1
|
Peng P, Stuart‐Fox D, Chen S, Tan EJ, Kuo G, Blamires SJ, Tso I, Elgar MA. High contrast yellow mosaic patterns are prey attractants for orb‐weaving spiders. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Po Peng
- School of BioSciences University of Melbourne Parkville Vic. Australia
| | - Devi Stuart‐Fox
- School of BioSciences University of Melbourne Parkville Vic. Australia
| | - Szu‐Wei Chen
- Agricultural Policy Research Centre Agricultural Technology Research Institute Taipei Taiwan
| | | | - Guan‐Lin Kuo
- Department of Molecular and Cell Biology University of Leicester Leicester UK
| | - Sean J. Blamires
- Evolution & Ecology Research Centre School of Biological Earth & Environmental Sciences The University of New South Wales Sydney NSW Australia
| | - I‐Min Tso
- Department of Life Science Tunghai University Taichung Taiwan
| | - Mark A. Elgar
- School of BioSciences University of Melbourne Parkville Vic. Australia
| |
Collapse
|
2
|
Blamires SJ, Blackledge TA, Tso IM. Physicochemical Property Variation in Spider Silk: Ecology, Evolution, and Synthetic Production. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:443-460. [PMID: 27959639 DOI: 10.1146/annurev-ento-031616-035615] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The unique combination of great stiffness, strength, and extensibility makes spider major ampullate (MA) silk desirable for various biomimetic and synthetic applications. Intensive research on the genetics, biochemistry, and biomechanics of this material has facilitated a thorough understanding of its properties at various levels. Nevertheless, methods such as cloning, recombination, and electrospinning have not successfully produced materials with properties as impressive as those of spider silk. It is nevertheless becoming clear that silk properties are a consequence of whole-organism interactions with the environment in addition to genetic expression, gland biochemistry, and spinning processes. Here we assimilate the research done and assess the techniques used to determine distinct forms of spider silk chemical and physical property variability. We suggest that more research should focus on testing hypotheses that explain spider silk property variations in ecological and evolutionary contexts.
Collapse
Affiliation(s)
- Sean J Blamires
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan;
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, The University of New South Wales, Sydney 2052, Australia;
| | - Todd A Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325;
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan;
| |
Collapse
|
3
|
Blamires SJ, Tseng YH, Wu CL, Toft S, Raubenheimer D, Tso IM. Spider web and silk performance landscapes across nutrient space. Sci Rep 2016; 6:26383. [PMID: 27216252 PMCID: PMC4877650 DOI: 10.1038/srep26383] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/29/2016] [Indexed: 11/09/2022] Open
Abstract
Predators have been shown to alter their foraging as a regulatory response to recent feeding history, but it remains unknown whether trap building predators modulate their traps similarly as a regulatory strategy. Here we fed the orb web spider Nephila pilipes either live crickets, dead crickets with webs stimulated by flies, or dead crickets without web stimulation, over 21 days to enforce spiders to differentially extract nutrients from a single prey source. In addition to the nutrients extracted we measured web architectures, silk tensile properties, silk amino acid compositions, and web tension after each feeding round. We then plotted web and silk "performance landscapes" across nutrient space. The landscapes had multiple peaks and troughs for each web and silk performance parameter. The findings suggest that N. pilipes plastically adjusts the chemical and physical properties of their web and silk in accordance with its nutritional history. Our study expands the application of the geometric framework foraging model to include a type of predatory trap. Whether it can be applied to other predatory traps requires further testing.
Collapse
Affiliation(s)
- Sean J. Blamires
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, The University of New South Wales, Sydney 2052, Australia
| | - Yi-Hsuan Tseng
- Department of Life Science, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Chung-Lin Wu
- Center for Measurement Standards, Industrial Technology Research Institute, Hsinchu 30011, Taiwan
| | - Søren Toft
- Department of BioScience, Building 1540, Aarhus University, Ny Munkegade 116, DK-Aarhus 8000 C, Denmark
| | - David Raubenheimer
- The Charles Perkins Centre, Faculty of Veterinary Science & School of Biological Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - I.-Min Tso
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan
- Department of Life Science, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
4
|
Top down and bottom up selection drives variations in frequency and form of a visual signal. Sci Rep 2015; 5:9543. [PMID: 25828030 PMCID: PMC4406052 DOI: 10.1038/srep09543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/18/2015] [Indexed: 11/30/2022] Open
Abstract
The frequency and form of visual signals can be shaped by selection from predators, prey or both. When a signal simultaneously attracts predators and prey, selection may favour a strategy that minimizes risks while attracting prey. Accordingly, varying the frequency and form of the silken decorations added to their web may be a way that Argiope spiders minimize predation while attracting prey. Nonetheless, the role of extraneous factors renders the influences of top down and bottom up selection on decoration frequency and form variation difficult to discern. Here we used dummy spiders and decorations to simulate four possible strategies that the spider Argiope aemula may choose and measured the prey and predator attraction consequences for each in the field. The strategy of decorating at a high frequency with a variable form attracted the most prey, while that of decorating at a high frequency with a fixed form attracted the most predators. These results suggest that mitigating the cost of attracting predators while maintaining prey attraction drives the use of variation in decoration form by many Argiope spp. when decorating frequently. Our study highlights the importance of considering top-down and bottom up selection pressure when devising evolutionary ecology experiments.
Collapse
|
5
|
Blamires SJ, Liao CP, Chang CK, Chuang YC, Wu CL, Blackledge TA, Sheu HS, Tso IM. Mechanical Performance of Spider Silk Is Robust to Nutrient-Mediated Changes in Protein Composition. Biomacromolecules 2015; 16:1218-25. [DOI: 10.1021/acs.biomac.5b00006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sean J. Blamires
- Department
of Life Science, Tunghai University, Taichung 40704, Taiwan
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, The University of New South Wales, Sydney 2052, Australia
| | - Chen-Pan Liao
- Department
of Life Science, Tunghai University, Taichung 40704, Taiwan
| | - Chung-Kai Chang
- National Synchrotron
Radiation Research Center, Hsinchu 3000, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron
Radiation Research Center, Hsinchu 3000, Taiwan
| | - Chung-Lin Wu
- Center
for Measurement Standards, Industrial Technology Research Institute, Hsinchu 30011, Taiwan
| | - Todd A. Blackledge
- Department
of Biology, Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325, United States
| | - Hwo-Shuenn Sheu
- National Synchrotron
Radiation Research Center, Hsinchu 3000, Taiwan
| | - I-Min Tso
- Department
of Life Science, Tunghai University, Taichung 40704, Taiwan
| |
Collapse
|
6
|
Blamires SJ, Piorkowski D, Chuang A, Tseng YH, Toft S, Tso IM. Can differential nutrient extraction explain property variations in a predatory trap? ROYAL SOCIETY OPEN SCIENCE 2015; 2:140479. [PMID: 26064618 PMCID: PMC4448829 DOI: 10.1098/rsos.140479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
Predators exhibit flexible foraging to facilitate taking prey that offer important nutrients. Because trap-building predators have limited control over the prey they encounter, differential nutrient extraction and trap architectural flexibility may be used as a means of prey selection. Here, we tested whether differential nutrient extraction induces flexibility in architecture and stickiness of a spider's web by feeding Nephila pilipes live crickets (CC), live flies (FF), dead crickets with the web stimulated by flies (CD) or dead flies with the web stimulated by crickets (FD). Spiders in the CD group consumed less protein per mass of lipid or carbohydrate, and spiders in the FF group consumed less carbohydrates per mass of protein. Spiders from the CD group built stickier webs that used less silk, whereas spiders in the FF group built webs with more radii, greater catching areas and more silk, compared with other treatments. Our results suggest that differential nutrient extraction is a likely explanation for prey-induced spider web architecture and stickiness variations.
Collapse
Affiliation(s)
- Sean J. Blamires
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan, Republic of China
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dakota Piorkowski
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan, Republic of China
| | - Angela Chuang
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan, Republic of China
| | - Yi-Hsuan Tseng
- Department of Life Science, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Søren Toft
- Department of BioScience, Aarhus University, Building 1540, Ny Munkegade 116, Aarhus 8000 C, Denmark
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan, Republic of China
- Department of Life Science, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
7
|
Blamires SJ, Sahni V, Dhinojwala A, Blackledge TA, Tso IM. Nutrient deprivation induces property variations in spider gluey silk. PLoS One 2014; 9:e88487. [PMID: 24523902 PMCID: PMC3921163 DOI: 10.1371/journal.pone.0088487] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Understanding the mechanisms facilitating property variability in biological adhesives may promote biomimetic innovations. Spider gluey silks such as the spiral threads in orb webs and the gumfoot threads in cobwebs, both of which comprise of an axial thread coated by glue, are biological adhesives that have variable physical and chemical properties. Studies show that the physical and chemical properties of orb web gluey threads change when spiders are deprived of food. It is, however, unknown whether gumfoot threads undergo similar property variations when under nutritional stress. Here we tested whether protein deprivation induces similar variations in spiral and gumfoot thread morphology and stickiness. We manipulated protein intake for the orb web spider Nephila clavipes and the cobweb spider Latrodectus hesperus and measured the diameter, glue droplet volume, number of droplets per mm, axial thread width, thread stickiness and adhesive energy of their gluey silks. We found that the gluey silks of both species were stickier when the spiders were deprived of protein than when the spiders were fed protein. In N. clavipes a concomitant increase in glue droplet volume was found. Load-extension curves showed that protein deprivation induced glue property variations independent of the axial thread extensions in both species. We predicted that changes in salt composition of the glues were primarily responsible for the changes in stickiness of the silks, although changes in axial thread properties might also contribute. We, additionally, showed that N. clavipes' glue changes color under protein deprivation, probably as a consequence of changes to its biochemical composition.
Collapse
Affiliation(s)
- Sean J. Blamires
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Vasav Sahni
- Department of Polymer Science, The University of Akron, Akron, Ohio, United States of America
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio, United States of America
| | - Todd A. Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, Ohio, United States of America
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
8
|
Wu CC, Blamires SJ, Wu CL, Tso IM. Wind induces variations in spider web geometry and sticky spiral droplet volume. J Exp Biol 2013; 216:3342-9. [DOI: 10.1242/jeb.083618] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Trap building by animals is rare because it comes at substantial costs. Using materials with properties that vary across environments maintains trap functionality. The sticky spiral silks of spider orb webs are used to catch flying prey. Web geometry, accompanied by compensatory changes in silk properties, may change across environments to sustain web functionality. We exposed the spider Cyclosa mulmeinensis to wind to test if wind-induced changes in web geometry are accompanied by changes in aggregate silk droplet morphology, axial thread width or spiral stickiness. We compared: (i) web catching area, (ii) length of total silks, (iii) mesh height, (iv) number of radii, (v) aggregate droplet morphology and (vi) spiral thread stickiness, between webs made by spiders exposed to wind with those not exposed to wind. We interpreted co-variation in droplet morphology or spiral stickiness with web capture area, mesh height or spiral length as the silk properties functionally compensating for changes in web geometry to reduce wind drag. Wind-exposed C. mulmeinensis built webs with smaller capture areas, shorter capture spiral lengths, and more widely spaced capture spirals, resulting in the expenditure of less silk. Individuals that were exposed to wind also deposited larger droplets of sticky silk but the stickiness of the spiral threads remained unchanged. The larger droplets may be a product of greater investment in water, or low molecular weight compounds facilitating atmospheric water uptake. Either way droplet dehydration in wind is likely to be minimized.
Collapse
|