1
|
Kaur U, Kihn KC, Ke H, Kuo W, Gierasch LM, Hebert DN, Wintrode PL, Deredge D, Gershenson A. The conformational landscape of a serpin N-terminal subdomain facilitates folding and in-cell quality control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537978. [PMID: 37163105 PMCID: PMC10168285 DOI: 10.1101/2023.04.24.537978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Many multi-domain proteins including the serpin family of serine protease inhibitors contain non-sequential domains composed of regions that are far apart in sequence. Because proteins are translated vectorially from N- to C-terminus, such domains pose a particular challenge: how to balance the conformational lability necessary to form productive interactions between early and late translated regions while avoiding aggregation. This balance is mediated by the protein sequence properties and the interactions of the folding protein with the cellular quality control machinery. For serpins, particularly α 1 -antitrypsin (AAT), mutations often lead to polymer accumulation in cells and consequent disease suggesting that the lability/aggregation balance is especially precarious. Therefore, we investigated the properties of progressively longer AAT N-terminal fragments in solution and in cells. The N-terminal subdomain, residues 1-190 (AAT190), is monomeric in solution and efficiently degraded in cells. More β -rich fragments, 1-290 and 1-323, form small oligomers in solution, but are still efficiently degraded, and even the polymerization promoting Siiyama (S53F) mutation did not significantly affect fragment degradation. In vitro, the AAT190 region is among the last regions incorporated into the final structure. Hydrogen-deuterium exchange mass spectrometry and enhanced sampling molecular dynamics simulations show that AAT190 has a broad, dynamic conformational ensemble that helps protect one particularly aggregation prone β -strand from solvent. These AAT190 dynamics result in transient exposure of sequences that are buried in folded, full-length AAT, which may provide important recognition sites for the cellular quality control machinery and facilitate degradation and, under favorable conditions, reduce the likelihood of polymerization.
Collapse
Affiliation(s)
- Upneet Kaur
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | - Kyle C. Kihn
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Haiping Ke
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | - Weiwei Kuo
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | - Lila M. Gierasch
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Daniel N. Hebert
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Patrick L. Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Anne Gershenson
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
2
|
Plessa E, Chu LP, Chan SHS, Thomas OL, Cassaignau AME, Waudby CA, Christodoulou J, Cabrita LD. Nascent chains can form co-translational folding intermediates that promote post-translational folding outcomes in a disease-causing protein. Nat Commun 2021; 12:6447. [PMID: 34750347 PMCID: PMC8576036 DOI: 10.1038/s41467-021-26531-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/01/2021] [Indexed: 01/16/2023] Open
Abstract
During biosynthesis, proteins can begin folding co-translationally to acquire their biologically-active structures. Folding, however, is an imperfect process and in many cases misfolding results in disease. Less is understood of how misfolding begins during biosynthesis. The human protein, alpha-1-antitrypsin (AAT) folds under kinetic control via a folding intermediate; its pathological variants readily form self-associated polymers at the site of synthesis, leading to alpha-1-antitrypsin deficiency. We observe that AAT nascent polypeptides stall during their biosynthesis, resulting in full-length nascent chains that remain bound to ribosome, forming a persistent ribosome-nascent chain complex (RNC) prior to release. We analyse the structure of these RNCs, which reveals compacted, partially-folded co-translational folding intermediates possessing molten-globule characteristics. We find that the highly-polymerogenic mutant, Z AAT, forms a distinct co-translational folding intermediate relative to wild-type. Its very modest structural differences suggests that the ribosome uniquely tempers the impact of deleterious mutations during nascent chain emergence. Following nascent chain release however, these co-translational folding intermediates guide post-translational folding outcomes thus suggesting that Z's misfolding is initiated from co-translational structure. Our findings demonstrate that co-translational folding intermediates drive how some proteins fold under kinetic control, and may thus also serve as tractable therapeutic targets for human disease.
Collapse
Affiliation(s)
- Elena Plessa
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lien P Chu
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sammy H S Chan
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Oliver L Thomas
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK. .,School of Crystallography, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK.
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Ansari S, Ray A, Ali MF, Bano S, Jairajpuri MA. Contrasting conformational dynamics of β-sheet A and helix F with implications in neuroserpin inhibition and aggregation. Int J Biol Macromol 2021; 176:117-125. [PMID: 33516851 DOI: 10.1016/j.ijbiomac.2021.01.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
Neuroserpin (NS) is an inhibitory protein of serpin super family, its shutter region variants have high propensity to aggregate leading to pathological disorders like familial encephalopathy with NS inclusion bodies (FENIB). Helix F and β-sheet A of NS participate in the tissue plasminogen activator (tPA) inhibition but the mechanism is not yet completely understood. A microsecond (μs) molecular dynamics simulation of the helix F and strand 3A variants showed predominant fluctuations in the loop connecting the strands of β-sheet A. Therefore to understand the role of helix F and strand 3A of β-sheet A, cysteine was incorporated at the position N182 in stand 3A (N182C) and position W154 (W154C) in the helix F using site-directed mutagenesis. Purified variants were further labeled with Alexa Fluor488 C5 maleimide dye. Temperature dependent study using non-denaturing PAGE showed the formation of large aggregates of helix F variant W154C but not the strand 3A N182C variant. Interestingly tPA inhibition was found to be decreased in the labeled N182C with decreased tPA-complex formation as compared to labeled W154C NS variant. The fluorescence emission intensity of the labeled helix F variant W154C decreased in the presence of an increasing concentration of tPA, whereas an increase in emission intensity was observed in labeled strand 3A variant N182C, indicating more exposure of strand 3A and shielding of helix F. Taken together the data shows that helix F has a predominant role in the aggregation but a minor role in the inhibition mechanism.
Collapse
Affiliation(s)
- Shoyab Ansari
- Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India
| | - Mohammad Farhan Ali
- Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Shadabi Bano
- Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohamad Aman Jairajpuri
- Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| |
Collapse
|
4
|
Eggenschwiler R, Patronov A, Hegermann J, Fráguas-Eggenschwiler M, Wu G, Cortnumme L, Ochs M, Antes I, Cantz T. A combined in silico and in vitro study on mouse Serpina1a antitrypsin-deficiency mutants. Sci Rep 2019; 9:7486. [PMID: 31097772 PMCID: PMC6522476 DOI: 10.1038/s41598-019-44043-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 05/07/2019] [Indexed: 01/15/2023] Open
Abstract
Certain point-mutations in the human SERPINA1-gene can cause severe α1-antitrypsin-deficiency (A1AT-D). Affected individuals can suffer from loss-of-function lung-disease and from gain-of-function liver-disease phenotypes. However, age of onset and severity of clinical appearance is heterogeneous amongst carriers, suggesting involvement of additional genetic and environmental factors. The generation of authentic A1AT-D mouse-models has been hampered by the complexity of the mouse Serpina1-gene locus and a model with concurrent lung and liver-disease is still missing. Here, we investigate point-mutations in the mouse Serpina1a antitrypsin-orthologue, which are homolog-equivalent to ones known to cause severe A1AT-D in human. We combine in silico and in vitro methods and we find that analyzed mutations do introduce potential disease-causing properties into Serpina1a. Finally, we show that introduction of the King’s-mutation causes inactivation of neutrophil elastase inhibitory-function in both, mouse and human antitrypsin, while the mouse Z-mutant retains activity. This work paves the path to generation of better A1AT-D mouse-models.
Collapse
Affiliation(s)
- Reto Eggenschwiler
- Research Group Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, 30625, Germany. .,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, 30625, Germany.
| | - Atanas Patronov
- Protein Modelling Group, Department of Life Sciences, Technical University Munich, Freising, 85354, Germany.,TUM School of Life Sciences, Center for Integrated Protein Science (CIPSM), Technical University Munich, Freising, 85354, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, 30625, Germany.,Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, 30625, Germany.,Imaging Platform of the Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, 30625, Germany
| | - Mariane Fráguas-Eggenschwiler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, 30625, Germany.,TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, 30625, Germany
| | - Guangming Wu
- Max Planck Institute for Molecular Biomedicine, Cell and Developmental Biology, Münster, 48149, Germany
| | - Leon Cortnumme
- Research Group Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, 30625, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, 30625, Germany
| | - Matthias Ochs
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, 30625, Germany.,Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, 30625, Germany.,Imaging Platform of the Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, 30625, Germany.,Institute of Vegetative Anatomy Charité - Universitaetsmedizin Berlin, Berlin, 10115, Germany
| | - Iris Antes
- Protein Modelling Group, Department of Life Sciences, Technical University Munich, Freising, 85354, Germany.,TUM School of Life Sciences, Center for Integrated Protein Science (CIPSM), Technical University Munich, Freising, 85354, Germany
| | - Tobias Cantz
- Research Group Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, 30625, Germany. .,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, 30625, Germany. .,Max Planck Institute for Molecular Biomedicine, Cell and Developmental Biology, Münster, 48149, Germany.
| |
Collapse
|
5
|
Probing the folding pathway of a consensus serpin using single tryptophan mutants. Sci Rep 2018; 8:2121. [PMID: 29391487 PMCID: PMC5794792 DOI: 10.1038/s41598-018-19567-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/03/2017] [Indexed: 01/25/2023] Open
Abstract
Conserpin is an engineered protein that represents the consensus of a sequence alignment of eukaryotic serpins: protease inhibitors typified by a metastable native state and a structurally well-conserved scaffold. Previously, this protein has been found to adopt a native inhibitory conformation, possess an atypical reversible folding pathway and exhibit pronounced resistance to inactivation. Here we have designed a version of conserpin, cAT, with the inhibitory specificity of α1-antitrypsin, and generated single-tryptophan variants to probe its folding pathway in more detail. cAT exhibited similar thermal stability to the parental protein, an inactivation associated with oligomerisation rather a transition to the latent conformation, and a native state with pronounced kinetic stability. The tryptophan variants reveal the unfolding intermediate ensemble to consist of an intact helix H, a distorted helix F and ‘breach’ region structurally similar to that of a mesophilic serpin intermediate. A combination of intrinsic fluorescence, circular dichroism, and analytical gel filtration provide insight into a highly cooperative folding pathway with concerted changes in secondary and tertiary structure, which minimises the accumulation of two directly-observed aggregation-prone intermediate species. This functional conserpin variant represents a basis for further studies of the relationship between structure and stability in the serpin superfamily.
Collapse
|
6
|
On the folding of a structurally complex protein to its metastable active state. Proc Natl Acad Sci U S A 2018; 115:1998-2003. [PMID: 29343647 DOI: 10.1073/pnas.1708173115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
For successful protease inhibition, the reactive center loop (RCL) of the two-domain serine protease inhibitor, α1-antitrypsin (α1-AT), needs to remain exposed in a metastable active conformation. The α1-AT RCL is sequestered in a β-sheet in the stable latent conformation. Thus, to be functional, α1-AT must always fold to a metastable conformation while avoiding folding to a stable conformation. We explore the structural basis of this choice using folding simulations of coarse-grained structure-based models of the two α1-AT conformations. Our simulations capture the key features of folding experiments performed on both conformations. The simulations also show that the free energy barrier to fold to the latent conformation is much larger than the barrier to fold to the active conformation. An entropically stabilized on-pathway intermediate lowers the barrier for folding to the active conformation. In this intermediate, the RCL is in an exposed configuration, and only one of the two α1-AT domains is folded. In contrast, early conversion of the RCL into a β-strand increases the coupling between the two α1-AT domains in the transition state and creates a larger barrier for folding to the latent conformation. Thus, unlike what happens in several proteins, where separate regions promote folding and function, the structure of the RCL, formed early during folding, determines both the conformational and the functional fate of α1-AT. Further, the short 12-residue RCL modulates the free energy barrier and the folding cooperativity of the large 370-residue α1-AT. Finally, we suggest experiments to test the predicted folding mechanism for the latent state.
Collapse
|
7
|
Miranda E, Ferrarotti I, Berardelli R, Laffranchi M, Cerea M, Gangemi F, Haq I, Ottaviani S, Lomas DA, Irving JA, Fra A. The pathological Trento variant of alpha-1-antitrypsin (E75V) shows nonclassical behaviour during polymerization. FEBS J 2017; 284:2110-2126. [PMID: 28504839 PMCID: PMC5518210 DOI: 10.1111/febs.14111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/26/2017] [Accepted: 05/12/2017] [Indexed: 12/11/2022]
Abstract
Severe alpha‐1‐antitrypsin deficiency (AATD) is most frequently associated with the alpha‐1‐antitrypsin (AAT) Z variant (E342K). ZZ homozygotes exhibit accumulation of AAT as polymers in the endoplasmic reticulum of hepatocytes. This protein deposition can lead to liver disease, with the resulting low circulating levels of AAT predisposing to early‐onset emphysema due to dysregulation of elastinolytic activity in the lungs. An increasing number of rare AAT alleles have been identified in patients with severe AATD, typically in combination with the Z allele. Here we report a new mutation (E75V) in a patient with severe plasma deficiency, which we designate Trento. In contrast to the Z mutant, Trento AAT was secreted efficiently when expressed in cellular models but showed compromised conformational stability. Polyacrylamide gel electrophoresis (PAGE) and ELISA‐based analyses of the secreted protein revealed the presence of oligomeric species with electrophoretic and immunorecognition profiles different from those of Z and S (E264V) AAT polymers, including reduced recognition by conformational monoclonal antibodies 2C1 and 4B12. This altered recognition was not due to direct effects on the epitope of the 2C1 monoclonal antibody which we localized between helices E and F. Structural analyses indicate the likely basis for polymer formation is the loss of a highly conserved stabilizing interaction between helix C and the posthelix I loop. These results highlight this region as important for maintaining native state stability and, when compromised, results in the formation of pathological polymers that are different from those produced by Z and S AAT.
Collapse
Affiliation(s)
- Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Ilaria Ferrarotti
- Department of Internal Medicine and Therapeutics, Pneumology Unit, University of Pavia, Italy
| | - Romina Berardelli
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Mattia Laffranchi
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Marta Cerea
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Fabrizio Gangemi
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Imran Haq
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, UK
| | - Stefania Ottaviani
- Center for Diagnosis of Inherited Alpha 1-Antitrypsin Deficiency, Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - David A Lomas
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, UK
| | - James A Irving
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, UK
| | - Annamaria Fra
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| |
Collapse
|
8
|
Andersen OJ, Risør MW, Poulsen EC, Nielsen NC, Miao Y, Enghild JJ, Schiøtt B. Reactive Center Loop Insertion in α-1-Antitrypsin Captured by Accelerated Molecular Dynamics Simulation. Biochemistry 2017; 56:634-646. [PMID: 27995800 DOI: 10.1021/acs.biochem.6b00839] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protease inhibition by metastable serine protease inhibitors (serpins) is mediated by one of the largest functional intradomain conformational changes known in biology. In this extensive structural rearrangement, protease-serpin complex formation triggers cleavage of the serpin reactive center loop (RCL), its subsequent insertion into central β-sheet A, and covalent trapping of the target protease. In this study, we present the first detailed accelerated molecular dynamics simulation of the insertion of the fully cleaved RCL in α-1-antitrypsin (α1AT), the archetypal member of the family of human serpins. Our results reveal internal water pathways that allow the initial incorporation of side chains of RCL residues into the protein interior. We observed structural plasticity of the helix F (hF) element that blocks the RCL path in the native state, which is in excellent agreement with previous experimental reports. Furthermore, the simulation suggested a novel role of hF and the connected turn (thFs3A) as chaperones that support the insertion process by reducing the conformational space available to the RCL. Transient electrostatic interactions of RCL residues potentially fine-tune the serpin inhibitory activity. On the basis of our simulation, we generated the α1AT mutants K168E, E346K, and K168E/E346K and analyzed their inhibitory activity along with their intrinsic stability and heat-induced polymerization. Remarkably, the E346K mutation exhibited enhanced inhibitory activity along with an increased rate of premature structural collapse (polymerization), suggesting a significant role of E346 in the gatekeeping of the strain in the metastable native state.
Collapse
Affiliation(s)
- Ole Juul Andersen
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus, Denmark.,Department of Chemistry, Aarhus University , Aarhus, Denmark
| | - Michael Wulff Risør
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University , Aarhus, Denmark
| | - Emil Christian Poulsen
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University , Aarhus, Denmark
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus, Denmark.,Department of Chemistry, Aarhus University , Aarhus, Denmark
| | - Yinglong Miao
- Howard Hughes Medical Institute and Department of Pharmacology, University of California at San Diego , La Jolla, California 92093, United States
| | - Jan J Enghild
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University , Aarhus, Denmark
| | - Birgit Schiøtt
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus, Denmark.,Department of Chemistry, Aarhus University , Aarhus, Denmark
| |
Collapse
|
9
|
Motamedi-Shad N, Jagger AM, Liedtke M, Faull SV, Nanda AS, Salvadori E, Wort JL, Kay CW, Heyer-Chauhan N, Miranda E, Perez J, Ordóñez A, Haq I, Irving JA, Lomas DA. An antibody that prevents serpin polymerisation acts by inducing a novel allosteric behaviour. Biochem J 2016; 473:3269-90. [PMID: 27407165 PMCID: PMC5264506 DOI: 10.1042/bcj20160159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 11/30/2022]
Abstract
Serpins are important regulators of proteolytic pathways with an antiprotease activity that involves a conformational transition from a metastable to a hyperstable state. Certain mutations permit the transition to occur in the absence of a protease; when associated with an intermolecular interaction, this yields linear polymers of hyperstable serpin molecules, which accumulate at the site of synthesis. This is the basis of many pathologies termed the serpinopathies. We have previously identified a monoclonal antibody (mAb4B12) that, in single-chain form, blocks α1-antitrypsin (α1-AT) polymerisation in cells. Here, we describe the structural basis for this activity. The mAb4B12 epitope was found to encompass residues Glu32, Glu39 and His43 on helix A and Leu306 on helix I. This is not a region typically associated with the serpin mechanism of conformational change, and correspondingly the epitope was present in all tested structural forms of the protein. Antibody binding rendered β-sheet A - on the opposite face of the molecule - more liable to adopt an 'open' state, mediated by changes distal to the breach region and proximal to helix F. The allosteric propagation of induced changes through the molecule was evidenced by an increased rate of peptide incorporation and destabilisation of a preformed serpin-enzyme complex following mAb4B12 binding. These data suggest that prematurely shifting the β-sheet A equilibrium towards the 'open' state out of sequence with other changes suppresses polymer formation. This work identifies a region potentially exploitable for a rational design of ligands that is able to dynamically influence α1-AT polymerisation.
Collapse
Affiliation(s)
- Neda Motamedi-Shad
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Alistair M. Jagger
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Maximilian Liedtke
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
| | - Sarah V. Faull
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, U.K
| | - Arjun Scott Nanda
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Enrico Salvadori
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, U.K
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Joshua L. Wort
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Christopher W.M. Kay
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, U.K
| | - Narinder Heyer-Chauhan
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Elena Miranda
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, Rome 00185, Italy
| | - Juan Perez
- Departamento de Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Campus Teatinos, Universidad de Malaga, Malaga 29071, Spain
| | - Adriana Ordóñez
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, U.K
| | - Imran Haq
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - James A. Irving
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - David A. Lomas
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| |
Collapse
|
10
|
Porebski BT, Keleher S, Hollins JJ, Nickson AA, Marijanovic EM, Borg NA, Costa MGS, Pearce MA, Dai W, Zhu L, Irving JA, Hoke DE, Kass I, Whisstock JC, Bottomley SP, Webb GI, McGowan S, Buckle AM. Smoothing a rugged protein folding landscape by sequence-based redesign. Sci Rep 2016; 6:33958. [PMID: 27667094 PMCID: PMC5036219 DOI: 10.1038/srep33958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/01/2016] [Indexed: 11/09/2022] Open
Abstract
The rugged folding landscapes of functional proteins puts them at risk of misfolding and aggregation. Serine protease inhibitors, or serpins, are paradigms for this delicate balance between function and misfolding. Serpins exist in a metastable state that undergoes a major conformational change in order to inhibit proteases. However, conformational labiality of the native serpin fold renders them susceptible to misfolding, which underlies misfolding diseases such as α1-antitrypsin deficiency. To investigate how serpins balance function and folding, we used consensus design to create conserpin, a synthetic serpin that folds reversibly, is functional, thermostable, and polymerization resistant. Characterization of its structure, folding and dynamics suggest that consensus design has remodeled the folding landscape to reconcile competing requirements for stability and function. This approach may offer general benefits for engineering functional proteins that have risky folding landscapes, including the removal of aggregation-prone intermediates, and modifying scaffolds for use as protein therapeutics.
Collapse
Affiliation(s)
- Benjamin T Porebski
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Shani Keleher
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Jeffrey J Hollins
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Adrian A Nickson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Emilia M Marijanovic
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Natalie A Borg
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Mauricio G S Costa
- Programa de Computação Científica, Fundação Oswaldo Cruz, 21949900 Rio de Janeiro, Brazil
| | - Mary A Pearce
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Weiwen Dai
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Liguang Zhu
- Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia
| | - James A Irving
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - David E Hoke
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Itamar Kass
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - James C Whisstock
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Stephen P Bottomley
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Geoffrey I Webb
- Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Ashley M Buckle
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
11
|
Alpha-1-antitrypsin (SERPINA1) mutation spectrum: Three novel variants and haplotype characterization of rare deficiency alleles identified in Portugal. Respir Med 2016; 116:8-18. [PMID: 27296815 DOI: 10.1016/j.rmed.2016.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/21/2016] [Accepted: 05/02/2016] [Indexed: 01/24/2023]
|
12
|
Gaczynska M, Karpowicz P, Stuart CE, Norton MG, Teckman JH, Marszal E, Osmulski PA. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor. PLoS One 2016; 11:e0151902. [PMID: 27008547 PMCID: PMC4805282 DOI: 10.1371/journal.pone.0151902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/04/2016] [Indexed: 12/17/2022] Open
Abstract
α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found in WT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo polymerization showing a surprising diversity of polymer topography.
Collapse
Affiliation(s)
- Maria Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Przemyslaw Karpowicz
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Christine E. Stuart
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Malgorzata G. Norton
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jeffrey H. Teckman
- Department of Pediatrics and Biochemistry, Saint Louis University School of Medicine, Cardinal Glennon Children’s Medical Center, St. Louis, Missouri, United States of America
| | - Ewa Marszal
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Pawel A. Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
13
|
An antibody raised against a pathogenic serpin variant induces mutant-like behaviour in the wild-type protein. Biochem J 2015; 468:99-108. [PMID: 25738741 PMCID: PMC4422257 DOI: 10.1042/bj20141569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A monoclonal antibody (mAb) that binds to a transient intermediate may act as a catalyst for the corresponding reaction; here we show this principle can extend on a macro molecular scale to the induction of mutant-like oligomerization in a wild-type protein. Using the common pathogenic E342K (Z) variant of α1-antitrypsin as antigen–whose native state is susceptible to the formation of a proto-oligomeric intermediate–we have produced a mAb (5E3) that increases the rate of oligomerization of the wild-type (M) variant. Employing ELISA, gel shift, thermal stability and FRET time-course experiments, we show that mAb5E3 does not bind to the native state of α1-antitrypsin, but recognizes a cryptic epitope in the vicinity of the post-helix A loop and strand 4C that is revealed upon transition to the polymerization intermediate, and which persists in the ensuing oligomer. This epitope is not shared by loop-inserted monomeric conformations. We show the increased amenity to polymerization by either the pathogenic E342K mutation or the binding of mAb5E3 occurs without affecting the energetic barrier to polymerization. As mAb5E3 also does not alter the relative stability of the monomer to intermediate, it acts in a manner similar to the E342K mutant, by facilitating the conformational interchange between these two states. We show that a monoclonal antibody can act as a ‘molecular template’ in aberrant protein oligomerization, and the transient intermediate of α1-antitrypsin, a key to the molecular mechanism of disease pathogenesis, expresses a cryptic epitope also present in the oligomer.
Collapse
|
14
|
Irving J, Haq I, Dickens J, Faull S, Lomas D. Altered native stability is the dominant basis for susceptibility of α1-antitrypsin mutants to polymerization. Biochem J 2014; 460:103-15. [PMID: 24552432 PMCID: PMC4080824 DOI: 10.1042/bj20131650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/13/2014] [Accepted: 02/20/2014] [Indexed: 11/30/2022]
Abstract
Serpins are protease inhibitors whose most stable state is achieved upon transition of a central 5-stranded β-sheet to a 6-stranded form. Mutations, low pH, denaturants and elevated temperatures promote this transition, which can result in a growing polymer chain of inactive molecules. Different types of polymer are possible, but, experimentally only heat has been shown to generate polymers in vitro consistent with ex vivo pathological specimens. Many mutations that alter the rate of heat-induced polymerization have been described, but interpretation is problematic because discrimination is lacking between the effect of global changes in native stability and specific effects on structural mechanism. We show that the temperature midpoint (Tm) of thermal denaturation reflects the transition of α1-antitrypsin to the polymerization intermediate, and determine the relationship with fixed-temperature polymerization half-times (t0.5) in the presence of stabilizing additives [TMAO (trimethylamine N-oxide), sucrose and sodium sulfate], point mutations and disulfide bonds. Combined with a retrospective analysis of 31 mutants characterized in the literature, the results of the present study show that global changes to native state stability are the predominant basis for the effects of mutations and osmolytes on heat-induced polymerization, summarized by the equation: ln(t0.5,mutant/t0.5,wild-type)=0.34×ΔTm. It is deviations from this relationship that hold key information about the polymerization process.
Collapse
Affiliation(s)
- James A. Irving
- *Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, U.K
| | - Imran Haq
- †Wolfson Institute for Biomedical Research, The Cruciform Building, University College London, Gower Street, London WC1E 6BT, U.K
| | - Jennifer A. Dickens
- *Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, U.K
| | - Sarah V. Faull
- *Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, U.K
| | - David A. Lomas
- †Wolfson Institute for Biomedical Research, The Cruciform Building, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
15
|
Liu L, Werner M, Gershenson A. Collapse of a long axis: single-molecule Förster resonance energy transfer and serpin equilibrium unfolding. Biochemistry 2014; 53:2903-14. [PMID: 24749911 PMCID: PMC4020580 DOI: 10.1021/bi401622n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/17/2014] [Indexed: 01/25/2023]
Abstract
The energy required for mechanical inhibition of target proteases is stored in the native structure of inhibitory serpins and accessed by serpin structural remodeling. The overall serpin fold is ellipsoidal with one long and two short axes. Most of the structural remodeling required for function occurs along the long axis, while expansion of the short axes is associated with misfolded, inactive forms. This suggests that ellipticity, as typified by the long axis, may be important for both function and folding. Placement of donor and acceptor fluorophores approximately along the long axis or one of the short axes allows single-pair Förster resonance energy transfer (spFRET) to report on both unfolding transitions and the time-averaged shape of different conformations. Equilibrium unfolding and refolding studies of the well-characterized inhibitory serpin α1-antitrypsin reveal that the long axis collapses in the folding intermediates while the monitored short axis expands. These energetically distinct intermediates are thus more spherical than the native state. Our spFRET studies agree with other equilibrium unfolding studies that found that the region around one of the β strands, s5A, which helps define the long axis and must move for functionally required loop insertion, unfolds at low denaturant concentrations. This supports a connection between functionally important structural lability and unfolding in the inhibitory serpins.
Collapse
Affiliation(s)
- Lu Liu
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Michael Werner
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Anne Gershenson
- Department
of Biochemistry and Molecular Biology, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|