studies using our protocol, users can expect to observe similar neuroplastic and health-wise benefits that accompany EE experimental paradigms. These included straightforward step-by-step guide, which allows for construction of functional EE cages in under 8 hr. Basic knowledge of 3D printing and laser cutting is required, but no advanced skills are necessary. The protocol enables researchers to create stimulating and replicable environments that promote animal welfare, enhance brain plasticity, and yield valuable experimental results for low cost. © 2024 Wiley Periodicals LLC. Basic Protocol: An effective and cost-efficient environmental enrichment cage designed to encourage standardization amongst laboratory protocols.
Collapse
Affiliation(s)
- Kevin B Smith
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Michael Murack
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Sara Al Sharani
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Nafissa Ismail
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
- University of Ottawa LIFE Research Institute, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Chen X, Wang W, Li H, Zhang X. Enriched environment alleviates neurological deficits via downregulation of Cx43 after experimental stroke. Brain Res 2023; 1821:148619. [PMID: 37805009 DOI: 10.1016/j.brainres.2023.148619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
While it has been demonstrated that enriched environment (EE) can protect against cerebral ischemia/reperfusion (I/R) injury, the underlying mechanism remains largely unknown. Connexin 43 (Cx43) is a key component of gap junctions, which may mediate cell-to-cell communication in neural cells. This study aimed to investigate the neuroprotective effects of EE against cerebral I/R injury in rats by modulating Cx43. A rat model of cerebral I/R injury was established by middle cerebral artery occlusion (MCAO)/reperfusion. Rats were randomly divided into the sham, MCAO, MCAO + EE, MCAO + Gap19, and MCAO + EE + Gap19 groups. The modified neurological severity score test and Morris water maze assay were used to assess neurological deficits. The infarct volume was measured using triphenyltetrazolium chloride (TTC) staining. Neuronal survival was detected by immunofluorescence. The indices of oxidative stress were determined using ELISA, and the reactive oxygen species levels were determined using a dihydroethidium probe. Cx43 and inflammation-related protein expression levels were also measured using western blotting and immunohistochemistry. EE and Gap19 treatment significantly improved neurological deficits, reduced infarct volumes, attenuated neuronal injury, and suppressed inflammatory cytokine expression and oxidative stress. Furthermore, EE and Gap19 treatment notably downregulated the expression of Cx43 and the inflammation-related pathway TLR4/MyD88/NF-κB in the ischemic penumbra. Gap19, a Cx43 inhibitor, markedly enhanced the neuroprotective effects of EE in rats with cerebral I/R injury. EE treatment protects against cerebral I/R injury in rats via Cx43 downregulation. Our findings may shed light on the mechanism underlying the protective efficacy of EE.
Collapse
Affiliation(s)
- Xiuping Chen
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wansong Wang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin 2rd, Shanghai 200025, China.
| | - Xin Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Street, Wuhan 430071, Hubei, China.
| |
Collapse
|
12
|
Feng X, Zhang Z, Jin T, Shi P. Effects of open and closed skill exercise interventions on executive function in typical children: a meta-analysis. BMC Psychol 2023; 11:420. [PMID: 38037184 PMCID: PMC10690989 DOI: 10.1186/s40359-023-01317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/08/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND The effects of open and closed skill exercise interventions for executive function in children and adolescents have received widespread attention. Open skill refers to the skill of performing motor tasks in an unpredictable environment; closed skill refers to the skill of performing motor tasks in a stable environment. However, the results of related studies are currently controversial and Meta-analysis is urgently needed. METHODS After computer searches of CNKI, Wan-Fang, VIP, WOS, PubMed, and EBSCO databases, two researchers independently screened articles, extracted information, and evaluated the quality of the articles. This study was statistical analyzed using Stata 16.0 software. RESULTS A total of 31 articles were included, including 2988 typical children. Open, closed, continuous and sequential skills all improved executive function in typical children to varying degrees, but open and sequential skills were more effective in improving executive function, particularly in the former in the working memory (SMD=-0.833, P < 0.001) and in the latter in the inhibitory control (SMD=-0.834, P < 0.001) and cognitive flexibility (SMD=-0.903, P < 0.001). Long-term, moderate- intensity interventions were better than acute, vigorous-intensity interventions for executive function, with long-term interventions reflected in working memory (SMD=-0.579, P < 0.001) and moderate-intensity interventions reflected in all three dimensions of executive function (P < 0.01). Intervention periods, intervention intensity and continuous and sequential skills classified by action structure play a significant moderating role. Better results for long-term, sequential structural action interventions based on open skills (P < 0.001); better results for acute, moderate intensity, sequential structural action interventions based on closed (P < 0.05). Whereas intervention intensity had a non-significant moderating effect in the open skills intervention, both moderate and vigorous intensity had a significant effect on executive function (P < 0.001). CONCLUSION Open and closed skills have different levels of facilitation effects on executive function in typical children, but open skills are more effective. The facilitation effects of open and closed skills were moderated by the qualitative characteristics and action structure of the intervention.
Collapse
Affiliation(s)
- Xiaosu Feng
- School of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Ziyun Zhang
- School of Life and Health, Huzhou College, Huzhou, 313002, China
| | - Teng Jin
- School of Physical Education, Northeast Normal University, Changchun, 130024, China
| | - Peng Shi
- School of Physical Education, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
13
|
Binder MS, Bordey A. Semi-natural housing rescues social behavior and reduces repetitive exploratory behavior of BTBR autistic-like mice. Sci Rep 2023; 13:16260. [PMID: 37758896 PMCID: PMC10533821 DOI: 10.1038/s41598-023-43558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023] Open
Abstract
Environmental enrichment confers numerous benefits when implemented in murine models and can reduce behavioral symptomatology in models of disease, such as autism spectrum disorder (ASD). However, previous work did not examine the impact of early-life environmental enrichment on each core feature of ASD. We thus implemented a social and physical enrichment at birth, modeling a semi-natural housing, and examined its impact on communicative, social, sensory, and repetitive behaviors using BTBR (autistic-like) and C57BL/6 J (B6, wildtype) mice, comparing them to standard housing conditions. We found that environmental enrichment alleviated the social deficit of juvenile BTBR mice and reduced their repetitive exploratory behavior but did not affect their rough versus smooth texture preference nor the number of maternal isolation-induced pup calls. Environmental enrichment only affected the call characteristics of B6 mice. One interpretation of these data is that early-life environmental enrichment has significant therapeutic potential to treat selective core features of ASD. Another interpretation is that reducing environmental complexity causes selective behavioral deficits in ASD-prone mice suggesting that current standard housing may be suboptimal. Overall, our data illustrate the extent to which the environment influences behavior and highlights the importance of considering housing conditions when designing experiments and interpreting behavioral results.
Collapse
Affiliation(s)
- Matthew S Binder
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8082, USA
| | - Angelique Bordey
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8082, USA.
| |
Collapse
|
14
|
Santos JL, Petsidou E, Saraogi P, Bartsch U, Gerber AP, Seibt J. Effect of Acute Enriched Environment Exposure on Brain Oscillations and Activation of the Translation Initiation Factor 4E-BPs at Synapses across Wakefulness and Sleep in Rats. Cells 2023; 12:2320. [PMID: 37759542 PMCID: PMC10528220 DOI: 10.3390/cells12182320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Brain plasticity is induced by learning during wakefulness and is consolidated during sleep. But the molecular mechanisms involved are poorly understood and their relation to experience-dependent changes in brain activity remains to be clarified. Localised mRNA translation is important for the structural changes at synapses supporting brain plasticity consolidation. The translation mTOR pathway, via phosphorylation of 4E-BPs, is known to be activate during sleep and contributes to brain plasticity, but whether this activation is specific to synapses is not known. We investigated this question using acute exposure of rats to an enriched environment (EE). We measured brain activity with EEGs and 4E-BP phosphorylation at cortical and cerebellar synapses with Western blot analyses. Sleep significantly increased the conversion of 4E-BPs to their hyperphosphorylated forms at synapses, especially after EE exposure. EE exposure increased oscillations in the alpha band during active exploration and in the theta-to-beta (4-30 Hz) range, as well as spindle density, during NREM sleep. Theta activity during exploration and NREM spindle frequency predicted changes in 4E-BP hyperphosphorylation at synapses. Hence, our results suggest a functional link between EEG and molecular markers of plasticity across wakefulness and sleep.
Collapse
Affiliation(s)
- José Lucas Santos
- Surrey Sleep Research Centre, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, UK; (J.L.S.); (U.B.)
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK
| | - Evlalia Petsidou
- Undergraduate Programme in Biological Science, University of Surrey, Guildford GU2 7XH, UK
- Postgraduate Programme in Neuroscience (MSc), Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, Egkomi 2371, Cyprus
| | - Pallavi Saraogi
- Undergraduate Programme in Biological Science, University of Surrey, Guildford GU2 7XH, UK
| | - Ullrich Bartsch
- Surrey Sleep Research Centre, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, UK; (J.L.S.); (U.B.)
- UK Dementia Research Institute, Care Research & Technology Centre at Imperial College London and University of Surrey, Guildford GU2 7XH, UK
| | - André P. Gerber
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Julie Seibt
- Surrey Sleep Research Centre, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, UK; (J.L.S.); (U.B.)
| |
Collapse
|
15
|
Coutens B, Lejards C, Bouisset G, Verret L, Rampon C, Guiard BP. Enriched environmental exposure reduces the onset of action of the serotonin norepinephrin reuptake inhibitor venlafaxine through its effect on parvalbumin interneurons plasticity in mice. Transl Psychiatry 2023; 13:227. [PMID: 37365183 DOI: 10.1038/s41398-023-02519-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Mood disorders are associated with hypothalamic-pituitary-adrenal axis overactivity resulting from a decreased inhibitory feedback exerted by the hippocampus on this brain structure. Growing evidence suggests that antidepressants would regulate hippocampal excitatory/inhibitory balance to restore an effective inhibition on this stress axis. While these pharmacological compounds produce beneficial clinical effects, they also have limitations including their long delay of action. Interestingly, non-pharmacological strategies such as environmental enrichment improve therapeutic outcome in depressed patients as in animal models of depression. However, whether exposure to enriched environment also reduces the delay of action of antidepressants remains unknown. We investigated this issue using the corticosterone-induced mouse model of depression, submitted to antidepressant treatment by venlafaxine, alone or in combination with enriched housing. We found that the anxio-depressive phenotype of male mice was improved after only two weeks of venlafaxine treatment when combined with enriched housing, which is six weeks earlier than mice treated with venlafaxine but housed in standard conditions. Furthermore, venlafaxine combined with exposure to enriched environment is associated with a reduction in the number of parvalbumin-positive neurons surrounded by perineuronal nets (PNN) in the mouse hippocampus. We then showed that the presence of PNN in depressed mice prevented their behavioral recovery, while pharmacological degradation of hippocampal PNN accelerated the antidepressant action of venlafaxine. Altogether, our data support the idea that non-pharmacological strategies can shorten the onset of action of antidepressants and further identifies PV interneurons as relevant actors of this effect.
Collapse
Affiliation(s)
- Basile Coutens
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France
| | - Guillaume Bouisset
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France
| | - Laure Verret
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France.
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France.
| |
Collapse
|
16
|
Li Z, Chen L, Xu C, Chen Z, Wang Y. Non-invasive sensory neuromodulation in epilepsy: Updates and future perspectives. Neurobiol Dis 2023; 179:106049. [PMID: 36813206 DOI: 10.1016/j.nbd.2023.106049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy, one of the most common neurological disorders, often is not well controlled by current pharmacological and surgical treatments. Sensory neuromodulation, including multi-sensory stimulation, auditory stimulation, olfactory stimulation, is a kind of novel noninvasive mind-body intervention and receives continued attention as complementary safe treatment of epilepsy. In this review, we summarize the recent advances of sensory neuromodulation, including enriched environment therapy, music therapy, olfactory therapy, other mind-body interventions, for the treatment of epilepsy based on the evidence from both clinical and preclinical studies. We also discuss their possible anti-epileptic mechanisms on neural circuit level and propose perspectives on possible research directions for future studies.
Collapse
Affiliation(s)
- Zhongxia Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liying Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
17
|
Landolfo E, Cutuli D, Decandia D, Balsamo F, Petrosini L, Gelfo F. Environmental Enrichment Protects against Neurotoxic Effects of Lipopolysaccharide: A Comprehensive Overview. Int J Mol Sci 2023; 24:ijms24065404. [PMID: 36982478 PMCID: PMC10049264 DOI: 10.3390/ijms24065404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Neuroinflammation is a pathophysiological condition associated with damage to the nervous system. Maternal immune activation and early immune activation have adverse effects on the development of the nervous system and cognitive functions. Neuroinflammation during adulthood leads to neurodegenerative diseases. Lipopolysaccharide (LPS) is used in preclinical research to mimic neurotoxic effects leading to systemic inflammation. Environmental enrichment (EE) has been reported to cause a wide range of beneficial changes in the brain. Based on the above, the purpose of the present review is to describe the effects of exposure to EE paradigms in counteracting LPS-induced neuroinflammation throughout the lifespan. Up to October 2022, a methodical search of studies in the literature, using the PubMed and Scopus databases, was performed, focusing on exposure to LPS, as an inflammatory mediator, and to EE paradigms in preclinical murine models. On the basis of the inclusion criteria, 22 articles were considered and analyzed in the present review. EE exerts sex- and age-dependent neuroprotective and therapeutic effects in animals exposed to the neurotoxic action of LPS. EE’s beneficial effects are present throughout the various ages of life. A healthy lifestyle and stimulating environments are essential to counteract the damages induced by neurotoxic exposure to LPS.
Collapse
Affiliation(s)
- Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Debora Cutuli
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Davide Decandia
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
- Correspondence:
| |
Collapse
|
18
|
Post-Stroke Environmental Enrichment Improves Neurogenesis and Cognitive Function and Reduces the Generation of Aberrant Neurons in the Mouse Hippocampus. Cells 2023; 12:cells12040652. [PMID: 36831319 PMCID: PMC9954243 DOI: 10.3390/cells12040652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Ischemic lesions stimulate adult neurogenesis in the dentate gyrus, however, this is not associated with better cognitive function. Furthermore, increased neurogenesis is associated with the formation of aberrant neurons. In a previous study, we showed that a running task after a stroke not only increases neurogenesis but also the number of aberrant neurons without improving general performance. Here, we determined whether stimulation in an enriched environment after a lesion could increase neurogenesis and cognitive function without enhancing the number of aberrant neurons. After an ischemic stroke induced by MCAO, animals were transferred to an enriched environment containing a running wheel, tunnels and nest materials. A GFP-retroviral vector was delivered on day 3 post-stroke and a modified water maze test was performed 6 weeks after the lesion. We found that the enriched environment significantly increased the number of new neurons compared with the unstimulated stroke group but not the number of aberrant cells after a lesion. Increased neurogenesis after environmental enrichment was associated with improved cognitive function. Our study showed that early placement in an enriched environment after a stroke lesion markedly increased neurogenesis and flexible learning but not the formation of aberrant neurons, indicating that rehabilitative training, as a combination of running wheel training and enriched environment housing, improved functional and structural outcomes after a stroke.
Collapse
|
19
|
Environmental enrichment augments binge-like alcohol drinking in Sardinian alcohol-preferring rats. Alcohol 2022; 105:1-7. [PMID: 36150612 DOI: 10.1016/j.alcohol.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 01/26/2023]
Abstract
Exposure of Sardinian alcohol-preferring (sP) rats to an enriched environment (EE) reduced different aspects of operant alcohol self-administration. The present study was aimed at expanding investigation of the effect of EE exposure upon a model of binge drinking composed of daily 1-h drinking sessions with unpredictable access to multiple alcohol concentrations; binge-like alcohol intakes were observed when the drinking session occurred at the last hours of the dark phase of the light/dark cycle. Starting from postnatal day (PND) 21, male sP rats were kept under three different housing conditions: impoverished environment (IE; single housing with no environmental enrichment); standard environment (SE; 3 rats/cage and no environmental enrichment); EE (6 rats/cage and multiple elements of environmental enrichment). From PND 69, rats were exposed daily to a 1-hour drinking session under the 4-bottle "alcohol (10%, 20%, and 30%, v/v) vs. water" choice regimen, during the dark phase, and with timing of alcohol exposure changed each day. In all three rat groups (IE, SE, and EE), alcohol intake increased progressively as the drinking session moved from the first to last hours of the dark phase. The slope of the regression line was steeper in EE than IE and SE rats, suggestive of higher intakes of alcohol in EE than IE and SE rats when the drinking session occurred over the last hours of the dark phase. These results are discussed hypothesizing that the stressful attributes of alcohol expectation were potentiated by the increased "emotionality" that rats living in a comfortable environment (i.e., EE) may experience when facing new, challenging events or environments. Blood alcohol levels, assessed at the end of a final drinking session occurring at the 12th hour of the dark phase, did not differ among the three rat groups and averaged approximately 150 mg%, confirming that this experimental procedure may generate intoxicating levels of alcohol drinking in sP rats.
Collapse
|
20
|
The Molecular Effects of Environmental Enrichment on Alzheimer's Disease. Mol Neurobiol 2022; 59:7095-7118. [PMID: 36083518 PMCID: PMC9616781 DOI: 10.1007/s12035-022-03016-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022]
Abstract
Environmental enrichment (EE) is an environmental paradigm encompassing sensory, cognitive, and physical stimulation at a heightened level. Previous studies have reported the beneficial effects of EE in the brain, particularly in the hippocampus. EE improves cognitive function as well as ameliorates depressive and anxiety-like behaviors, making it a potentially effective neuroprotective strategy against neurodegenerative diseases such as Alzheimer's disease (AD). Here, we summarize the current evidence for EE as a neuroprotective strategy as well as the potential molecular pathways that can explain the effects of EE from a biochemical perspective using animal models. The effectiveness of EE in enhancing brain activity against neurodegeneration is explored with a view to differences present in early and late life EE exposure, with its potential application in human being discussed. We discuss EE as one of the non pharmacological approaches in preventing or delaying the onset of AD for future research.
Collapse
|
21
|
Elkommos S, Mula M. Current and future pharmacotherapy options for drug-resistant epilepsy. Expert Opin Pharmacother 2022; 23:2023-2034. [PMID: 36154780 DOI: 10.1080/14656566.2022.2128670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Epilepsy is one of the most common and serious neurological conditions, affecting over 70 million individuals worldwide and despite advances in treatment, the proportion of drug-resistant patients has remained largely unchanged. AREAS COVERED The present paper reviews current and future (under preclinical and clinical development) pharmacotherapy options for the treatment of drug-resistant focal and generalized epilepsies. EXPERT OPINION Current pharmacotherapy options for drug-resistant epilepsy include perampanel, brivaracetam and the newly approved cenobamate for focal epilepsies; cannabidiol (Epidiolex) for Lennox-Gastaut Syndrome (LGS), Dravet and Tuberous Sclerosis Complex (TSC); fenfluramine for Dravet syndrome and ganaxolone for seizures in Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder. Many compounds are under clinical development and may hold promise for future pharmacotherapies. For adult focal epilepsies, padsevonil and carisbamate are at a more advanced Phase III stage of clinical development followed by compounds at Phase II like selurampanel, XEN1101 and JNJ-40411813. For specific epilepsy syndromes, XEN 496 is under Phase III development for potassium voltage-gated channel subfamily Q member 2 developmental and epileptic encephalopathy (KCNQ2-DEE), carisbamate is under Phase III development for LGS and Ganaxolone under Phase III development for TSC. Finally, in preclinical models several molecular targets including inhibition of glycolysis, neuroinflammation and sodium channel inhibition have been identified in animal models although further data in animal and later human studies are needed.
Collapse
Affiliation(s)
- Samia Elkommos
- School of Neuroscience, King's College London, United Kingdom.,Atkinson Morley Regional Neurosciences Centre, St George's University Hospitals, United Kingdom
| | - Marco Mula
- Atkinson Morley Regional Neurosciences Centre, St George's University Hospitals, United Kingdom.,Institute of Medical and Biomedical Education, St George's University London, United Kingdom
| |
Collapse
|
22
|
Gattas S, Collett HA, Huff AE, Creighton SD, Weber SE, Buckhalter SS, Manning SA, Ryait HS, McNaughton BL, Winters BD. A rodent obstacle course procedure controls delivery of enrichment and enhances complex cognitive functions. NPJ SCIENCE OF LEARNING 2022; 7:21. [PMID: 36057661 PMCID: PMC9440923 DOI: 10.1038/s41539-022-00134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Enrichment in rodents affects brain structure, improves behavioral performance, and is neuroprotective. Similarly, in humans, according to the cognitive reserve concept, enriched experience is functionally protective against neuropathology. Despite this parallel, the ability to translate rodent studies to human clinical situations is limited. This limitation is likely due to the simple cognitive processes probed in rodent studies and the inability to control, with existing methods, the degree of rodent engagement with enrichment material. We overcome these two difficulties with behavioral tasks that probe, in a fine-grained manner, aspects of higher-order cognition associated with deterioration with aging and dementia, and a new enrichment protocol, the 'Obstacle Course' (OC), which enables controlled enrichment delivery, respectively. Together, these two advancements will enable better specification (and comparisons) of the nature of impairments in animal models of complex mental disorders and the potential for remediation from various types of intervention (e.g., enrichment, drugs). We found that two months of OC enrichment produced substantial and sustained enhancements in categorization memory, perceptual object invariance, and cross-modal sensory integration in mice. We also tested mice on behavioral tasks previously shown to benefit from traditional enrichment: spontaneous object recognition, object location memory, and pairwise visual discrimination. OC enrichment improved performance relative to standard housing on all six tasks and was in most cases superior to conventional home-cage enrichment and exercise track groups.
Collapse
Affiliation(s)
- Sandra Gattas
- Department of Electrical Engineering and Computer Science, University of California, Irvine, CA, USA.
- Medical Scientist Training Program, University of California, Irvine, CA, USA.
| | - Heather A Collett
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Andrew E Huff
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Samantha D Creighton
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Siobhon E Weber
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | | | - Silas A Manning
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Hardeep S Ryait
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Bruce L McNaughton
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
23
|
Faraji J, Lotfi H, Moharrerie A, Jafari SY, Soltanpour N, Tamannaiee R, Marjani K, Roudaki S, Naseri F, Moeeini R, Metz GAS. Regional Differences in BDNF Expression and Behavior as a Function of Sex and Enrichment Type: Oxytocin Matters. Cereb Cortex 2022; 32:2985-2999. [PMID: 35059698 DOI: 10.1093/cercor/bhab395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2025] Open
Abstract
The early environment is critical to brain development, but the relative contribution of physical versus social stimulation is unclear. Here, we investigated in male and female rats the response to early physical and social environmental enrichment in relation to oxytocin (OT) and brain-derived neurotrophic factor (BDNF) expression. The findings show that males and females respond differently to prolonged sensorimotor stimulation from postnatal days 21-110 in terms of functional, structural, and molecular changes in the hippocampus versus medial prefrontal cortex (mPFC). Physical enrichment promoted motor and cognitive functions and hippocampal BDNF mRNA and protein expression in both sexes. Combined physical and social enrichment, however, promoted functional and structural gain in females. These changes were accompanied by elevated plasma oxytocin (OT) levels and BDNF mRNA expression in the mPFC, while the hippocampus was not affected. Administration of an OT antagonist in females blocked the beneficial effects of enrichment and led to reduced cortical BDNF signaling. These findings suggest that an OT-based mechanism selectively stimulates a region-specific BDNF response which is dependent on the type of experience.
Collapse
Affiliation(s)
- Jamshid Faraji
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K3M4, Canada
- Faculty of Nursing and Midwifery, Golestan University of Medical Sciences, Gorgan 4918936316, Iran
| | - Hamid Lotfi
- Department of Psychology, Islamic Azad University, Tonekabon 4684161167, Iran
| | - Alireza Moharrerie
- Department of Anatomy, Golestan University of Medical Sciences, Gorgan 4918936316, Iran
| | - S Yaghoob Jafari
- Faculty of Nursing and Midwifery, Golestan University of Medical Sciences, Gorgan 4918936316, Iran
| | - Nasrin Soltanpour
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K3M4, Canada
| | - Rosa Tamannaiee
- Department of Behavioural Studies, Avicenna Institute of Neuroscience, Yazd 4467330219, Iran
| | - Kameran Marjani
- Department of Behavioural Studies, Avicenna Institute of Neuroscience, Yazd 4467330219, Iran
| | - Shabnam Roudaki
- Department of Behavioural Studies, Avicenna Institute of Neuroscience, Yazd 4467330219, Iran
| | | | - Reza Moeeini
- Department of Behavioural Studies, Avicenna Institute of Neuroscience, Yazd 4467330219, Iran
| | - Gerlinde A S Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge T1K3M4, Canada
| |
Collapse
|
24
|
Maccioni P, Bratzu J, Lobina C, Acciaro C, Corrias G, Capra A, Carai MAM, Agabio R, Muntoni AL, Gessa GL, Colombo G. Exposure to an enriched environment reduces alcohol self-administration in Sardinian alcohol-preferring rats. Physiol Behav 2022; 249:113771. [PMID: 35247441 DOI: 10.1016/j.physbeh.2022.113771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 10/19/2022]
Abstract
Living in an enriched environment (EE) produces a notable impact on several rodent behaviors, including those motivated by drugs of abuse. This picture is somewhat less clear when referring to alcohol-motivated behaviors. With the intent of contributing to this research field with data from one of the few rat lines selectively bred for excessive alcohol consumption, the present study investigated the effect of EE on operant oral alcohol self-administration in Sardinian alcohol-preferring (sP) rats. Starting from Postnatal Day (PND) 21, male sP rats were kept under 3 different housing conditions: impoverished environment (IE; single housing in shoebox-like cages with no environmental enrichment); standard environment (SE; small colony cages with 3 rats and no environmental enrichment); EE (large colony cages with 6 rats and multiple elements of environmental enrichment, including 2 floors, ladders, maze, running wheels, and shelter). From PND 60, rats were exposed to different phases of shaping and training of alcohol self-administration. IE, SE, and EE rats were then compared under (i) fixed ratio (FR) 4 (FR4) schedule of alcohol reinforcement for 20 daily sessions and (ii) progressive ratio (PR) schedule of alcohol reinforcement in a final single session. Acquisition of the lever-responding task (shaping) was slower in EE than IE and SE rats, as the likely consequence of a "devaluation" of the novel stimuli provided by the operant chamber in comparison to those to which EE rats were continuously exposed in their homecage or an alteration, induced by EE, of the rat "emotionality" state when facing the novel environment represented by the operant chamber. Training of alcohol self-administration was slower in EE than IE rats, with SE rats displaying intermediate values. A similar ranking order (IE>SE>EE) was also observed in number of lever-responses for alcohol, amount of self-administered alcohol, and breakpoint for alcohol under FR4 and PR schedules of reinforcement. These data suggest that living in a complex environment reduced the reinforcing and motivational properties of alcohol in sP rats. These results are interpreted in terms of the reinforcing and motivational properties of the main components of EE (i.e., social interactions, physical activities, exploration, novelty) substituting, at least partially, for those of alcohol.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Jessica Bratzu
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Carla Lobina
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Carla Acciaro
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Gianluigi Corrias
- Department of Physics, University of Cagliari, I-09042 Monserrato (CA), Italy
| | - Alessandro Capra
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, I-09042 Monserrato (CA), Italy
| | - Mauro A M Carai
- Cagliari Pharmacological Research, I-09127 Cagliari (CA), Italy
| | - Roberta Agabio
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, I-09042 Monserrato (CA), Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy; Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, I-09042 Monserrato (CA), Italy
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy.
| |
Collapse
|
25
|
Muthmainah M, Sari WA, Wiyono N, Ghazali DA, Yudhani RD, Wasita B. Environmental Enrichment Ameliorates Anxiety-Like Behavior in Rats without Altering Plasma Corticosterone Level. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Anxiety disorder is one of the most common psychiatric problems. Prolonged stress gives rise to anxiety-like behavior in animals. Environmental interventions influence the outcome of anxiety treatment. Environmental enrichment (EE) can modulate brain’s structure and function.
AIM: The objective of the study was to evaluate EE effects on anxiety-like behavior and corticosterone (CORT) level after unpredictable chronic mild stress (UCMS).
METHODS: A total of 28 rats were assigned into four groups randomly: Control, UCMS, UCMS+EE, and UCMS+fluoxetine. UCMS, EE, and fluoxetine were given for 21 days. Anxiety behavior was measured on day 22nd using Elevated Plus Maze. Behavioral measurement was based on the total time spent and total entries onto open and closed arms. CORT was measured using ELISA.
RESULTS: UCMS increased anxiety-like behavior as seen from reduced number of entries and time spent in open arms as well as increased number of entries and time spent in in closed arms in UCMS group than control. Rats in EE group spent more time and made more entries in the open arms than UCMS group (both p = 0.002). Anxiolytic effect of EE was stronger than fluoxetine. Plasma CORT level among groups did not differ significantly (p = 0.351).
CONCLUSION: EE can ameliorate stress-induced anxiety-like behavior without affecting CORT level.
Collapse
|
26
|
Arabin B, Hellmeyer L, Maul J, Metz GAS. Awareness of maternal stress, consequences for the offspring and the need for early interventions to increase stress resilience. J Perinat Med 2021; 49:979-989. [PMID: 34478615 DOI: 10.1515/jpm-2021-0323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022]
Abstract
Experimental and clinical studies suggest that prenatal experiences may influence health trajectories up to adulthood and high age. According to the hypothesis of developmental origins of health and disease exposure of pregnant women to stress, nutritional challenges, infection, violence, or war may "program" risks for diseases in later life. Stress and anxieties can exist or be provoked in parents after fertility treatment, after information or diagnosis of fetal abnormalities and demand simultaneous caring concepts to support the parents. In vulnerable groups, it is therefore important to increase the stress resilience to avoid harmful consequences for the growing child. "Enriched environment" defines a key paradigm to decipher how interactions between genes and environment change the structure and function of the brain. The regulation of the fetal hippocampal neurogenesis and morphology during pregnancy is one example of this complex interaction. Animal experiments have demonstrated that an enriched environment can revert consequences of stress in the offspring during critical periods of brain plasticity. Epigenetic markers of stress or wellbeing during pregnancy might even be diagnosed by fragments of placental DNA in the maternal circulation that show characteristic methylation patterns. The development of fetal senses further illustrates how external stimulation may impact individual preferences. Here, we therefore not only discuss how maternal stress influences cognitive development and resilience, but also design possibilities of non-invasive interventions for both mothers and children summarized and evaluated in the light of their potential to improve the health of future generations.
Collapse
Affiliation(s)
- Birgit Arabin
- Clara Angela Foundation, Berlin, Germany.,Department of Obstetrics, Charité, Humboldt University Berlin, Berlin, Germany
| | - Lars Hellmeyer
- Clara Angela Foundation, Berlin, Germany.,Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | | | - Gerlinde A S Metz
- Clara Angela Foundation, Berlin, Germany.,Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
27
|
Buenhombre J, Daza-Cardona EA, Sousa P, Gouveia A. Different influences of anxiety models, environmental enrichment, standard conditions and intraspecies variation (sex, personality and strain) on stress and quality of life in adult and juvenile zebrafish: A systematic review. Neurosci Biobehav Rev 2021; 131:765-791. [PMID: 34592257 DOI: 10.1016/j.neubiorev.2021.09.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/14/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022]
Abstract
Antagonist and long-lasting environmental manipulations (EM) have successfully induced or reduced the stress responses and quality of life of zebrafish. For instance, environmental enrichment (EE) generally reduces anxiety-related behaviours and improves immunity, while unpredictable chronic stress (UCS) and aquarium-related stressors generate the opposite effects. However, there is an absence of consistency in outcomes for some EM, such as acute exposure to stressors, social enrichment and some items of structural enrichment. Therefore, considering intraspecies variation (sex, personality, and strain), increasing intervention complexity while improving standardisation of protocols and contemplating the possibility that EE may act as a mild stressor on a spectrum between too much (UCS) and too little (standard conditions) stress intensity or stimulation, would reduce the inconsistencies of these outcomes. It would also help explore the mechanism behind stress resilience and to standardise EM protocols. Thus, this review critically analyses and compares knowledge existing over the last decade concerning environmental manipulations for zebrafish and the influences that sex, strain, and personality may have on behavioural, physiological, and fitness-related responses.
Collapse
Affiliation(s)
- Jhon Buenhombre
- ICB Biological Sciences, Federal University of Pará, Rua Augusto Correa 01, Belém, PA, Brazil.
| | | | - Pêssi Sousa
- ICB Biological Sciences, Federal University of Pará, Rua Augusto Correa 01, Belém, PA, Brazil
| | - Amauri Gouveia
- ICB Biological Sciences, Federal University of Pará, Rua Augusto Correa 01, Belém, PA, Brazil
| |
Collapse
|
28
|
Sidoryk-Węgrzynowicz M, Dąbrowska-Bouta B, Sulkowski G, Strużyńska L. Nanosystems and exosomes as future approaches in treating multiple sclerosis. Eur J Neurosci 2021; 54:7377-7404. [PMID: 34561918 DOI: 10.1111/ejn.15478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system which leads to neurological dysfunctions and severe disabilities. MS pathology is characterised by damage of the blood-brain barrier and infiltration of autoreactive T cells that overactivate glial cells, thereby initiating neuroinflammation accompanied by the formation of demyelinating plaques and neurodegeneration. Clinical deficits in this multifactorial disease depend on the progression of myelin loss, the stage of inflammation, the status of axons and the activity of oligodendrocyte precursor cells (OPCs). Despite significant progress in the treatment of MS, current therapies remain limited and new approaches are highly desirable. Nanosystems based on liposomes and nanoparticles are among some of the more noteworthy therapeutic strategies being investigated. Applications of nanosystems alone or as drug carriers in animal models of MS have been found to successfully alleviate the symptoms of the disease and exert anti-inflammatory potential. Exosomes are a specific type of nanosystem based on nanometre-sized extracellular vesicles released by different cells which exhibit important healing features. Exosomes contain an array of anti-inflammatory and neuroprotective agents which may contribute to modulation of the immune system as well as promoting remyelination and tissue repair. In this review, opportunities to use nanosystems against progression of MS will be discussed in context of cell-specific pathologies associated with MS.
Collapse
Affiliation(s)
- Marta Sidoryk-Węgrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Dąbrowska-Bouta
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
29
|
Makowska IJ, Weary DM. A Good Life for Laboratory Rodents? ILAR J 2021; 60:373-388. [PMID: 32311030 DOI: 10.1093/ilar/ilaa001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/16/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Most would agree that animals in research should be spared "unnecessary" harm, pain, or distress, and there is also growing interest in providing animals with some form of environmental enrichment. But is this the standard of care that we should aspire to? We argue that we need to work towards a higher standard-specifically, that providing research animals with a "good life" should be a prerequisite for their use. The aims of this paper are to illustrate our vision of a "good life" for laboratory rats and mice and to provide a roadmap for achieving this vision. We recognize that several research procedures are clearly incompatible with a good life but describe here what we consider to be the minimum day-to-day living conditions to be met when using rodents in research. A good life requires that animals can express a rich behavioral repertoire, use their abilities, and fulfill their potential through active engagement with their environment. In the first section, we describe how animals could be housed for these requirements to be fulfilled, from simple modifications to standard housing through to better cage designs and free-ranging options. In the second section, we review the types of interactions with laboratory rodents that are compatible with a good life. In the third section, we address the potential for the animals to have a life outside of research, including the use of pets in clinical trials (the animal-as-patient model) and the adoption of research animals to new homes when they are no longer needed in research. We conclude with a few suggestions for achieving our vision.
Collapse
Affiliation(s)
- I Joanna Makowska
- Animal Welfare Program, University of British Columbia, Vancouver, Canada.,Animal Welfare Institute, Washington, DC, USA
| | - Daniel M Weary
- Animal Welfare Program, University of British Columbia, Vancouver, Canada
| |
Collapse
|
30
|
Kalamari A, Kentrop J, Hinna Danesi C, Graat EAM, van IJzendoorn MH, Bakermans-Kranenburg MJ, Joëls M, van der Veen R. Complex Housing, but Not Maternal Deprivation Affects Motivation to Liberate a Trapped Cage-Mate in an Operant Rat Task. Front Behav Neurosci 2021; 15:698501. [PMID: 34512284 PMCID: PMC8427758 DOI: 10.3389/fnbeh.2021.698501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Early life environment influences the development of various aspects of social behavior, particularly during sensitive developmental periods. We studied how challenges in the early postnatal period or (early) adolescence affect pro-social behavior. To this end, we designed a lever-operated liberation task, to be able to measure motivation to liberate a trapped conspecific (by progressively increasing required lever pressing for door-opening). Liberation of the trapped rat resulted either in social contact or in liberation into a separate compartment. Additionally, a condition was tested in which both rats could freely move in two separate compartments and lever pressing resulted in social contact. When partners were not trapped, rats were more motivated to press the lever for opening the door than in either of the trapped configurations. Contrary to our expectations, the trapped configuration resulted in a reduced motivation to act. Early postnatal stress (24 h maternal deprivation on postnatal day 3) did not affect behavior in the liberation task. However, rearing rats from early adolescence onwards in complex housing conditions (Marlau cages) reduced the motivation to door opening, both in the trapped and freely moving conditions, while the motivation for a sucrose reward was not affected.
Collapse
Affiliation(s)
- Aikaterini Kalamari
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jiska Kentrop
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chiara Hinna Danesi
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Evelien A M Graat
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands.,Primary Care Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,University Medical Center Groningen, Groningen University, Groningen, Netherlands
| | - Rixt van der Veen
- Brain Plasticity group, SILS Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
31
|
Ceanga M, Dahab M, Witte OW, Keiner S. Adult Neurogenesis and Stroke: A Tale of Two Neurogenic Niches. Front Neurosci 2021; 15:700297. [PMID: 34447293 PMCID: PMC8382802 DOI: 10.3389/fnins.2021.700297] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/30/2021] [Indexed: 01/17/2023] Open
Abstract
In the aftermath of an acute stroke, numerous signaling cascades that reshape the brain both in the perilesional zone as well as in more distal regions are activated. Despite continuous improvement in the acute treatment of stroke and the sustained research efforts into the pathophysiology of stroke, we critically lag in our integrated understanding of the delayed and chronic responses to ischemic injury. As such, the beneficial or maladaptive effect of some stroke-induced cellular responses is unclear, restricting the advancement of therapeutic strategies to target long-term complications. A prominent delayed effect of stroke is the robust increase in adult neurogenesis, which raises hopes for a regenerative strategy to counter neurological deficits in stroke survivors. In the adult brain, two regions are known to generate new neurons from endogenous stem cells: the subventricular zone (SVZ) and the dentate subgranular zone (SGZ) of the hippocampus. While both niches respond with an increase in neurogenesis post-stroke, there are significant regional differences in the ensuing stages of survival, migration, and maturation, which may differently influence functional outcome. External interventions such as rehabilitative training add a further layer of complexity by independently modulating the process of adult neurogenesis. In this review we summarize the current knowledge regarding the effects of ischemic stroke on neurogenesis in the SVZ and in the SGZ, and the influence of exogenous stimuli such as motor activity or enriched environment (EE). In addition, we discuss the contribution of SVZ or SGZ post-stroke neurogenesis to sensory, motor and cognitive recovery.
Collapse
Affiliation(s)
- Mihai Ceanga
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Mahmoud Dahab
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Silke Keiner
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
32
|
Lambert CT, Guillette LM. The impact of environmental and social factors on learning abilities: a meta-analysis. Biol Rev Camb Philos Soc 2021; 96:2871-2889. [PMID: 34342125 DOI: 10.1111/brv.12783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022]
Abstract
Since the 1950s, researchers have examined how differences in the social and asocial environment affect learning in rats, mice, and, more recently, a variety of other species. Despite this large body of research, little has been done to synthesize these findings and to examine if social and asocial environmental factors have consistent effects on cognitive abilities, and if so, what aspects of these factors have greater or lesser impact. Here, we conducted a systematic review and meta-analysis examining how different external environmental features, including the social environment, impact learning (both speed of acquisition and performance). Using 531 mean-differences from 176 published articles across 27 species (with studies on rats and mice being most prominent) we conducted phylogenetically corrected mixed-effects models that reveal: (i) an average absolute effect size |d| = 0.55 and directional effect size d = 0.34; (ii) interventions manipulating the asocial environment result in larger effects than social interventions alone; and (iii) the length of the intervention is a significant predictor of effect size, with longer interventions resulting in larger effects. Additionally, much of the variation in effect size remained unexplained, possibly suggesting that species differ widely in how they are affected by environmental interventions due to varying ecological and evolutionary histories. Overall our results suggest that social and asocial environmental factors do significantly affect learning, but these effects are highly variable and perhaps not always as predicted. Most notably, the type (social or asocial) and length of interventions are important in determining the strength of the effect.
Collapse
Affiliation(s)
- Connor T Lambert
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| | - Lauren M Guillette
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
33
|
Normann MC, Cox M, Akinbo OI, Watanasriyakul WT, Kovalev D, Ciosek S, Miller T, Grippo AJ. Differential paraventricular nucleus activation and behavioral responses to social isolation in prairie voles following environmental enrichment with and without physical exercise. Soc Neurosci 2021; 16:375-390. [PMID: 33947321 DOI: 10.1080/17470919.2021.1926320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Social stressors produce neurobiological and emotional consequences in social species. Environmental interventions, such as environmental enrichment and exercise, may modulate physiological and behavioral stress responses. The present study investigated the benefits of environmental enrichment and exercise against social stress in the socially monogamous prairie vole. Female prairie voles remained paired with a sibling (control) or were isolated from a sibling for 4 weeks. The isolated groups were assigned to isolated sedentary, isolated with environmental enrichment, or isolated with both enrichment and exercise conditions. Behaviors related to depression, anxiety, and sociality were investigated using the forced swim test (FST), elevated plus maze (EPM), and a social crowding stressor (SCS), respectively. cFos expression was evaluated in stress-related circuitry following the SCS. Both enrichment and enrichment with exercise protected against depression-relevant behaviors in the FST and social behavioral disruptions in the SCS, but only enrichment with exercise protected against anxiety-related behaviors in the EPM and altered cFos expression in the hypothalamic paraventricular nucleus in isolated prairie voles. Enrichment may improve emotion-related and social behaviors, however physical exercise may be an important component of environmental strategies for protecting against anxiety-related behaviors and reducing neural activation as a function of social stress.
Collapse
Affiliation(s)
- Marigny C Normann
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Miranda Cox
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Oreoluwa I Akinbo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | | | - Dmitry Kovalev
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Sarah Ciosek
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Thomas Miller
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Angela J Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
34
|
de Siqueira Mendes FDCC, Paixão LTVB, Diniz DG, Anthony DC, Brites D, Diniz CWP, Sosthenes MCK. Sedentary Life and Reduced Mastication Impair Spatial Learning and Memory and Differentially Affect Dentate Gyrus Astrocyte Subtypes in the Aged Mice. Front Neurosci 2021; 15:632216. [PMID: 33935629 PMCID: PMC8081835 DOI: 10.3389/fnins.2021.632216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
To explore the impact of reduced mastication and a sedentary lifestyle on spatial learning and memory in the aged mice, as well as on the morphology of astrocytes in the molecular layer of dentate gyrus (MolDG), different masticatory regimens were imposed. Control mice received a pellet-type hard diet, while the reduced masticatory activity group received a pellet diet followed by a powdered diet, and the masticatory rehabilitation group received a pellet diet, followed by powder diet and then a pellet again. To mimic sedentary or active lifestyles, mice were housed in an impoverished environment of standard cages or in an enriched environment. The Morris Water Maze (MWM) test showed that masticatory-deprived group, regardless of environment, was not able to learn and remember the hidden platform location, but masticatory rehabilitation combined with enriched environment recovered such disabilities. Microscopic three-dimensional reconstructions of 1,800 glial fibrillary acidic protein (GFAP)-immunolabeled astrocytes from the external third of the MolDG were generated using a stereological systematic and random sampling approach. Hierarchical cluster analysis allowed the characterization into two main groups of astrocytes with greater and lower morphological complexities, respectively, AST1 and AST2. When compared to compared to the hard diet group subjected to impoverished environment, deprived animals maintained in the same environment for 6 months showed remarkable shrinkage of astrocyte branches. However, the long-term environmental enrichment (18-month-old) applied to the deprived group reversed the shrinkage effect, with significant increase in the morphological complexity of AST1 and AST2, when in an impoverished or enriched environment. During housing under enriched environment, complexity of branches of AST1 and AST2 was reduced by the powder diet (pellet followed by powder regimes) in young but not in old mice, where it was reversed by pellet diet (pellet followed by powder and pellet regime again). The same was not true for mice housed under impoverished environment. Interestingly, we were unable to find any correlation between MWM data and astrocyte morphological changes. Our findings indicate that both young and aged mice subjected to environmental enrichment, and under normal or rehabilitated masticatory activity, preserve spatial learning and memory. Nonetheless, data suggest that an impoverished environment and reduced mastication synergize to aggravate age-related cognitive decline; however, the association with morphological diversity of AST1 and AST2 at the MolDG requires further investigation.
Collapse
Affiliation(s)
- Fabíola de Carvalho Chaves de Siqueira Mendes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil.,Curso de Medicina, Centro Universitário do Estado do Pará, Belém, Brazil
| | - Luisa Taynah Vasconcelos Barbosa Paixão
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
35
|
Fischer ML, Rodrigues GS, Aguero WP, Zotz R, Simão-Silva DP. Refinement as ethics principle in animal research: Is it necessary to standardize the Environmental enrichment in laboratory animals? AN ACAD BRAS CIENC 2021; 93:e20191526. [PMID: 33787753 DOI: 10.1590/0001-3765202120191526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/12/2020] [Indexed: 11/22/2022] Open
Abstract
The Environmental enrichment technique, although scientifically recognized for raising the level of animal welfare, has led to the questioning of its influence on the results of experimental research. Thus, the goal is to promote reflection about the need for standardization of these procedures. For that, documents and experimental analysis were done, in order to quantify and characterize the types of environmental enrichment used and to evaluate the effect of that in the social behavior of Rattus norvegicus. Data from the document review confirmed the hypothesis that the researchers have used a variety of methods, not demonstrating a concern for standardization and prior assessment of its effects on the search results. Demand was corroborated in the experimental study in which, although there was available a simple object acting as refuge promotes behavioral improvements, the presence of the co-specific, as well as characteristics of the micro and macro environment can compromise the homogeneity of the sample. The data from this study endorse the need for validation procedures of environmental enrichment for specific proposals, to investigative data comparison, are possible and contribute to the refinement of the search to reduce the number of animals targeted for this purpose.
Collapse
Affiliation(s)
- Marta L Fischer
- Programa de Pós-Graduação em Bioética, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, 80215-901 Curitiba, PR, Brazil
| | - Gabriela S Rodrigues
- Programa de Pós-Graduação em Bioética, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, 80215-901 Curitiba, PR, Brazil
| | - Windy P Aguero
- Programa de Pós-Graduação em Bioética, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, 80215-901 Curitiba, PR, Brazil
| | - Rafael Zotz
- Programa de Pós-Graduação em Bioética, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, 80215-901 Curitiba, PR, Brazil
| | - Daiane P Simão-Silva
- Programa de Pós-Graduação em Bioética, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, 80215-901 Curitiba, PR, Brazil.,Instituto para Pesquisa do Câncer/IPEC, Departamento Científico, Rua Fortim Atalaia, 1900, 85051-060 Guarapuava, PR, Brazil
| |
Collapse
|
36
|
Gui L, Luo Z, Shan W, Zuo Z. Role of Sox2 in Learning, Memory, and Postoperative Cognitive Dysfunction in Mice. Cells 2021; 10:727. [PMID: 33805206 PMCID: PMC8064339 DOI: 10.3390/cells10040727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/05/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a significant clinical issue. Its neuropathogenesis has not been clearly identified and effective interventions for clinical use to reduce POCD have not been established. This study was designed to determine whether environmental enrichment (EE) or cognitive enrichment (CE) reduces POCD and whether sex-determining region Y-box-2 regulated by sirtuin 1, plays a role in the effect. Eighteen-month-old male mice were subjected to right-common-carotid-artery exposure under sevoflurane anesthesia. Some of them stayed in cages with EE or CE after the surgery. Learning and memory of mice were tested by a Barnes maze and fear conditioning, starting 2 weeks after the surgery. Sex-determining region Y-box-2 (Sox2) in the brain was silenced by small hairpin RNA (shRNA). Immunofluorescent staining was used to quantify Sox2-positive cells. Surgery reduced Sox2-positive cells in the hippocampus (64 ± 9 cells vs. 91 ± 9 cells in control group, n = 6, p < 0.001) and impaired learning and memory (time to identify target box one day after training sessions in the Barnes maze test: 132 ± 53 s vs. 79 ± 53 s in control group, n = 10, p = 0.040). EE or CE applied after surgery attenuated this reduction of Sox2 cells and POCD. Surgery reduced sirtuin 1 activity and CE attenuated this reduction. Resveratrol, a sirtuin 1 activator, attenuated POCD and surgery-induced decrease of Sox2-positive cells. Silencing shRNA reduced the Sox2-positive cells in the hippocampus and impaired learning and memory in mice without surgery. These results suggest a role of Sox2 in learning, memory, and POCD. EE and CE attenuated POCD via maintaining Sox2-positive cells in the hippocampus.
Collapse
Affiliation(s)
- Lingli Gui
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA; (L.G.); (Z.L.); (W.S.)
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen Luo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA; (L.G.); (Z.L.); (W.S.)
- Department of Anesthesiology, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu 610041, China
| | - Weiran Shan
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA; (L.G.); (Z.L.); (W.S.)
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA; (L.G.); (Z.L.); (W.S.)
| |
Collapse
|
37
|
Salaka RJ, Nair KP, Annamalai K, Srikumar BN, Kutty BM, Shankaranarayana Rao BS. Enriched environment ameliorates chronic temporal lobe epilepsy-induced behavioral hyperexcitability and restores synaptic plasticity in CA3-CA1 synapses in male Wistar rats. J Neurosci Res 2021; 99:1646-1665. [PMID: 33713475 DOI: 10.1002/jnr.24823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 01/11/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsies. Pharmacoresistance and comorbidities pose significant challenges to its treatment necessitating the development of non-pharmacological approaches. In an earlier study, exposure to enriched environment (EE) reduced seizure frequency and duration and ameliorated chronic epilepsy-induced depression in rats. However, the cellular basis of beneficial effects of EE remains unknown. Accordingly, in the current study, we evaluated the effects of EE in chronic epilepsy-induced changes in behavioral hyperexcitability, synaptic transmission, synaptophysin (SYN), and calbindin (CB) expression, hippocampal subfield volumes and cell density in male Wistar rats. Epilepsy was induced by lithium-pilocarpine-induced status epilepticus. Chronic epilepsy resulted in behavioral hyperexcitability, decreased basal synaptic transmission, increased paired-pulse facilitation ratio, decreased hippocampal subfields volumes. Moreover, epileptic rats showed decreased synaptophysin and CB expression in the hippocampus. Six weeks post-SE, epileptic rats were exposed to EE for 2 weeks, 6 hr/day. EE significantly reduced the behavioral hyperexcitability and restored basal synaptic transmission correlating with increased expression of SYN and CB. Our results reaffirm the beneficial effects of EE on behavior in chronic epilepsy and establishes some of the putative cellular mechanisms. Since drug resistance and comorbidities are a major concern in TLE, we propose EE as a potent non-pharmacological treatment modality to mitigate these changes in chronic epilepsy.
Collapse
Affiliation(s)
- Raghava Jagadeesh Salaka
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Kala P Nair
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Kiruthiga Annamalai
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | | |
Collapse
|
38
|
Akyuz E, Eroglu E. Envisioning the crosstalk between environmental enrichment and epilepsy: A novel perspective. Epilepsy Behav 2021; 115:107660. [PMID: 33328107 DOI: 10.1016/j.yebeh.2020.107660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/31/2022]
Abstract
Epilepsies are a diverse group of neurological disorders characterized by an unprovoked seizure and a brain that has an enduring predisposition to seizures. The lack of disease-modifying treatment strategies against the same has led to the exploration of novel treatment strategies that could halt epileptic seizures. In this regard, environmental enrichment (EE) has gained increased attention in recent days. EE modulates the effects of interactions between the genes and the environment on the structure and function of the brain. EE therapy can improve seizure-related symptoms in neurological diseases such as epilepsy. EE therapy can have a significant effect on cognitive disorders such as learning and memory impairments associated with seizures. EE therapy in epileptic hippocampus tissue can improve seizure-related symptoms by inducing enhanced neurogenesis and neuroprotective mechanisms. In this context, the efficiency of EE is regulated in the epilepsy by the brain-derived neurotrophic factor (BDNF)/extracellular signal-regulated kinase (ERK) signaling pathway regulated by extracellular signaling. Herein, we provide experimental evidence supporting the beneficial effects of EE in epileptic seizures and its underlying mechanism.
Collapse
Affiliation(s)
- Enes Akyuz
- Yozgat Bozok University, Medical School, Department of Biophysics, 66100 Yozgat, Turkey.
| | - Ece Eroglu
- Yozgat Bozok University, Medical School, 66100 Yozgat, Turkey.
| |
Collapse
|
39
|
Arida RM, Teixeira-Machado L. The Contribution of Physical Exercise to Brain Resilience. Front Behav Neurosci 2021; 14:626769. [PMID: 33584215 PMCID: PMC7874196 DOI: 10.3389/fnbeh.2020.626769] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Increasing attention has been given to understanding resilience to brain diseases, often described as brain or cognitive reserve. Among the protective factors for the development of resilience, physical activity/exercise has been considered to play an important role. Exercise is known to induce many positive effects on the brain. As such, exercise represents an important tool to influence neurodevelopment and shape the adult brain to react to life's challenges. Among many beneficial effects, exercise intervention has been associated with cognitive improvement and stress resilience in humans and animal models. Thus, a growing number of studies have demonstrated that exercise not only recovers or minimizes cognitive deficits by inducing better neuroplasticity and cognitive reserve but also counteracts brain pathology. This is evidenced before disease onset or after it has been established. In this review, we aimed to present encouraging data from current clinical and pre-clinical neuroscience research and discuss the possible biological mechanisms underlying the beneficial effects of physical exercise on resilience. We consider the implication of physical exercise for resilience from brain development to aging and for some neurological diseases. Overall, the literature indicates that brain/cognitive reserve built up by regular exercise in several stages of life, prepares the brain to be more resilient to cognitive impairment and consequently to brain pathology.
Collapse
Affiliation(s)
- Ricardo Mario Arida
- Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
40
|
Bialer M, Johannessen SI, Koepp MJ, Levy RH, Perucca E, Perucca P, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Fifteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XV). I. Drugs in preclinical and early clinical development. Epilepsia 2020; 61:2340-2364. [DOI: 10.1111/epi.16725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Meir Bialer
- Faculty of Medicine School of Pharmacy and David R. Bloom Center for Pharmacy Institute for Drug Research Hebrew University of Jerusalem Jerusalem Israel
| | - Svein I. Johannessen
- National Center for Epilepsy Sandvika Norway
- Department of Pharmacology Oslo University Hospital Oslo Norway
| | - Matthias J. Koepp
- Department of Clinical and Experimental Epilepsy UCL Institute of Neurology London UK
| | - René H. Levy
- Department of Pharmaceutics and Neurological Surgery University of Washington Seattle WA USA
| | - Emilio Perucca
- Department of Internal Medicine and Therapeutics University of Pavia Pavia Italy
- IRCCS Mondino Foundation (member of the ERN EpiCARE) Pavia Italy
| | - Piero Perucca
- Department of Neuroscience Central Clinical School Monash University Melbourne Victoria Australia
- Departments of Medicine and Neurology Royal Melbourne Hospital University of Melbourne Melbourne Victoria Australia
- Department of Neurology Alfred Health Melbourne Victoria Australia
| | - Torbjörn Tomson
- Department of Clinical Neuroscience Karolinska Institute Stockholm Sweden
| | - H. Steve White
- Department of Pharmacy School of Pharmacy University of Washington Seattle WA USA
| |
Collapse
|
41
|
Zeraati M, Najdi N, Mosaferi B, Salari AA. Environmental enrichment alters neurobehavioral development following maternal immune activation in mice offspring with epilepsy. Behav Brain Res 2020; 399:112998. [PMID: 33197458 DOI: 10.1016/j.bbr.2020.112998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Epilepsy is a chronic brain disease affecting millions of people worldwide. Anxiety-related disorders and cognitive deficits are common in patients with epilepsy. Previous studies have shown that maternal infection/immune activation renders children more vulnerable to neurological disorders later in life. Environmental enrichment has been suggested to improve seizures, anxiety, and cognitive impairment in animal models. The present study aimed to explore the effects of environmental enrichment on seizure scores, anxiety-like behavior, and cognitive deficits following maternal immune activation in offspring with epilepsy. Pregnant mice were treated with lipopolysaccharides-(LPS) or vehicle, and offspring were housed in normal or enriched environments during early adolescence to adulthood. To induce epilepsy, adult male and female offspring were treated with Pentylenetetrazol-(PTZ), and then anxiety-like behavior and cognitive functions were assessed. Tumor-necrosis-factor (TNF)-α and interleukin (IL) 10 were measured in the hippocampus of offspring. Maternal immune activation sex-dependently increased seizure scores in PTZ-treated offspring. Significant increases in anxiety-like behavior, cognitive impairment, and hippocampal TNF-α and IL-10 were also found following maternal immune activation in PTZ-treated offspring. However, there was no sex difference in these behavioral abnormalities in offspring. Environmental enrichment reversed the effects of maternal immune activation on behavioral and inflammatory parameters in PTZ-treated offspring. Overall, the present findings highlight the adverse effects of prenatal maternal immune activation on seizure susceptibility and psychiatric comorbidities in offspring. This study suggests that environmental enrichment may be used as a potential treatment approach for behavioral abnormalities following maternal immune activation in PTZ-treated offspring.
Collapse
Affiliation(s)
- Maryam Zeraati
- Physiology and Pharmacology Department, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Nazila Najdi
- Department of Obstetrics and Gynecology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Belal Mosaferi
- Department of Basic Sciences, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran.
| |
Collapse
|
42
|
Pritchett-Corning KR. Environmental Complexity and Research Outcomes. ILAR J 2020; 60:239-251. [PMID: 32559304 DOI: 10.1093/ilar/ilaa007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/14/2022] Open
Abstract
Environmental complexity is an experimental paradigm as well as a potential part of animals' everyday housing experiences. In experimental uses, researchers add complexity to stimulate brain development, delay degenerative brain changes, elicit more naturalistic behaviors, and test learning and memory. Complexity can exacerbate or mitigate behavioral problems, give animals a sense of control, and allow for expression of highly driven, species-typical behaviors that can improve animal welfare. Complex environments should be designed thoughtfully with the animal's natural behaviors in mind, reported faithfully in the literature, and evaluated carefully for unexpected effects.
Collapse
Affiliation(s)
- Kathleen R Pritchett-Corning
- Office of Animal Resources, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
43
|
Costa R, Carvalho MSM, Brandão JDP, Moreira RP, Cunha TS, Casarini DE, Marcondes FK. Modulatory action of environmental enrichment on hormonal and behavioral responses induced by chronic stress in rats: Hypothalamic renin-angiotensin system components. Behav Brain Res 2020; 397:112928. [PMID: 32987059 DOI: 10.1016/j.bbr.2020.112928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Environmental enrichment (EE) has been studied as a protocol that can improve brain plasticity and may protect against negative insults such as chronic stress. The aim of this study was to evaluate the effects of EE on the hormonal and behavioral responses induced by chronic mild unpredictable stress (CMS) in rats, considering the involvement of the renin-angiotensin system. Male adult rats were divided into 4 groups: control, CMS, EE, and CMS + EE, and the experimental protocol lasted for 7 weeks. EE was performed during 7 weeks, 5 days per week, 2 h per day. CMS was applied during weeks 3, 4, and 5. After the CMS (week 6), depression-like behavior was evaluated by forced swimming and sucrose consumption tests, anxiety level was evaluated using the elevated plus-maze test, and memory was evaluated using the Y-maze test. On week 7, the animals were euthanized and basal plasma levels of corticosterone and catecholamines were determined. The hypothalamus was isolated and tissue levels of angiotensin peptides were evaluated. CMS increased plasma corticosterone, norepinephrine, and epinephrine basal concentrations, induced depression-like behaviors, impaired memory, and increased hypothalamic angiotensin I, II, and IV concentrations. EE decreased stress hormones secretion, depression-like behaviors, memory impairment, and hypothalamic angiotensin II induced by stress. Reductions of anxiety-like behavior and norepinephrine secretion were observed in both stressed and unstressed groups. The results indicated that EE seemed to protect adult rats against hormonal and behavioral CMS effects, and that the reduction of angiotensin II could contribute to these effects.
Collapse
Affiliation(s)
- Rafaela Costa
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Maeline Santos Morais Carvalho
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | | | - Roseli Peres Moreira
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Tatiana Sousa Cunha
- Science and Technology Institute, Federal University of São Paulo, São José Dos Campos, SP, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Klein Marcondes
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| |
Collapse
|
44
|
van der Veen R, Bonapersona V, Joëls M. The relevance of a rodent cohort in the Consortium on Individual Development. Dev Cogn Neurosci 2020; 45:100846. [PMID: 32957026 PMCID: PMC7509002 DOI: 10.1016/j.dcn.2020.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/29/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022] Open
Abstract
One of the features of the Consortium on Individual Development is the existence of a rodent cohort, in parallel with the human cohorts. Here we give an overview of the current status. We first elaborate on the choice of rat and mouse models mimicking early life adverse or beneficial conditions during development. We performed a systematic literature search on early life adversity and adult social behavior to address the status quo. Next, we describe the behavioral tasks we used and designed to examine behavioral control and social competence in rodents. The results so far indicate that manipulation of the environment in the first postnatal week only subtly affects social behavior. Stronger effects were seen in the model that targeted early adolescence; once adult, these rats are characterized by increased attention, a higher degree of impulsiveness and reduced social interest in peers. Many experiments in our rodent models with tightly controlled conditions were inspired by findings in human cohorts, and now allow in-depth mechanistic investigations. Vice versa, some of the findings in rodents are currently followed up by dedicated investigations in the human cohorts. This exemplifies the added value of animal investigations in a consortium encompassing primarily human developmental cohorts.
Collapse
Affiliation(s)
- Rixt van der Veen
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Faculty of Social and Behavioral Sciences, Leiden University, Leiden, the Netherlands.
| | - Valeria Bonapersona
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marian Joëls
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
45
|
Chimpanzees' technical reasoning: Taking fieldwork and ontogeny seriously. Behav Brain Sci 2020; 43:e158. [PMID: 32772999 DOI: 10.1017/s0140525x2000028x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Following the tradition of comparing humans with chimpanzees placed under unfavorable conditions, the authors suggest many uniquely human technological abilities. However, chimpanzees use spontaneously tools in nature to achieve many different goals demonstrating technological skills and reasoning contradicting the authors contrast. Chimpanzees and humans develop skills through the experiences faced during their upbringing and neglecting this leads to fake conclusions.
Collapse
|
46
|
Kentrop J, Kalamari A, Danesi CH, Kentrop JJ, van IJzendoorn MH, Bakermans-Kranenburg MJ, Joëls M, van der Veen R. Pro-social preference in an automated operant two-choice reward task under different housing conditions: Exploratory studies on pro-social decision making. Dev Cogn Neurosci 2020; 45:100827. [PMID: 32739841 PMCID: PMC7393525 DOI: 10.1016/j.dcn.2020.100827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, we aimed to develop a behavioral task that measures pro-social decision making in rats. A fully automated, operant pro-social two-choice task is introduced that quantifies pro-social preferences for a mutual food reward in a set-up with tightly controlled task contingencies. Pairs of same-sex adult Wistar rats were placed in an operant chamber divided into two compartments (one rat per compartment), separated by a transparent barrier with holes that allowed the rats to see, hear, smell, but not touch each other. Test rats could earn a sucrose pellet either for themselves (own reward) or for themselves and the partner (both reward) by means of lever pressing. On average, male rats showed a 60 % preference for the lever that yielded a food reward for both themselves and their partner. In contrast, females did not show lever preference, regardless of the estrous cycle phase. Next, the impact of juvenile environmental factors on male rat social decision making was studied. Males were group-housed from postnatal day 26 onwards in complex housing Marlau™ cages that provided social and physical enrichment and stimulation in the form of novelty. Complex housed males did not show a preference for the pro-social lever.
Collapse
Affiliation(s)
- Jiska Kentrop
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Aikaterini Kalamari
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Chiara Hinna Danesi
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - John J Kentrop
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marinus H van IJzendoorn
- Dept. Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands; Primary Care Unit, School of Clinical Medicine, University of Cambridge, United Kingdom
| | | | - Marian Joëls
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rixt van der Veen
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Faculty of Social and Behavioural Sciences, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
47
|
|
48
|
Rabadán R, Ramos-Campos M, Redolat R, Mesa-Gresa P. Physical activity and environmental enrichment: Behavioural effects of exposure to different housing conditions in mice. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2019-035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Abstract
'Enriched environments' are a key experimental paradigm to decipher how interactions between genes and environment change the structure and function of the brain across the lifespan of an animal. The regulation of adult hippocampal neurogenesis by environmental enrichment is a prime example of this complex interaction. As each animal in an enriched environment will have a slightly different set of experiences that results in downstream differences between individuals, enrichment can be considered not only as an external source of rich stimuli but also to provide the room for individual behaviour that shapes individual patterns of brain plasticity and thus function.
Collapse
|
50
|
Chauvière L. Update on temporal lobe‐dependent information processing, in health and disease. Eur J Neurosci 2019; 51:2159-2204. [DOI: 10.1111/ejn.14594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/06/2019] [Accepted: 09/27/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Laëtitia Chauvière
- INSERM U1266 Institut de Psychiatrie et de Neurosciences de Paris (IPNP) Paris France
| |
Collapse
|