1
|
George NL, Bennett EC, Orlando BJ. Guarding the walls: the multifaceted roles of Bce modules in cell envelope stress sensing and antimicrobial resistance. J Bacteriol 2024; 206:e0012324. [PMID: 38869304 PMCID: PMC11270860 DOI: 10.1128/jb.00123-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Bacteria have developed diverse strategies for defending their cell envelopes from external threats. In Firmicutes, one widespread strategy is to use Bce modules-membrane protein complexes that unite a peptide-detoxifying ABC transporter with a stress response coordinating two-component system. These modules provide specific, front-line defense for a wide variety of antimicrobial peptides and small molecule antibiotics as well as coordinate responses for heat, acid, and oxidative stress. Because of these abilities, Bce modules play important roles in virulence and the development of antibiotic resistance in a variety of pathogens, including Staphylococcus, Streptococcus, and Enterococcus species. Despite their importance, Bce modules are still poorly understood, with scattered functional data in only a small number of species. In this review, we will discuss Bce module structure in light of recent cryo-electron microscopy structures of the B. subtilis BceABRS module and explore the common threads and variations-on-a-theme in Bce module mechanisms across species. We also highlight the many remaining questions about Bce module function. Understanding these multifunctional membrane complexes will enhance our understanding of bacterial stress sensing and may point toward new therapeutic targets for highly resistant pathogens.
Collapse
Affiliation(s)
- Natasha L. George
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Ellen C. Bennett
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Benjamin J. Orlando
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Faure A, Manuse S, Gonin M, Grangeasse C, Jault JM, Orelle C. Daptomycin avoids drug resistance mediated by the BceAB transporter in Streptococcus pneumoniae. Microbiol Spectr 2024; 12:e0363823. [PMID: 38214521 PMCID: PMC10846014 DOI: 10.1128/spectrum.03638-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
Drug-resistant bacteria are a serious threat to human health as antibiotics are gradually losing their clinical efficacy. Comprehending the mechanism of action of antimicrobials and their resistance mechanisms plays a key role in developing new agents to fight antimicrobial resistance. The lipopeptide daptomycin is an antibiotic that selectively disrupts Gram-positive bacterial membranes, thereby showing slower resistance development than many classical drugs. Consequently, it is often used as a last resort antibiotic to preserve its use as one of the least potent antibiotics at our disposal. The mode of action of daptomycin has been debated but was recently found to involve the formation of a tripartite complex between undecaprenyl precursors of cell wall biosynthesis and the anionic phospholipid phosphatidylglycerol. BceAB-type ABC transporters are known to confer resistance to antimicrobial peptides that sequester some precursors of the peptidoglycan, such as the undecaprenyl pyrophosphate or lipid II. The expression of these transporters is upregulated by dedicated two-component regulatory systems in the presence of antimicrobial peptides that are recognized by the system. Here, we investigated whether daptomycin evades resistance mediated by the BceAB transporter from the bacterial pathogen Streptococcus pneumoniae. Although daptomycin can bind to the transporter, our data showed that the BceAB transporter does not mediate resistance to the drug and its expression is not induced in its presence. These findings show that the pioneering membrane-active daptomycin has the potential to escape the resistance mechanism mediated by BceAB-type transporters and confirm that the development of this class of compounds has promising clinical applications.IMPORTANCEAntibiotic resistance is rising in all parts of the world. New resistance mechanisms are emerging and dangerously spreading, threatening our ability to treat common infectious diseases. Daptomycin is an antimicrobial peptide that is one of the last antibiotics approved for clinical use. Understanding the resistance mechanisms toward last-resort antibiotics such as daptomycin is critical for the success of future antimicrobial therapies. BceAB-type ABC transporters confer resistance to antimicrobial peptides that target precursors of cell-wall synthesis. In this study, we showed that the BceAB transporter from the human pathogen Streptococcus pneumoniae does not confer resistance to daptomycin, suggesting that this drug and other calcium-dependent lipopeptide antibiotics have the potential to evade the action of this type of ABC transporters in other bacterial pathogens.
Collapse
Affiliation(s)
- Agathe Faure
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Sylvie Manuse
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Mathilde Gonin
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Jean-Michel Jault
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Cédric Orelle
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| |
Collapse
|
3
|
Yu WL, Pan JG, Qin RX, Lu ZH, Bai XH, Sun Y. TCS01 Two-Component System Influenced the Virulence of Streptococcus pneumoniae by Regulating PcpA. Infect Immun 2023; 91:e0010023. [PMID: 37052497 PMCID: PMC10187121 DOI: 10.1128/iai.00100-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 04/14/2023] Open
Abstract
Streptococcus pneumoniae relies on two-component systems (TCSs) to regulate the processes of pathogenicity, osmotic pressure, chemotaxis, and energy metabolism. The TCS01 system of S. pneumoniae is composed of HK01 (histidine kinase) and RR01 (response regulator). Previous studies have reported that an rr01 mutant reduced the pneumococcal virulence in rat pneumonia, bacteremia, a nasopharyngeal model, and infective endocarditis. However, the mechanism of TCS01 (HK/RR01) regulating pneumococcal virulence remains unclear. Here, pneumococcal mutant strains Δrr01, Δhk01, and Δrr01&hk01 were constructed, and bacterial adhesion and invasion to A549 cells were compared. RNA sequencing was performed in D39 wild-type and Δrr01 strains, and transcript profile changes were analyzed. Differentially expressed virulence genes in the Δrr01 strain were screened out and identified by quantitative real-time PCR (qRT-PCR). Our results showed that pneumococcal mutant strains exhibited attenuated adhesion and invasion to A549 cells and differential transcript profiles. Results of qRT-PCR identification showed that the differential virulence genes screened out were downregulated. Among those changed virulence genes in the Δrr01 strain, the downregulated expression level of choline binding protein pcpA was the most obvious. Complementation of rr01 and overexpression of pcpA in the Δrr01 strain partially restored both pneumococcal adhesion and invasion, and rr01 complementation made the expression of pcpA upregulated. These findings revealed that rr01 influenced pneumococcal virulence by regulating pcpA.
Collapse
Affiliation(s)
- Wei-Li Yu
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jin-Ge Pan
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ru-Xue Qin
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhong-Hua Lu
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Hui Bai
- College of Life and Environment Sciences, Huangshan University, Huangshan, Anhui, China
| | - Yun Sun
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Diagne AM, Pelletier A, Durmort C, Faure A, Kanonenberg K, Freton C, Page A, Delolme F, Vorac J, Vallet S, Bellard L, Vivès C, Fieschi F, Vernet T, Rousselle P, Guiral S, Grangeasse C, Jault JM, Orelle C. Identification of a two-component regulatory system involved in antimicrobial peptide resistance in Streptococcus pneumoniae. PLoS Pathog 2022; 18:e1010458. [PMID: 35395062 PMCID: PMC9020739 DOI: 10.1371/journal.ppat.1010458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/20/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Two-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae, a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models. However, it remains one of the least studied TCS in pneumococci and its functional role is still unclear. In this study, we demonstrate that TCS01 cooperates with a BceAB-type ABC transporter to sense and induce resistance to structurally-unrelated antimicrobial peptides of bacterial origin that all target undecaprenyl-pyrophosphate or lipid II, which are essential precursors of cell wall biosynthesis. Even though tcs01 and bceAB genes do not locate in the same gene cluster, disruption of either of them equally sensitized the bacterium to the same set of antimicrobial peptides. We show that the key function of TCS01 is to upregulate the expression of the transporter, while the latter appears the main actor in resistance. Electrophoretic mobility shift assays further demonstrated that the response regulator of TCS01 binds to the promoter region of the bceAB genes, implying a direct control of these genes. The BceAB transporter was overexpressed and purified from E. coli. After reconstitution in liposomes, it displayed substantial ATPase and GTPase activities that were stimulated by antimicrobial peptides to which it confers resistance to, revealing new functional features of a BceAB-type transporter. Altogether, this inducible defense mechanism likely contributes to the survival of the opportunistic microorganism in the human host, in which competition among commensal microorganisms is a key determinant for effective host colonization and invasive path.
Collapse
Affiliation(s)
- Aissatou Maty Diagne
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Anaïs Pelletier
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Claire Durmort
- Institute of Structural Biology (IBS), UMR 5075 CNRS/University of Grenoble-Alpes, Grenoble, France
| | - Agathe Faure
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Kerstin Kanonenberg
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Céline Freton
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Adeline Page
- Protein Science Facility, SFR BioSciences, CNRS, UMS3444, INSERM US8, University of Lyon, Lyon, France
| | - Frédéric Delolme
- Protein Science Facility, SFR BioSciences, CNRS, UMS3444, INSERM US8, University of Lyon, Lyon, France
| | - Jaroslav Vorac
- Institute of Structural Biology (IBS), UMR 5075 CNRS/University of Grenoble-Alpes, Grenoble, France
| | - Sylvain Vallet
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Laure Bellard
- Institute of Structural Biology (IBS), UMR 5075 CNRS/University of Grenoble-Alpes, Grenoble, France
| | - Corinne Vivès
- Institute of Structural Biology (IBS), UMR 5075 CNRS/University of Grenoble-Alpes, Grenoble, France
| | - Franck Fieschi
- Institute of Structural Biology (IBS), UMR 5075 CNRS/University of Grenoble-Alpes, Grenoble, France
| | - Thierry Vernet
- Institute of Structural Biology (IBS), UMR 5075 CNRS/University of Grenoble-Alpes, Grenoble, France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR 5305 CNRS/University of Lyon, Lyon, France
| | - Sébastien Guiral
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Jean-Michel Jault
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Cédric Orelle
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| |
Collapse
|
5
|
The pneumococcal two-component system SirRH is linked to enhanced intracellular survival of Streptococcus pneumoniae in influenza-infected pulmonary cells. PLoS Pathog 2020; 16:e1008761. [PMID: 32790758 PMCID: PMC7447016 DOI: 10.1371/journal.ppat.1008761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 08/25/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
The virus-bacterial synergism implicated in secondary bacterial infections caused by Streptococcus pneumoniae following infection with epidemic or pandemic influenza A virus (IAV) is well documented. However, the molecular mechanisms behind such synergism remain largely ill-defined. In pneumocytes infected with influenza A virus, subsequent infection with S. pneumoniae leads to enhanced pneumococcal intracellular survival. The pneumococcal two-component system SirRH appears essential for such enhanced survival. Through comparative transcriptomic analysis between the ΔsirR and wt strains, a list of 179 differentially expressed genes was defined. Among those, the clpL protein chaperone gene and the psaB Mn+2 transporter gene, which are involved in the stress response, are important in enhancing S. pneumoniae survival in influenza-infected cells. The ΔsirR, ΔclpL and ΔpsaB deletion mutants display increased susceptibility to acidic and oxidative stress and no enhancement of intracellular survival in IAV-infected pneumocyte cells. These results suggest that the SirRH two-component system senses IAV-induced stress conditions and controls adaptive responses that allow survival of S. pneumoniae in IAV-infected pneumocytes.
Collapse
|
6
|
Wang J, Li JW, Li J, Huang Y, Wang S, Zhang JR. Regulation of pneumococcal epigenetic and colony phases by multiple two-component regulatory systems. PLoS Pathog 2020; 16:e1008417. [PMID: 32187228 PMCID: PMC7105139 DOI: 10.1371/journal.ppat.1008417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/30/2020] [Accepted: 02/19/2020] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pneumoniae is well known for phase variation between opaque (O) and transparent (T) colonies within clonal populations. While the O variant is specialized in invasive infection (with a thicker capsule and higher resistance to host clearance), the T counterpart possesses a relatively thinner capsule and thereby higher airway adherence and colonization. Our previous study found that phase variation is caused by reversible switches of the "opaque ON-or-OFF" methylomes or methylation patterns of pneumococcal genome, which is dominantly driven by the PsrA-catalyzed inversions of the DNA methyltransferase hsdS genes. This study revealed that switch frequency between the O and T variants is regulated by five transcriptional response regulators (rr) of the two-component systems (TCSs). The mutants of rr06, rr08, rr09, rr11 and rr14 produced significantly fewer O and more T colonies. Further mutagenesis revealed that RR06, RR08, RR09 and RR11 enrich the O variant by modulating the directions of the PsrA-catalyzed inversion reactions. In contrast, the impact of RR14 (RitR) on phase variation is independent of PsrA. Consistently, SMRT sequencing uncovered significantly diminished "opaque ON" methylome in the mutants of rr06, rr08, rr09 and rr11 but not that of rr14. Lastly, the phosphorylated form of RR11 was shown to activate the transcription of comW and two sugar utilization systems that are necessary for maintenance of the "opaque ON" genotype and phenotype. This work has thus uncovered multiple novel mechanisms that balance pneumococcal epigenetic status and physiology.
Collapse
Affiliation(s)
- Juanjuan Wang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jing-Wen Li
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jing Li
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yijia Huang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shaomeng Wang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Spencer BL, Deng L, Patras KA, Burcham ZM, Sanches GF, Nagao PE, Doran KS. Cas9 Contributes to Group B Streptococcal Colonization and Disease. Front Microbiol 2019; 10:1930. [PMID: 31497003 PMCID: PMC6712506 DOI: 10.3389/fmicb.2019.01930] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Group B Streptococcus (GBS) is a major opportunistic pathogen in certain adult populations, including pregnant women, and remains a leading etiologic agent of newborn disease. During pregnancy, GBS asymptomatically colonizes the vaginal tract of 20-30% of healthy women, but can be transmitted to the neonate in utero or during birth resulting in neonatal pneumonia, sepsis, meningitis, and subsequently 10-15% mortality regardless of antibiotic treatment. While various GBS virulence factors have been implicated in vaginal colonization and invasive disease, the regulation of many of these factors remains unclear. Recently, CRISPR-associated protein-9 (Cas9), an endonuclease known for its role in CRISPR/Cas immunity, has also been observed to modulate virulence in a number of bacterial pathogens. However, the role of Cas9 in GBS colonization and disease pathogenesis has not been well-studied. We performed allelic replacement of cas9 in GBS human clinical isolates of the hypervirulent sequence-type 17 strain lineage to generate isogenic Δcas9 mutants. Compared to parental strains, Δcas9 mutants were attenuated in murine models of hematogenous meningitis and vaginal colonization and exhibited significantly decreased invasion of human brain endothelium and adherence to vaginal epithelium. To determine if Cas9 alters transcription in GBS, we performed RNA-Seq analysis and found that 353 genes (>17% of the GBS genome) were differentially expressed between the parental WT and Δcas9 mutant strain. Significantly dysregulated genes included those encoding predicted virulence factors, metabolic factors, two-component systems (TCS), and factors important for cell wall formation. These findings were confirmed by qRT-PCR and suggest that Cas9 may regulate a significant portion of the GBS genome. We studied one of the TCS regulators, CiaR, that was significantly downregulated in the Δcas9 mutant strain. RNA-Seq analysis of the WT and ΔciaR strains demonstrated that almost all CiaR-regulated genes were also significantly regulated by Cas9, suggesting that Cas9 may modulate GBS gene expression through other regulators. Further we show that CiaR contributes to GBS vaginal colonization and persistence. Altogether, these data highlight the potential complexity and importance of the non-canonical function of Cas9 in GBS colonization and disease.
Collapse
Affiliation(s)
- Brady L. Spencer
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Liwen Deng
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Kathryn A. Patras
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Zachary M. Burcham
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Glenda F. Sanches
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Roberto Alcântara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Prescilla E. Nagao
- Roberto Alcântara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Kelly S. Doran
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biology, San Diego State University, San Diego, CA, United States
| |
Collapse
|
8
|
Zheng JJ, Sinha D, Wayne KJ, Winkler ME. Physiological Roles of the Dual Phosphate Transporter Systems in Low and High Phosphate Conditions and in Capsule Maintenance of Streptococcus pneumoniae D39. Front Cell Infect Microbiol 2016; 6:63. [PMID: 27379215 PMCID: PMC4913102 DOI: 10.3389/fcimb.2016.00063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/27/2016] [Indexed: 12/28/2022] Open
Abstract
Unlike most bacteria, Streptococcus pneumoniae (pneumococcus) has two evolutionarily distinct ABC transporters (Pst1 and Pst2) for inorganic phosphate (Pi) uptake. The genes encoding a two-component regulator (PnpRS) are located immediately upstream of the pst1 operon. Both the pst1 and pst2 operons encode putative PhoU-family regulators (PhoU1 and PhoU2) at their ends. This study addresses why S. pneumoniae contains dual Pi uptake systems and the regulation and contribution of the Pst1 and Pst2 systems in conditions of high (mM) Pi amount and low (μM) Pi amount. We show that in unencapsulated mutants, both pst1 and pst2 can be deleted, and Pi is taken up by a third Na+/Pi co-transporter, designated as NptA. In contrast, either pst1 or pst2 is unexpectedly required for the growth of capsule producing strains. We used a combination of mutational analysis, transcript level determinations by qRT-PCR and RNA-Seq, assays for cellular PnpR~P amounts by SDS-PAGE, and pulse-Pi uptake experiments to study the regulation of Pi uptake. In high Pi medium, PhoU2 serves as the master negative regulator of Pst2 transporter function and PnpR~P levels (post-transcriptionally). ΔphoU2 mutants have high PnpR~P levels and induction of the pst1 operon, poor growth, and sensitivity to antibiotics, possibly due to high Pi accumulation. In low Pi medium, Pst2 is still active, but PnpR~P amount and pst1 operon levels increase. Together, these results support a model in which pneumococcus maintains high Pi transport in high and low Pi conditions that is required for optimal capsule biosynthesis.
Collapse
Affiliation(s)
- Jiaqi J Zheng
- Department of Biology, Indiana University Bloomington Bloomington, IN, USA
| | - Dhriti Sinha
- Department of Biology, Indiana University Bloomington Bloomington, IN, USA
| | - Kyle J Wayne
- Department of Biology, Indiana University Bloomington Bloomington, IN, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington Bloomington, IN, USA
| |
Collapse
|