1
|
Patrignoni L, Hurtier A, Orlacchio R, Joushomme A, Poulletier de Gannes F, Lévêque P, Arnaud-Cormos D, Revzani HR, Mahfouf W, Garenne A, Percherancier Y, Lagroye I. Evaluation of mitochondrial stress following ultraviolet radiation and 5G radiofrequency field exposure in human skin cells. Bioelectromagnetics 2024; 45:110-129. [PMID: 38115173 DOI: 10.1002/bem.22495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Whether human cells are impacted by environmental electromagnetic fields (EMF) is still a matter of debate. With the deployment of the fifth generation (5G) of mobile communication technologies, the carrier frequency is increasing and the human skin becomes the main biological target. Here, we evaluated the impact of 5G-modulated 3.5 GHz radiofrequency (RF) EMF on mitochondrial stress in human fibroblasts and keratinocytes that were exposed for 24 h at specific absorption rate of 0.25, 1, and 4 W/kg. We assessed cell viability, mitochondrial reactive oxygen species (ROS) production, and membrane polarization. Knowing that human skin is the main target of environmental ultraviolet (UV), using the same read-out, we investigated whether subsequent exposure to 5G signal could alter the capacity of UV-B to damage skin cells. We found a statistically significant reduction in mitochondrial ROS concentration in fibroblasts exposed to 5G signal at 1 W/kg. On the contrary, the RF exposure slightly but statistically significantly enhanced the effects of UV-B radiation specifically in keratinocytes at 0.25 and 1 W/kg. No effect was found on mitochondrial membrane potential or apoptosis in any cell types or exposure conditions suggesting that the type and amplitude of the observed effects are very punctual.
Collapse
Affiliation(s)
- Lorenza Patrignoni
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| | - Annabelle Hurtier
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Rosa Orlacchio
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| | | | | | - Philippe Lévêque
- Univ. Limoges, CNRS, XLIM / UMR 7252, RF-ELITE team, Limoges, France
| | | | | | - Walid Mahfouf
- Univ. Bordeaux, Inserm, BRIC / UMR 1312, TRIO2 team, Bordeaux, France
| | - André Garenne
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Yann Percherancier
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Isabelle Lagroye
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| |
Collapse
|
2
|
Sannino A, Romeo S, Scarfì MR, Pinchera D, Schettino F, Alonzo M, Allocca M, Zeni O. The effect of exposure to radiofrequency LTE signal and coexposure to mitomycin-C in Chinese hamster lung fibroblast V79 cells. Bioelectromagnetics 2024; 45:97-109. [PMID: 37493434 DOI: 10.1002/bem.22478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023]
Abstract
This study aims to investigate the cellular effects of radiofrequency exposure, 1950 MHz, long-term evolution (LTE) signal, administered alone and in combination with mitomycin-C (MMC), a well-known cytotoxic agent. Chinese hamster lung fibroblast (V79) cells were exposed/sham exposed in a waveguide-based system under strictly controlled conditions of both electromagnetic and environmental parameters, at specific absorption rate (SAR) of 0.3 and 1.25 W/kg. Chromosomal damage (micronuclei formation), oxidative stress (reactive oxygen species [ROS] formation), and cell cycle progression were analyzed after exposure and coexposure. No differences between exposed samples and sham-controls were detected following radiofrequency exposure alone, for all the experimental conditions tested and biological endpoints investigated. When radiofrequency exposure was followed by MMC treatment, 3 h pre-exposure did not modify MMC-induced micronuclei. Pre-exposure of 20 h at 0.3 W/kg did not modify the number of micronuclei induced by MMC, while 1.25 W/kg resulted in a significant reduction of MMC-induced damage. Absence of effects was also detected when CW was used, at both SAR levels. MMC-induced ROS formation resulted significantly decreased at both SAR levels investigated, while cell proliferation and cell cycle progression were not affected by coexposures. The results here reported provide no evidence of direct effects of 1950 MHz, LTE signal. Moreover, they further support our previous findings on the capability of radiofrequency pre-exposure to induce protection from a subsequent toxic treatment, and the key role of the modulated signals and the experimental conditions adopted in eliciting the effect.
Collapse
Affiliation(s)
- Anna Sannino
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Stefania Romeo
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Maria Rosaria Scarfì
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Daniele Pinchera
- Department of Electrical and Information Engineering "Maurizio Scarano" (DIEI), University of Cassino and Southern Lazio, Cassino, Italy
| | - Fulvio Schettino
- Department of Electrical and Information Engineering "Maurizio Scarano" (DIEI), University of Cassino and Southern Lazio, Cassino, Italy
| | - Mario Alonzo
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Mariateresa Allocca
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Olga Zeni
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| |
Collapse
|
3
|
Vitale E, Mea R. Comorbidity, Eating Behaviors and Smartphone Addiction in Italian Nurses' Characteristics. Endocr Metab Immune Disord Drug Targets 2024; 24:1431-1444. [PMID: 38317462 DOI: 10.2174/0118715303271067231129103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Evidence suggested how nurses experienced worse lifestyles than the general population by recording deterioration rates in healthy conditions. AIM To assess differences between comorbidity, eating behavior, and smartphone addiction according to sex, Body Mass Index (BMI), age, work experience, shift, alcohol assumption, and physical activity in Italian nurses. METHODS An online questionnaire was spread through some professional internet pages. Data included demographic characteristics, the Charlson Comorbidity Index (CCI), the Italian Version of the Dutch Eating Behavior Questionnaire, and the Smartphone Addiction Scale (SAS-SV). RESULTS A total of 456 nurses were recruited. Significant differences were registered in the smartphone addiction score (p=0.030) and BMI scores and work experience (p=0.001), as underweight participants reported higher scores in the smartphone addiction attitude (2.4714 ± 1.25812) than the other subjects and also participants with the highest number of years in work experience also reported higher smartphone addiction scores (2.8074 ± 1.2022). Significant difference was reported in the CCI scores according to age (p<0.001): subjects aged over 61 years recorded higher scores in the CCI (1.67 ± 1.528) and also according to work experience and CCI scores (p<0.001), as participants employed between 21 and 30 years reported higher scores in the CCI (1.27 ± 1.382) and also to night shift (p=0.037), as participants who worked during the night shift also reported higher scores in the CCI. A significant difference was reported only for restrained eating attitude (p=0.034), as participants who declared to assume alcohol 2-3 times per month recorded higher levels in this eating attitude aspect (32.32 ± 7.181). CONCLUSION Female nurses, overweight and obese nurses with low physical activity practice, seemed to spend more time with their smartphones. Healthcare organizations should consider findings to prevent unhealthy lifestyles among nurses, which could negatively influence the whole healthcare system.
Collapse
Affiliation(s)
- Elsa Vitale
- Centre of Mental Health, Modugno, Local Health Company Bari, Bari, Italy
| | - Rocco Mea
- Department of Cardiology, San Carlo Hospital, Potenza, Italy
| |
Collapse
|
4
|
Wang M, Zhu M, Zhao Z, Li X, Zhang J. A Novel and Versatile Microfluidic Device for Cell Assays under Radio Frequency Exposure. BIOSENSORS 2023; 13:763. [PMID: 37622849 PMCID: PMC10452282 DOI: 10.3390/bios13080763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 08/26/2023]
Abstract
Wound healing is a complex process composed of different stages, which involves extensive communication between the different cellular factors of the extracellular matrix (ECM). The radio frequency electromagnetic field (RF-EMF) has been used to accelerate the wound-healing process and it has been found to enhance cell alignment and mobility. The conventional methods for cell mobility analysis in an electromagnetic field generated by a radiation source are not advisable due to the low-precision, nonuniform distribution of the field, low efficiency of the analysis in batch and the lack of system integration for autonomous on-body operation. Here, a novel and versatile electromagnetic exposure system integrated with a microfluidic chip was fabricated to explore the EMF-induced response. A gradient electromagnetic field in a two-dimensional plane has been successfully established in the microchambers placed along the field line. In this work, by deploying our radiation experiments in vitro, we validated the on-chip monitoring of cell response to exposure. This electromagnetic field was simulated and human amniotic epithelial cells (HAECs) were cultured in different microchambers for continuous exposure to the electromagnetic field excited by a monopole RF antenna (1.8 GHz). New protrusions were generated and an obvious increase in filopodia with the increased field intensity was investigated. Meanwhile, the variation in intracellular Ca2+ concentration under the electromagnetic field was examined. The inhibitory effect of the Ca2+ circulation was further inspected to reveal the potential downstream signaling pathway in the RF-EMF-related bioassay, suggesting that cytoskeletal dynamics of cells under exposure are highly associated with the EGF receptor (EGFR)-cytoskeleton downstream signaling pathway. Finally, the field-induced cell elongation and alignment parallel to the field direction were observed. Additionally, the subsequent recovery (field withdrawal) and re-establishment (field re-exposure) were explored. These results indicated that this reliable and versatile exposure system for bioassay could achieve precise and high-throughput detection of the RF-EMF-induced cytoskeletal reorganization in vitro and evaluate the possible health risk from RF-EMF exposure.
Collapse
Affiliation(s)
| | | | | | - Xin Li
- Shanghai Key Laboratory of Magnetic Resonance, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jie Zhang
- Shanghai Key Laboratory of Magnetic Resonance, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
5
|
Joushomme A, Orlacchio R, Patrignoni L, Canovi A, Chappe YL, Poulletier De Gannes F, Hurtier A, Garenne A, Lagroye I, Moisan F, Cario M, Lévêque P, Arnaud-Cormos D, Percherancier Y. Effects of 5G-modulated 3.5 GHz radiofrequency field exposures on HSF1, RAS, ERK, and PML activation in live fibroblasts and keratinocytes cells. Sci Rep 2023; 13:8305. [PMID: 37221363 DOI: 10.1038/s41598-023-35397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/17/2023] [Indexed: 05/25/2023] Open
Abstract
The potential health risks of exposure to radiofrequency electromagnetic fields from mobile communications technologies have raised societal concerns. Guidelines have been set to protect the population (e.g. non-specific heating above 1 °C under exposure to radiofrequency fields), but questions remain regarding the potential biological effects of non-thermal exposures. With the advent of the fifth generation (5G) of mobile communication, assessing whether exposure to this new signal induces a cellular stress response is one of the mandatory steps on the roadmap for a safe deployment and health risk evaluation. Using the BRET (Bioluminescence Resonance Energy-Transfer) technique, we assessed whether continuous or intermittent (5 min ON/ 10 min OFF) exposure of live human keratinocytes and fibroblasts cells to 5G 3.5 GHz signals at specific absorption rate (SAR) up to 4 W/kg for 24 h impact basal or chemically-induced activity of Heat Shock Factor (HSF), RAt Sarcoma virus (RAS) and Extracellular signal-Regulated Kinases (ERK) kinases, and Promyelocytic Leukemia Protein (PML), that are all molecular pathways involved in environmental cell-stress responses. The main results are (i), a decrease of the HSF1 basal BRET signal when fibroblasts cells were exposed at the lower SARs tested (0.25 and 1 W/kg), but not at the highest one (4 W/kg), and (ii) a slight decrease of As2O3 maximal efficacy to trigger PML SUMOylation when fibroblasts cells, but not keratinocytes, were continuously exposed to the 5G RF-EMF signal. Nevertheless, given the inconsistency of these effects in terms of impacted cell type, effective SAR, exposure mode, and molecular cell stress response, we concluded that our study show no conclusive evidence that molecular effects can arise when skin cells are exposed to the 5G RF-EMF alone or with a chemical stressor.
Collapse
Affiliation(s)
- Alexandre Joushomme
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - Rosa Orlacchio
- Limoges University, CNRS, XLIM, UMR 7252, F-87000, Limoges, France
| | - Lorenza Patrignoni
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - Anne Canovi
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - Yann Loïck Chappe
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | | | - Annabelle Hurtier
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - André Garenne
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - Isabelle Lagroye
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
- Paris Sciences et Lettres Research University, F-75006, Paris, France
| | - François Moisan
- Bordeaux University, INSERM, BMGIC Laboratory, UMR1035, F-33000, Bordeaux, France
| | - Muriel Cario
- Bordeaux University, INSERM, BMGIC Laboratory, UMR1035, F-33000, Bordeaux, France
| | - Philippe Lévêque
- Limoges University, CNRS, XLIM, UMR 7252, F-87000, Limoges, France
| | - Delia Arnaud-Cormos
- Limoges University, CNRS, XLIM, UMR 7252, F-87000, Limoges, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | - Yann Percherancier
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France.
| |
Collapse
|
6
|
Cardiac Cell Exposure to Electromagnetic Fields: Focus on Oxdative Stress and Apoptosis. Biomedicines 2022; 10:biomedicines10050929. [PMID: 35625666 PMCID: PMC9138495 DOI: 10.3390/biomedicines10050929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/27/2023] Open
Abstract
Exposure to electromagnetic fields (EMFs) is a sensitive research topic. Despite extensive research, to date there is no evidence to conclude that exposure to EMFs influences the cardiovascular system. In the present study, we examined whether 915 MHz EMF exposure affects myocardial antioxidative and apoptotic status in vitro and in vivo. No statistically significant difference in the apoptotic cell profile and antioxidant capacity was observed between controls and short-term EMF-exposed mouse cardiomyocytes and H9C2 cardiomyoblasts. Compared with sham-exposed controls, mice subjected to a 915 MHz EMF for 48 h and 72 h had no significant effect on structural tissue integrity and myocardial expression of apoptosis and antioxidant genes. Therefore, these results indicate that short-term exposure to EMF in cardiac cells and tissues did not translate into a significant effect on the myocardial antioxidant defense system and apoptotic cell death.
Collapse
|
7
|
Sun C, Huang Z, Qin H, Zhang J, Wang S, Xu X, Ying S, Mao G. Exposure to 10 Hz Pulsed Magnetic Fields Do Not Induce Cellular Senescence in Human Fetal Lung Fibroblasts. Front Public Health 2021; 9:761069. [PMID: 34858933 PMCID: PMC8632261 DOI: 10.3389/fpubh.2021.761069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Rapid population aging has led to a global burden of late-life diseases. As the largest risk factor for a multitude of age-related diseases, aging is not only the result of genotype but also closely related to external factors. With the rapid expansion in the usage of electromagnetic fields (EMFs), the effect of EMFs on aging has also attracted attention. Cells are the basic unit of organs and body tissues, and cellular senescence plays an important role in the aging process. The effect of EMFs on cellular senescence has been investigated in a few studies, but the information is limited, and the results are inconsistent; thus, further investigation is required. In this study, we investigated the effect of 10 Hz pulsed magnetic fields (MFs) on cellular senescence in a 2BS cell line, isolated from human fetal lung fibroblasts, and found that intermittent (1 d on/1 d off) exposure to 10 Hz pulsed MFs at 1.0 mT for 2 weeks induced DNA damage, but no other significant phenotype of cellular senescence in 2BS cells.
Collapse
Affiliation(s)
- Chuan Sun
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Zheng Huang
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Houbing Qin
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Shibo Ying
- Hangzhou Medical College, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
8
|
Kim JH, Jeon S, Choi HD, Lee JH, Bae JS, Kim N, Kim HG, Kim KB, Kim HR. Exposure to long-term evolution radiofrequency electromagnetic fields decreases neuroblastoma cell proliferation via Akt/mTOR-mediated cellular senescence. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:846-857. [PMID: 34196262 DOI: 10.1080/15287394.2021.1944944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was to examine the potential effects of long-term evolution (LTE) radiofrequency electromagnetic fields (RF-EMF) on cell proliferation using SH-SY5Y neuronal cells. The growth rate and proliferation of SH-SY5Y cells were significantly decreased upon exposure to 1760 MHz RF-EMF at 4 W/kg specific absorption rate (SAR) for 4 hr/day for 4 days. Cell cycle analysis indicated that the cell cycle was delayed in the G0/G1 phase after RF-EMF exposure. However, DNA damage or apoptosis was not involved in the reduced cellular proliferation following RF-EMF exposure because the expression levels of histone H2A.X at Ser139 (γH2AX) were not markedly altered and the apoptotic pathway was not activated. However, SH-SY5Y cells exposed to RF-EMF exhibited a significant elevation in Akt and mTOR phosphorylation levels. In addition, the total amount of p53 and phosphorylated-p53 was significantly increased. Data suggested that Akt/mTOR-mediated cellular senescence led to p53 activation via stimulation of the mTOR pathway in SH-SY5Y cells. The transcriptional activation of p53 led to a rise in expression of cyclin-dependent kinase (CDK) inhibitors p21 and p27. Further, subsequent inhibition of CDK2 and CDK4 produced a fall in phosphorylated retinoblastoma (pRb at Ser807/811), which decreased cell proliferation. Taken together, these data suggest that exposure to RF-EMF might induce Akt/mTOR-mediated cellular senescence, which may delay the cell cycle without triggering DNA damage in SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, South Korea
| | - Sangbong Jeon
- Radio and Broadcasting Technology Laboratory, ETRI, Daejeon, South Korea
| | - Hyung-Do Choi
- Radio and Broadcasting Technology Laboratory, ETRI, Daejeon, South Korea
| | - Jae-Hun Lee
- Medical Laser Research Center, Dankook University, Cheonan, South Korea
| | - Jun-Sang Bae
- Medical Laser Research Center, Dankook University, Cheonan, South Korea
| | - Nam Kim
- School of Electrical and Computer Engineering, Chungbuk National University, Cheongju, South Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, South Korea
- NeuroVis Inc., Cheonan, Republic of Korea
| | - Kyu-Bong Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, South Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, South Korea
| |
Collapse
|
9
|
Schuermann D, Mevissen M. Manmade Electromagnetic Fields and Oxidative Stress-Biological Effects and Consequences for Health. Int J Mol Sci 2021; 22:ijms22073772. [PMID: 33917298 PMCID: PMC8038719 DOI: 10.3390/ijms22073772] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Concomitant with the ever-expanding use of electrical appliances and mobile communication systems, public and occupational exposure to electromagnetic fields (EMF) in the extremely-low-frequency and radiofrequency range has become a widely debated environmental risk factor for health. Radiofrequency (RF) EMF and extremely-low-frequency (ELF) MF have been classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC). The production of reactive oxygen species (ROS), potentially leading to cellular or systemic oxidative stress, was frequently found to be influenced by EMF exposure in animals and cells. In this review, we summarize key experimental findings on oxidative stress related to EMF exposure from animal and cell studies of the last decade. The observations are discussed in the context of molecular mechanisms and functionalities relevant to health such as neurological function, genome stability, immune response, and reproduction. Most animal and many cell studies showed increased oxidative stress caused by RF-EMF and ELF-MF. In order to estimate the risk for human health by manmade exposure, experimental studies in humans and epidemiological studies need to be considered as well.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
- Correspondence: (D.S.); (M.M.)
| | - Meike Mevissen
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, CH-3012 Bern, Switzerland
- Correspondence: (D.S.); (M.M.)
| |
Collapse
|
10
|
Szilágyi Z, Németh Z, Bakos J, Necz PP, Sáfár A, Kubinyi G, Selmaoui B, Thuróczy G. Evaluation of Inflammation by Cytokine Production Following Combined Exposure to Ultraviolet and Radiofrequency Radiation of Mobile Phones on 3D Reconstructed Human Skin In Vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124401. [PMID: 32575398 PMCID: PMC7344923 DOI: 10.3390/ijerph17124401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022]
Abstract
The absorption of exposure to radiofrequency (RF) emitted by wireless devices leads to a high specific absorption rate in the skin. Ultraviolet (UV) radiation can induce several damages to the skin. The aim of this study was to examine whether combined, consecutive exposure to solar UV radiation and 1950 MHz RF exposure of third generation (3G) mobile system have any effect on inflammation processes in the skin. Under in vitro experiments, the inflammation process was examined by cytokines (IL-1α, IL-6, and IL-8) and MMP-1 enzyme secretion on 3D full thickness human skin model. The RF exposure was applied before or after UV irradiation, in order to study either the possible cooperative or protective effects of exposure to RF and UV. We did not find changes in cytokines due to exposure to RF alone. The RF exposure did not enhance the effects of UV radiation. There was a statistically not-significant decrease in cytokines when the skin tissues were pre-exposed to RF before being exposed to 4 standard erythemal dose (SED) UV compared to UV exposure alone. We found that RF exposure reduced the previously UV-treated MMP-1 enzyme concentration. This study might support the evaluation of the effects on the skin exposed to microwave radiation of 5G mobile technology.
Collapse
Affiliation(s)
- Zsófia Szilágyi
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Zsuzsanna Németh
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - József Bakos
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
- Correspondence: ; Tel.: +36-1-482-2019
| | - Péter Pál Necz
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Anna Sáfár
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Györgyi Kubinyi
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Brahim Selmaoui
- Department of Experimental Toxicology, National Institute of Industrial Environment and Risks (INERIS), 60550 Verneuilen Halate, France;
- PériTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, 80025 Amiens, France
| | - György Thuróczy
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| |
Collapse
|
11
|
Choi J, Min K, Jeon S, Kim N, Pack JK, Song K. Continuous Exposure to 1.7 GHz LTE Electromagnetic Fields Increases Intracellular Reactive Oxygen Species to Decrease Human Cell Proliferation and Induce Senescence. Sci Rep 2020; 10:9238. [PMID: 32514068 PMCID: PMC7280220 DOI: 10.1038/s41598-020-65732-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/27/2020] [Indexed: 12/23/2022] Open
Abstract
Due to the rapid development of mobile phone technology, we are continuously exposed to 1.7 GHz LTE radio frequency electromagnetic fields (RF-EMFs), but their biological effects have not been clarified. Here, we investigated the non-thermal cellular effects of these RF-EMFs on human cells, including human adipose tissue-derived stem cells (ASCs), Huh7 and Hep3B liver cancer stem cells (CSCs), HeLa and SH-SY5Y cancer cells, and normal fibroblast IMR-90 cells. When continuously exposed to 1.7 GHz LTE RF-EMF for 72 h at 1 and 2 SAR, cell proliferation was consistently decreased in all the human cells. The anti-proliferative effect was higher at 2 SAR than 1 SAR and was less severe in ASCs. The exposure to RF-EMF for 72 h at 1 and 2 SAR did not induce DNA double strand breaks or apoptotic cell death, but did trigger a slight delay in the G1 to S cell cycle transition. Cell senescence was also clearly observed in ASC and Huh7 cells exposed to RF-EMF at 2 SAR for 72 h. Intracellular ROS increased in these cells and the treatment with an ROS scavenger recapitulated the anti-proliferative effect of RF-EMF. These observations strongly suggest that 1.7 GHz LTE RF-EMF decrease proliferation and increase senescence by increasing intracellular ROS in human cells.
Collapse
Affiliation(s)
- Jisu Choi
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Kyeongrae Min
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Sangbong Jeon
- Radio & Satellite Research Division, Broadcasting·Media Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejon, 34129, Korea
| | - Nam Kim
- School of Information and Communication Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Korea
| | - Jeong-Ki Pack
- Department of Radio and Information Communications Engineering, Chungnam National University, Daejon, 34134, Korea
| | - Kiwon Song
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
12
|
Halgamuge MN, Skafidas E, Davis D. A meta-analysis of in vitro exposures to weak radiofrequency radiation exposure from mobile phones (1990-2015). ENVIRONMENTAL RESEARCH 2020; 184:109227. [PMID: 32199316 DOI: 10.1016/j.envres.2020.109227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
To function, mobile phone systems require transmitters that emit and receive radiofrequency signals over an extended geographical area exposing humans in all stages of development ranging from in-utero, early childhood, adolescents and adults. This study evaluates the question of the impact of radiofrequency radiation on living organisms in vitro studies. In this study, we abstract data from 300 peer-reviewed scientific publications (1990-2015) describing 1127 experimental observations in cell-based in vitro models. Our first analysis of these data found that out of 746 human cell experiments, 45.3% indicated cell changes, whereas 54.7% indicated no changes (p = 0.001). Realizing that there are profound distinctions between cell types in terms of age, rate of proliferation and apoptosis, and other characteristics and that RF signals can be characterized in terms of polarity, information content, frequency, Specific Absorption Rate (SAR) and power, we further refined our analysis to determine if there were some distinct properties of negative and positive findings associated with these specific characteristics. We further analyzed the data taking into account the cumulative effect (SAR × exposure time) to acquire the cumulative energy absorption of experiments due to radiofrequency exposure, which we believe, has not been fully considered previously. When the frequency of signals, length and type of exposure, and maturity, rate of growth (doubling time), apoptosis and other properties of individual cell types are considered, our results identify a number of potential non-thermal effects of radiofrequency fields that are restricted to a subset of specific faster-growing less differentiated cell types such as human spermatozoa (based on 19 reported experiments, p-value = 0.002) and human epithelial cells (based on 89 reported experiments, p-value < 0.0001). In contrast, for mature, differentiated adult cells of Glia (p = 0.001) and Glioblastoma (p < 0.0001) and adult human blood lymphocytes (p < 0.0001) there are no statistically significant differences for these more slowly reproducing cell lines. Thus, we show that RF induces significant changes in human cells (45.3%), and in faster-growing rat/mouse cell dataset (47.3%). In parallel with this finding, further analysis of faster-growing cells from other species (chicken, rabbit, pig, frog, snail) indicates that most undergo significant changes (74.4%) when exposed to RF. This study confirms observations from the REFLEX project, Belyaev and others that cellular response varies with signal properties. We concur that differentiation of cell type thus constitutes a critical piece of information and should be useful as a reference for many researchers planning additional studies. Sponsorship bias is also a factor that we did not take into account in this analysis.
Collapse
Affiliation(s)
- Malka N Halgamuge
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Efstratios Skafidas
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Devra Davis
- Environmental Health Trust, Teton Village, WY, 83025, USA
| |
Collapse
|
13
|
Schuermann D, Ziemann C, Barekati Z, Capstick M, Oertel A, Focke F, Murbach M, Kuster N, Dasenbrock C, Schär P. Assessment of Genotoxicity in Human Cells Exposed to Modulated Electromagnetic Fields of Wireless Communication Devices. Genes (Basel) 2020; 11:E347. [PMID: 32218170 PMCID: PMC7230863 DOI: 10.3390/genes11040347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Modulated electromagnetic fields (wEMFs), as generated by modern communication technologies, have raised concerns about adverse health effects. The International Agency for Research on Cancer (IARC) classifies them as "possibly carcinogenic to humans" (Group 2B), yet, the underlying molecular mechanisms initiating and promoting tumorigenesis remain elusive. Here, we comprehensively assess the impact of technologically relevant wEMF modulations on the genome integrity of cultured human cells, investigating cell type-specificities as well as time- and dose-dependencies. Classical and advanced methodologies of genetic toxicology and DNA repair were applied, and key experiments were performed in two separate laboratories. Overall, we found no conclusive evidence for an induction of DNA damage nor for alterations of the DNA repair capacity in cells exposed to several wEMF modulations (i.e., GSM, UMTS, WiFi, and RFID). Previously reported observations of increased DNA damage after exposure of cells to GSM-modulated signals could not be reproduced. Experimental variables, presumably underlying the discrepant observations, were investigated and are discussed. On the basis of our data, we conclude that the possible carcinogenicity of wEMF modulations cannot be explained by an effect on genome integrity through direct DNA damage. However, we cannot exclude non-genotoxic, indirect, or secondary effects of wEMF exposure that may promote tumorigenesis in other ways.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland; (Z.B.); (F.F.); (P.S.)
| | - Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Strasse 1, D-30625 Hannover, Germany; (A.O.); (C.D.)
| | - Zeinab Barekati
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland; (Z.B.); (F.F.); (P.S.)
| | - Myles Capstick
- IT’IS Foundation, Zeughausstrasse 43, CH-8004 Zurich, Switzerland; (M.C.); (M.M.); (N.K.)
| | - Antje Oertel
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Strasse 1, D-30625 Hannover, Germany; (A.O.); (C.D.)
| | - Frauke Focke
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland; (Z.B.); (F.F.); (P.S.)
| | - Manuel Murbach
- IT’IS Foundation, Zeughausstrasse 43, CH-8004 Zurich, Switzerland; (M.C.); (M.M.); (N.K.)
| | - Niels Kuster
- IT’IS Foundation, Zeughausstrasse 43, CH-8004 Zurich, Switzerland; (M.C.); (M.M.); (N.K.)
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), CH-8092 Zurich, Switzerland
| | - Clemens Dasenbrock
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Strasse 1, D-30625 Hannover, Germany; (A.O.); (C.D.)
| | - Primo Schär
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland; (Z.B.); (F.F.); (P.S.)
| |
Collapse
|
14
|
Durdik M, Kosik P, Markova E, Somsedikova A, Gajdosechova B, Nikitina E, Horvathova E, Kozics K, Davis D, Belyaev I. Microwaves from mobile phone induce reactive oxygen species but not DNA damage, preleukemic fusion genes and apoptosis in hematopoietic stem/progenitor cells. Sci Rep 2019; 9:16182. [PMID: 31700008 PMCID: PMC6838175 DOI: 10.1038/s41598-019-52389-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Exposure to electromagnetic fields (EMF) has been associated with the increased risk of childhood leukemia, which arises from mutations induced within hematopoietic stem cells often through preleukemic fusion genes (PFG). In this study we investigated whether exposure to microwaves (MW) emitted by mobile phones could induce various biochemical markers of cellular damage including reactive oxygen species (ROS), DNA single and double strand breaks, PFG, and apoptosis in umbilical cord blood (UCB) cells including CD34+ hematopoietic stem/progenitor cells. UCB cells were exposed to MW pulsed signals from GSM900/UMTS test-mobile phone and ROS, apoptosis, DNA damage, and PFG were analyzed using flow cytometry, automated fluorescent microscopy, imaging flow cytometry, comet assay, and RT-qPCR. In general, no persisting difference in DNA damage, PFG and apoptosis between exposed and sham-exposed samples was detected. However, we found increased ROS level after 1 h of UMTS exposure that was not evident 3 h post-exposure. We also found that the level of ROS rise with the higher degree of cellular differentiation. Our data show that UCB cells exposed to pulsed MW developed transient increase in ROS that did not result in sustained DNA damage and apoptosis.
Collapse
Affiliation(s)
- Matus Durdik
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Pavol Kosik
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Eva Markova
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Alexandra Somsedikova
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Beata Gajdosechova
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ekaterina Nikitina
- Department of Oncovirology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Eva Horvathova
- Deparment of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katarina Kozics
- Deparment of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Devra Davis
- The Hebrew University Hadassah School of Medicine, and Environmental Health Trust, Washington, USA
| | - Igor Belyaev
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
15
|
DNA-Related Modifications in a Mixture of Human Lympho-Monocyte Exposed to Radiofrequency Fields and Detected by Raman Microspectroscopy Analysis. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human exposure to electromagnetic fields (EMFs) has risen considerably during the last decades, because of the industrial and technical development and the consequent increase of artificial EMFs sources. In particular, blood is largely involved in the environmental EMF exposure, because it is located everywhere in the human body. Lympho-monocyte cells are blood components that protect the human organism against infections. In this study, we investigate biochemical changes in lympho-monocyte cells extracted from human peripheral blood after exposure to EMFs at 1.8 GHz frequency and 200 V/m electric field strength for times ranging from 5 to 20 h inside a reverberation chamber. Some mixtures of cells, coming from many human subjects, were exposed and successively investigated by means of Raman micro-spectroscopy technique and principal components analysis. The spectral analysis was able to detect variations of the biochemical composition of the nucleus of exposed cells. Such modifications are mainly detectable as an intensity decrease of some DNA and nucleic acid Raman peaks with respect to the intensity of some protein peaks and they were most evident in the case of 20 h exposed samples. These results were in agreement with the increase of reactive oxygen species (ROS) production, observed in the exposed cells. Overall, the obtained results point out that EMFs exposure may induce modifications of the DNA in some blood cells of long-term exposed people.
Collapse
|
16
|
Fei Y, Su L, Lou H, Zhao C, Wang Y, Chen G. The effects of 50 Hz magnetic field-exposed cell culture medium on cellular functions in FL cells. JOURNAL OF RADIATION RESEARCH 2019; 60:424-431. [PMID: 31111909 PMCID: PMC6640911 DOI: 10.1093/jrr/rrz020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/22/2019] [Indexed: 05/19/2023]
Abstract
Although extremely low frequency magnetic fields (ELF-MFs) have been classified as a possible carcinogen for humans by the International Agency for Research on Cancer (IARC), their biological effects and underlying mechanisms are still unclear. Our previous study indicated that ELF-MF exposure influenced the relative permittivity of the saline solution, suggesting that the MF exposure altered physical properties of the solution. To explore the biophysical mechanism of ELF-MF-induced biological effects, this study examined the effects of 50 Hz sinusoidal MF at 0-4.0 mT on the permittivity of culture medium with phase-interrogation surface plasmon resonance (SPR) sensing. Then, the biological effects of MF pre-exposed culture medium on cell viability, the mitogen-activated protein kinase (MAPK) signaling pathways, oxidative stress, and genetic stabilities were analyzed using Cell Counting Kit-8, western blot, flow cytometry, γH2AX foci formation, and comet assay. The results showed that SPR signals were decreased under MF exposure in a time- and dose-dependent manner, and the decreased SPR signals were reversible when the exposure was drawn off. However, MF pre-exposed culture medium did not significantly change cell viability, intracellular reactive oxygen species level, activation of the MARK signaling pathways, or genetic stabilities in human amniotic epithelial cells (FL cells). In conclusion, our data suggest that the relative permittivity of culture medium was influenced by 50 Hz MF exposure, but this change did not affect the biological processes in FL cells.
Collapse
Affiliation(s)
- Yue Fei
- Bioelectromagnetics Laboratory, and Department of Reproductive Endocrinology of Women’s Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, China
| | - Liling Su
- Bioelectromagnetics Laboratory, and Department of Reproductive Endocrinology of Women’s Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, China
- Department of Clinical Medicine, Jiangxi Medical College, Zhimin Road, Shangrao, China
| | - Haifeng Lou
- Bioelectromagnetics Laboratory, and Department of Reproductive Endocrinology of Women’s Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, China
| | - Chuning Zhao
- Bioelectromagnetics Laboratory, and Department of Reproductive Endocrinology of Women’s Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, China
| | - Yiqin Wang
- State Key Laboratory of Modern Optical Instrumentation (Zhejiang University), Centre for Optical and Electromagnetics Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, JORCEP (Sino-Swedish Joint Research Center of Photonics), Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, and Department of Reproductive Endocrinology of Women’s Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, China
| |
Collapse
|
17
|
Hansen JW, Swartz EM, Cleveland JD, Asif SM, Brooks B, Braaten BD, Ewert DL. A Systematic Review of In Vitro and In Vivo Radio Frequency Exposure Methods. IEEE Rev Biomed Eng 2019; 13:340-351. [PMID: 30998481 DOI: 10.1109/rbme.2019.2912023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, interest in the effects of radio frequency (RF) on biological systems has increased and is partially due to the advancements and increased implementations of RF into technology. As research in this area has progressed, the reliability and reproducibility of the experiments has not crossed multidisciplinary boundaries. Therefore, as researchers, it is imperative to understand the various exposure systems available as well as the aspects, both electromagnetic and biological, needed to produce a sound exposure experiment. This systematic review examines common RF exposure methods for both in vitro and in vivo studies. For in vitro studies, possible biological limitations are emphasized. The validity of the examined methods, for both in vitro and in vivo, are analyzed by considering the advantages and disadvantages of each. This review offers guidance for researchers to assist in the development of an RF exposure experiment that crosses current multidisciplinary boundaries.
Collapse
|
18
|
Sun C, Wei X, Yimaer A, Xu Z, Chen G. Ataxia telangiectasia mutated deficiency does not result in genetic susceptibility to 50 Hz magnetic fields exposure in mouse embryonic fibroblasts. Bioelectromagnetics 2018; 39:476-484. [PMID: 30091795 DOI: 10.1002/bem.22140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022]
Abstract
Extremely low frequency magnetic field (ELF-MF) has been classified as a possible carcinogen to humans by the International Agency for Research on Cancer [2002]. However, debate on the genotoxic effects of ELF-MF has continued due to lack of sufficient experimental evidence. Ataxia telangiectasia mutated (ATM) plays a central role in DNA damage repair; its deficiency can result in cellular sensitivity to DNA-damaging agents. To evaluate the genotoxicity of ELF-MF, we investigated the effects of 50 Hz MF on DNA damage in ATM-proficient (Atm+/+ ) mouse embryonic fibroblasts (MEFs) and ATM-deficient (Atm-/- ) MEFs, a radiosensitive cell line. Results showed no significant difference in average number of γH2AX foci per cell (9.37 ± 0.44 vs. 9.08 ± 0.28, P = 0.58) or percentage of γH2AX foci positive cells (49.22 ± 1.86% vs. 49.74 ± 1.44%, P = 0.83) between sham and exposure groups when Atm+/+ MEFs were exposed to 50 Hz MF at 2.0 mT for 15 min. Extending exposure duration to 1 or 24 h did not significantly change γH2AX foci formation in Atm+/+ MEFs. Similarly, the exposure did not significantly affect γH2AX foci formation in Atm-/- MEFs. Furthermore, 50 Hz MF exposure also did not significantly influence DNA fragmentation, cell viability, or cell cycle progression in either cell types. In conclusion, exposure to 50 Hz MF did not induce significant DNA damage in either Atm+/+ or Atm-/- MEFs under the reported experimental conditions. Bioelectromagnetics. 39:476-484, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chuan Sun
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Xiaoxia Wei
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Aziguli Yimaer
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Xu
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China
| |
Collapse
|
19
|
Lasalvia M, Scrima R, Perna G, Piccoli C, Capitanio N, Biagi PF, Schiavulli L, Ligonzo T, Centra M, Casamassima G, Ermini A, Capozzi V. Exposure to 1.8 GHz electromagnetic fields affects morphology, DNA-related Raman spectra and mitochondrial functions in human lympho-monocytes. PLoS One 2018; 13:e0192894. [PMID: 29462174 PMCID: PMC5819811 DOI: 10.1371/journal.pone.0192894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/24/2018] [Indexed: 01/10/2023] Open
Abstract
Blood is a fluid connective tissue of human body, where it plays vital functions for the nutrition, defense and well-being of the organism. When circulating in peripheral districts, it is exposed to some physical stresses coming from outside the human body, as electromagnetic fields (EMFs) which can cross the skin. Such fields may interact with biomolecules possibly inducing non thermal-mediated biological effects at the cellular level. In this study, the occurrence of biochemical/biological modifications in human peripheral blood lympho-monocytes exposed in a reverberation chamber for times ranging from 1 to 20 h to EMFs at 1.8 GHz frequency and 200 V/m electric field strength was investigated. Morphological analysis of adherent cells unveiled, in some of these, appearance of an enlarged and deformed shape after EMFs exposure. Raman spectra of the nuclear compartment of cells exposed to EMFs revealed the onset of biochemical modifications, mainly consisting in the reduction of the DNA backbone-linked vibrational modes. Respirometric measurements of mitochondrial activity in intact lympho-monocytes resulted in increase of the resting oxygen consumption rate after 20 h of exposure, which was coupled to a significant increase of the FoF1-ATP synthase-related oxygen consumption. Notably, at lower time-intervals of EMFs exposure (i.e. 5 and 12 h) a large increase of the proton leak-related respiration was observed which, however, recovered at control levels after 20 h exposure. Confocal microscopy analysis of the mitochondrial membrane potential supported the respiratory activities whereas no significant variations in the mitochondrial mass/morphology was observed in EMFs-exposed lympho-monocytes. Finally, altered redox homeostasis was shown in EMFs-exposed lympho-monocytes, which progressed differently in nucleated cellular subsets. This results suggest the occurrence of adaptive mechanisms put in action, likely via redox signaling, to compensate for early impairments of the oxidative phosphorylation system caused by exposure to EMFs. Overall the data presented warn for health safety of people involved in long-term exposure to electromagnetic fields, although further studies are required to pinpoint the leukocyte cellular subset(s) selectively targeted by the EMFs action and the mechanisms by which it is achieved.
Collapse
Affiliation(s)
- M. Lasalvia
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, Foggia, Italy
- Istituto Nazionale di Fisica Nucleare–sezione di Bari, Bari, Italy
| | - R. Scrima
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, Foggia, Italy
| | - G. Perna
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, Foggia, Italy
- Istituto Nazionale di Fisica Nucleare–sezione di Bari, Bari, Italy
- * E-mail:
| | - C. Piccoli
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, Foggia, Italy
| | - N. Capitanio
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, Foggia, Italy
| | - P. F. Biagi
- Dipartimento Interateneo di Fisica, Università di Bari, Bari, Italy
| | - L. Schiavulli
- Istituto Nazionale di Fisica Nucleare–sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica, Università di Bari, Bari, Italy
| | - T. Ligonzo
- Istituto Nazionale di Fisica Nucleare–sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica, Università di Bari, Bari, Italy
| | - M. Centra
- Banca del sangue, Ospedali Riuniti di Foggia, Foggia, Italy
| | - G. Casamassima
- Istituto Nazionale di Fisica Nucleare–sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica, Università di Bari, Bari, Italy
| | - A. Ermini
- Dipartimento di Ingegneria Industriale, Università di Tor Vergata, Roma, Italy
| | - V. Capozzi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, Foggia, Italy
- Istituto Nazionale di Fisica Nucleare–sezione di Bari, Bari, Italy
| |
Collapse
|
20
|
Su L, Yimaer A, Xu Z, Chen G. Effects of 1800 MHz RF-EMF exposure on DNA damage and cellular functions in primary cultured neurogenic cells. Int J Radiat Biol 2018; 94:295-305. [PMID: 29368975 DOI: 10.1080/09553002.2018.1432913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To systematically evaluate the effects of 1800 MHz radiofrequency electromagnetic fields (RF-EMF) exposure on DNA damage and cellular functions in primary cultured neurogenic cells. MATERIALS AND METHODS The primary cultured astrocytes, microglia and cortical neurons were exposed to RF-EMF at a SAR of 4.0 W/kg. The DNA damage was evaluated by γH2AX foci formation assay. The secretions of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) in astrocytes and microglia, microglial phagocytic activity and neuronal development were examined by enzyme-linked immunosorbent assay, phagocytosis assay and immunofluorescent staining on microtubule-associated protein tau, microtubule-associated protein 2, postsynaptic density 95 and gephyrin, respectively. RESULTS RF-EMF exposure did not significantly induce γH2AX foci formation in three primary cultured neurogenic cells. Furthermore, RF-EMF exposure did not significantly affect the secretion of cytokines in astrocytes and microglia, and the morphological indicators of dendrites or synapses of cortical neurons. However, the exposure significantly reduced the phagocytic activity of microglia and inhibited the axon branch length and branch number of cortical neurons. CONCLUSIONS Our data demonstrated that exposure to RF-EMF did not elicit DNA damage but inhibited the phagocytic ability of microglia and the axon branch length and branch number of cortical neurons.
Collapse
Affiliation(s)
- Liling Su
- a Bioelectromagnetics Laboratory , Zhejiang University School of Medicine , Hangzhou , PR China.,b Department of Clinical Medicine , Jiangxi Medical College , Shangrao , PR China
| | - Aziguli Yimaer
- a Bioelectromagnetics Laboratory , Zhejiang University School of Medicine , Hangzhou , PR China
| | - Zhengping Xu
- a Bioelectromagnetics Laboratory , Zhejiang University School of Medicine , Hangzhou , PR China
| | - Guangdi Chen
- a Bioelectromagnetics Laboratory , Zhejiang University School of Medicine , Hangzhou , PR China.,c Institute of Environmental Health , Zhejiang University School of Public Health , Hangzhou , PR China
| |
Collapse
|
21
|
Marjanovic Cermak AM, Pavicic I, Trosic I. Oxidative stress response in SH-SY5Y cells exposed to short-term 1800 MHz radiofrequency radiation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:132-138. [PMID: 29148897 DOI: 10.1080/10934529.2017.1383124] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The exact mechanism that could explain the effects of radiofrequency (RF) radiation exposure at non-thermal level is still unknown. Increasing evidence suggests a possible involvement of reactive oxygen species (ROS) and development of oxidative stress. To test the proposed hypothesis, human neuroblastoma cells (SH-SY5Y) were exposed to 1800 MHz short-term RF exposure for 10, 30 and 60 minutes. Electric field strength within Gigahertz Transverse Electromagnetic cell (GTEM) was 30 V m-1 and specific absorption rate (SAR) was calculated to be 1.6 W kg-1. Cellular viability was measured by MTT assay and level of ROS was determined by fluorescent probe 2',7'-dichlorofluorescin diacetate. Concentrations of malondialdehyde and protein carbonyls were used to assess lipid and protein oxidative damage and antioxidant activity was evaluated by measuring concentrations of total glutathione (GSH). After radiation exposure, viability of irradiated cells remained within normal physiological values. Significantly higher ROS level was observed for every radiation exposure time. After 60 min of exposure, the applied radiation caused significant lipid and protein damage. The highest GSH concentration was detected after 10 minute-exposure. The results of our study showed enhanced susceptibility of SH-SY5Y cells for development of oxidative stress even after short-term RF exposure.
Collapse
Affiliation(s)
- Ana Marija Marjanovic Cermak
- a Radiation Dosimetry and Radiobiology Unit , Institute for Medical Research and Occupational Health , Zagreb , Croatia
| | - Ivan Pavicic
- a Radiation Dosimetry and Radiobiology Unit , Institute for Medical Research and Occupational Health , Zagreb , Croatia
| | - Ivancica Trosic
- a Radiation Dosimetry and Radiobiology Unit , Institute for Medical Research and Occupational Health , Zagreb , Croatia
| |
Collapse
|
22
|
Miao X, Wang Y, Lang H, Lin Y, Guo Q, Yang M, Guo J, Zhang Y, Zhang J, Liu J, Liu Y, Zeng L, Guo G. Preventing Electromagnetic Pulse Irradiation Damage on Testis Using Selenium-rich Cordyceps Fungi. A Preclinical Study in Young Male Mice. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:81-89. [PMID: 28186865 DOI: 10.1089/omi.2016.0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Networked 21st century society, globalization, and communications technologies are paralleled by the rise of electromagnetic energy intensity in our environments and the growing pressure of the environtome on human biology and health. The latter is the entire complement of environmental factors, including the electromagnetic energy and the technologies that generate them, enacting on the digital citizen in the new century. Electromagnetic pulse (EMP) irradiation might have serious damaging effects not only on electronic equipment but also in the whole organism and reproductive health, through nonthermal effects and oxidative stress. We sought to determine whether EMP exposure (1) induces biological damage on reproductive health and (2) the extent to which selenium-rich Cordyceps fungi (daily coadministration) offer protection on the testicles and spermatozoa. In a preclinical randomized study, 3-week-old male BALB/c mice were repeatedly exposed to EMP (peak intensity 200 kV/m, pulse edge 3.5 ns, pulse width 15 ns, 0.1 Hz, and 400 pulses/day) 5 days per week for four consecutive weeks, with or without coadministration of daily selenium-rich Cordyceps fungi (100 mg/kg). Testicular index and spermatozoa formation were measured at baseline and 1, 7, 14, 28, and 60 day time points after EMP exposure. The group without Cordyceps cotreatment displayed decreased spermatozoa formation, shrunk seminiferous tubule diameters, and diminished antioxidative capacity at 28 and 60 days after exposure (p < 0.05). The Cordyceps daily cotreatment alleviated the testicular damage by EMP exposure, increased spermatozoa formation, and reduced apoptotic spermatogenic cells. These observations warrant further preclinical and clinical studies as an innovative approach for potential protection against electromagnetic radiation in the current age of networked society and digital citizenship.
Collapse
Affiliation(s)
- Xia Miao
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Yafeng Wang
- 2 Health and Epidemic Prevention Team, Navy General Hospital , Beijing, P.R. China
| | - Haiyang Lang
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Yanyun Lin
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Qiyan Guo
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Mingjuan Yang
- 3 Insititute of Disease Control and Prevention , Academy of Military Science, Beijing, P.R. China
| | - Juan Guo
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Yanjun Zhang
- 4 Department of Radiotherapy, Tangdu Hospital, Fourth Military Medical University , Xi'an, P.R. China
| | - Jie Zhang
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Junye Liu
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Yaning Liu
- 5 Central Laboratory, General Hospital of the Air Force , Beijing, P.R. China
| | - Lihua Zeng
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Guozhen Guo
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| |
Collapse
|
23
|
Su L, Yimaer A, Wei X, Xu Z, Chen G. The effects of 50 Hz magnetic field exposure on DNA damage and cellular functions in various neurogenic cells. JOURNAL OF RADIATION RESEARCH 2017; 58:474-486. [PMID: 28369556 PMCID: PMC5570089 DOI: 10.1093/jrr/rrx012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Indexed: 05/15/2023]
Abstract
Epidemiological studies have indicated a possible association between extremely low-frequency magnetic field (ELF-MF) exposure and the risk of nervous system diseases. However, laboratory studies have not provided consistent results for clarifying this association, despite many years of studies. In this study, we have systematically investigated the effects of 50 Hz MF exposure on DNA damage and cellular functions in both neurogenic tumor cell lines (U251, A172, SH-SY5Y) and primary cultured neurogenic cells from rats (astrocytes, microglia, cortical neurons). The results showed that exposure to a 50 Hz MF at 2.0 mT for up to 24 h did not influence γH2AX foci formation (an early marker of DNA double-strand breaks) in any of six different neurogenic cells. Exposure to a 50 Hz MF did not affect cell cycle progression, cell proliferation or cell viability in neurogenic tumor U251, A172 or SH-SY5Y cells. Furthermore, the MF exposure for 24 h did not significantly affect the secretion of cytokines (TNF-α, IL-6 or IL-1β) in astrocytes or microglia, or the phagocytic activity of microglia. In addition, MF exposure for 1 h per day did not significantly influence expression levels of microtubule-associated protein tau, microtubule-associated protein 2, postsynaptic density 95 or gephyrin in cortical neurons, indicating an absence of effects of MF exposure on the development of cortical neurons. In conclusion, our data suggest that exposure to a 50 Hz MF at 2.0 mT did not elicit DNA damage effects or abnormal cellular functions in the neurogenic cells studied.
Collapse
Affiliation(s)
- Liling Su
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Clinical Medicine, Jiangxi Medical College, 399 Zhimi Road, Shangrao 331000, China
| | - Aziguli Yimaer
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiaoxia Wei
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhengping Xu
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Environmental Health, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Environmental Health, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou 310058, China
- Corresponding author. Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China. Tel: +86-571-88208169; Fax: +86-571-88208163;
| |
Collapse
|
24
|
Sannino A, Zeni O, Romeo S, Massa R, Scarfi MR. Adverse and beneficial effects in Chinese hamster lung fibroblast cells following radiofrequency exposure. Bioelectromagnetics 2017; 38:245-254. [DOI: 10.1002/bem.22034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/18/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Anna Sannino
- CNR—Institute for Electromagnetic Sensing of the EnvironmentNapoliItaly
| | - Olga Zeni
- CNR—Institute for Electromagnetic Sensing of the EnvironmentNapoliItaly
| | - Stefania Romeo
- CNR—Institute for Electromagnetic Sensing of the EnvironmentNapoliItaly
| | - Rita Massa
- CNR—Institute for Electromagnetic Sensing of the EnvironmentNapoliItaly
- Department of Physics “Ettore Pancini”University of Naples Federico IINapoliItaly
| | | |
Collapse
|
25
|
Su L, Wei X, Xu Z, Chen G. RF-EMF exposure at 1800 MHz did not elicit DNA damage or abnormal cellular behaviors in different neurogenic cells. Bioelectromagnetics 2016; 38:175-185. [DOI: 10.1002/bem.22032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/09/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Liling Su
- Bioelectromagnetics Laboratory; Zhejiang University School of Medicine; Hangzhou China
- Department of Public Health; Zhejiang University School of Medicine; Hangzhou China
| | - Xiaoxia Wei
- Bioelectromagnetics Laboratory; Zhejiang University School of Medicine; Hangzhou China
| | - Zhengping Xu
- Bioelectromagnetics Laboratory; Zhejiang University School of Medicine; Hangzhou China
- Department of Public Health; Zhejiang University School of Medicine; Hangzhou China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory; Zhejiang University School of Medicine; Hangzhou China
- Department of Public Health; Zhejiang University School of Medicine; Hangzhou China
| |
Collapse
|
26
|
Mobile phone signal exposure triggers a hormesis-like effect in Atm +/+ and Atm -/- mouse embryonic fibroblasts. Sci Rep 2016; 6:37423. [PMID: 27857169 PMCID: PMC5114646 DOI: 10.1038/srep37423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023] Open
Abstract
Radiofrequency electromagnetic fields (RF-EMFs) have been classified by the International Agency for Research on Cancer as possible carcinogens to humans; however, this conclusion is based on limited epidemiological findings and lacks solid support from experimental studies. In particular, there are no consistent data regarding the genotoxicity of RF-EMFs. Ataxia telangiectasia mutated (ATM) is recognised as a chief guardian of genomic stability. To address the debate on whether RF-EMFs are genotoxic, we compared the effects of 1,800 MHz RF-EMF exposure on genomic DNA in mouse embryonic fibroblasts (MEFs) with proficient (Atm+/+) or deficient (Atm−/−) ATM. In Atm+/+ MEFs, RF-EMF exposure for 1 h at an average special absorption rate of 4.0 W/kg induced significant DNA single-strand breaks (SSBs) and activated the SSB repair mechanism. This effect reduced the DNA damage to less than that of the background level after 36 hours of exposure. In the Atm−/− MEFs, the same RF-EMF exposure for 12 h induced both SSBs and double-strand breaks and activated the two repair processes, which also reduced the DNA damage to less than the control level after prolonged exposure. The observed phenomenon is similar to the hormesis of a toxic substance at a low dose. To the best of our knowledge, this study is the first to report a hormesis-like effect of an RF-EMF.
Collapse
|
27
|
Gläser K, Rohland M, Kleine-Ostmann T, Schrader T, Stopper H, Hintzsche H. Effect of Radiofrequency Radiation on Human Hematopoietic Stem Cells. Radiat Res 2016; 186:455-465. [PMID: 27710704 DOI: 10.1667/rr14405.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exposure to electromagnetic fields in the radiofrequency range is ubiquitous, mainly due to the worldwide use of mobile communication devices. With improving technologies and affordability, the number of cell phone subscriptions continues to increase. Therefore, the potential effect on biological systems at low-intensity radiation levels is of great interest. While a number of studies have been performed to investigate this issue, there has been no consensus reached based on the results. The goal of this study was to elucidate the extent to which cells of the hematopoietic system, particularly human hematopoietic stem cells (HSC), were affected by mobile phone radiation. We irradiated HSC and HL-60 cells at frequencies used in the major technologies, GSM (900 MHz), UMTS (1,950 MHz) and LTE (2,535 MHz) for a short period (4 h) and a long period (20 h/66 h), and with five different intensities ranging from 0 to 4 W/kg specific absorption rate (SAR). Studied end points included apoptosis, oxidative stress, cell cycle, DNA damage and DNA repair. In all but one of these end points, we detected no clear effect of mobile phone radiation; the only alteration was found when quantifying DNA damage. Exposure of HSC to the GSM modulation for 4 h caused a small but statistically significant decrease in DNA damage compared to sham exposure. To our knowledge, this is the first published study in which putative effects (e.g., genotoxicity or influence on apoptosis rate) of radiofrequency radiation were investigated in HSC. Radiofrequency electromagnetic fields did not affect cells of the hematopoietic system, in particular HSC, under the given experimental conditions.
Collapse
Affiliation(s)
- Katharina Gläser
- a Institute of Pharmacology and Toxicology, University of Würzburg, Germany
| | - Martina Rohland
- b Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | | | | | - Helga Stopper
- a Institute of Pharmacology and Toxicology, University of Würzburg, Germany
| | - Henning Hintzsche
- a Institute of Pharmacology and Toxicology, University of Würzburg, Germany
| |
Collapse
|
28
|
Xu F, Bai Q, Zhou K, Ma L, Duan J, Zhuang F, Xie C, Li W, Zou P, Zhu C. Age-dependent acute interference with stem and progenitor cell proliferation in the hippocampus after exposure to 1800 MHz electromagnetic radiation. Electromagn Biol Med 2016; 36:158-166. [DOI: 10.1080/15368378.2016.1233886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Quality Matters: Systematic Analysis of Endpoints Related to "Cellular Life" in Vitro Data of Radiofrequency Electromagnetic Field Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13070701. [PMID: 27420084 PMCID: PMC4962242 DOI: 10.3390/ijerph13070701] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023]
Abstract
Possible hazardous effects of radiofrequency electromagnetic fields (RF-EMF) at low exposure levels are controversially discussed due to inconsistent study findings. Therefore, the main focus of the present study is to detect if any statistical association exists between RF-EMF and cellular responses, considering cell proliferation and apoptosis endpoints separately and with both combined as a group of “cellular life” to increase the statistical power of the analysis. We searched for publications regarding RF-EMF in vitro studies in the PubMed database for the period 1995–2014 and extracted the data to the relevant parameters, such as cell culture type, frequency, exposure duration, SAR, and five exposure-related quality criteria. These parameters were used for an association study with the experimental outcome in terms of the defined endpoints. We identified 104 published articles, from which 483 different experiments were extracted and analyzed. Cellular responses after exposure to RF-EMF were significantly associated to cell lines rather than to primary cells. No other experimental parameter was significantly associated with cellular responses. A highly significant negative association with exposure condition-quality and cellular responses was detected, showing that the more the quality criteria requirements were satisfied, the smaller the number of detected cellular responses. According to our knowledge, this is the first systematic analysis of specific RF-EMF bio-effects in association to exposure quality, highlighting the need for more stringent quality procedures for the exposure conditions.
Collapse
|
30
|
Shen Y, Xia R, Jiang H, Chen Y, Hong L, Yu Y, Xu Z, Zeng Q. Exposure to 50Hz-sinusoidal electromagnetic field induces DNA damage-independent autophagy. Int J Biochem Cell Biol 2016; 77:72-79. [PMID: 27177844 DOI: 10.1016/j.biocel.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 04/21/2016] [Accepted: 05/08/2016] [Indexed: 01/22/2023]
Abstract
As electromagnetic field (EMF) is commonly encountered within our daily lives, the biological effects of EMF are of great concern. Autophagy is a key process for maintaining cellular homeostasis, and it can also reveal cellular responses to environmental stimuli. In this study, we aim to investigate the biological effects of a 50Hz-sinusoidal electromagnetic field on autophagy and we identified its mechanism of action in Chinese Hamster Lung (CHL) cells. CHL cells were exposed to a 50Hz sinusoidal EMF at 0.4mT for 30min or 24h. In this study, we found that a 0.4mT EMF resulted in: (i) an increase in LC3-II expression and increased autophagosome formation; (ii) no significant difference in the incidence of γH2AX foci between the sham and exposure groups; (iii) reorganized actin filaments and increased pseudopodial extensions without promoting cell migration; and (iv) enhanced cell apoptosis when autophagy was blocked by Bafilomycin A1. These results implied that DNA damage was not directly involved in the autophagy induced by a 0.4mT 50Hz EMF. In addition, an EMF induced autophagy balanced the cellular homeostasis to protect the cells from severe adverse biological consequences.
Collapse
Affiliation(s)
- Yunyun Shen
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Ruohong Xia
- Physics Department, East China Normal University, Shanghai 200241, PR China
| | - Hengjun Jiang
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Yanfeng Chen
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Ling Hong
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Yunxian Yu
- Department of Epidemiology and Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Zhengping Xu
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China.
| | - Qunli Zeng
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
31
|
Lancellotti P, Nchimi A, Delierneux C, Hego A, Gosset C, Gothot A, Jean-Flory Tshibanda L, Oury C. Biological Effects of Cardiac Magnetic Resonance on Human Blood Cells. Circ Cardiovasc Imaging 2015; 8:e003697. [PMID: 26338876 DOI: 10.1161/circimaging.115.003697] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac magnetic resonance (CMR) is increasingly used for the diagnosis and management of cardiac diseases. Recent studies have reported immediate post-CMR DNA double-strand breaks in T lymphocytes. We sought to evaluate CMR-induced DNA damage in lymphocytes, alterations of blood cells, and their temporal persistence. METHODS AND RESULTS In 20 prospectively enrolled healthy men (31.4±7.9 years), blood was drawn before and after (1-2 hours, 2 days, 1 month, and 1 year) unenhanced 1.5T CMR. Blood cell counts, cell death, and activation status of lymphocytes, monocytes, neutrophils, and platelets were evaluated. The first 2-hour post-CMR were characterized by a small increase of lymphocyte B and neutrophil counts and a transient drop of total lymphocytes because of a decrease in natural killer cells. Among blood cells, only neutrophils and monocytes displayed slight and transient activation. DNA double-strand breaks in lymphocytes were quantified through flow cytometric analysis of H2AX phosphorylation (γ-H2AX). γ-H2AX intensity in T lymphocytes did not change early after CMR but increased significantly at day 2 ≤1 month before returning to baseline levels of 1-year post-CMR. CONCLUSIONS Unenhanced CMR is associated with minor but significant immediate blood cell alterations or activations figuring inflammatory response, as well as DNA damage in T lymphocytes observed from day 2 until the first month but disappearing at 1-year follow-up. Although further studies are required to definitely state whether CMR can be used safely, our findings already call for caution when it comes to repeat this examination within a month.
Collapse
Affiliation(s)
- Patrizio Lancellotti
- From the Department of Cardiology and Radiology, GIGA-Cardiovascular Sciences (P.L., A.N., C.D., A.H., A.G., L.J.-F.T., C.O.) and Hematology Department, University Hospital Sart Tilman (C.G., A.G.), University of Liège, Liège, Belgium; and Gruppo Villa Maria Care and Research, E.S. Health Science Foundation, Lugo (RA), Italy (P.L.).
| | - Alain Nchimi
- From the Department of Cardiology and Radiology, GIGA-Cardiovascular Sciences (P.L., A.N., C.D., A.H., A.G., L.J.-F.T., C.O.) and Hematology Department, University Hospital Sart Tilman (C.G., A.G.), University of Liège, Liège, Belgium; and Gruppo Villa Maria Care and Research, E.S. Health Science Foundation, Lugo (RA), Italy (P.L.)
| | - Céline Delierneux
- From the Department of Cardiology and Radiology, GIGA-Cardiovascular Sciences (P.L., A.N., C.D., A.H., A.G., L.J.-F.T., C.O.) and Hematology Department, University Hospital Sart Tilman (C.G., A.G.), University of Liège, Liège, Belgium; and Gruppo Villa Maria Care and Research, E.S. Health Science Foundation, Lugo (RA), Italy (P.L.)
| | - Alexandre Hego
- From the Department of Cardiology and Radiology, GIGA-Cardiovascular Sciences (P.L., A.N., C.D., A.H., A.G., L.J.-F.T., C.O.) and Hematology Department, University Hospital Sart Tilman (C.G., A.G.), University of Liège, Liège, Belgium; and Gruppo Villa Maria Care and Research, E.S. Health Science Foundation, Lugo (RA), Italy (P.L.)
| | - Christian Gosset
- From the Department of Cardiology and Radiology, GIGA-Cardiovascular Sciences (P.L., A.N., C.D., A.H., A.G., L.J.-F.T., C.O.) and Hematology Department, University Hospital Sart Tilman (C.G., A.G.), University of Liège, Liège, Belgium; and Gruppo Villa Maria Care and Research, E.S. Health Science Foundation, Lugo (RA), Italy (P.L.)
| | - André Gothot
- From the Department of Cardiology and Radiology, GIGA-Cardiovascular Sciences (P.L., A.N., C.D., A.H., A.G., L.J.-F.T., C.O.) and Hematology Department, University Hospital Sart Tilman (C.G., A.G.), University of Liège, Liège, Belgium; and Gruppo Villa Maria Care and Research, E.S. Health Science Foundation, Lugo (RA), Italy (P.L.)
| | - Luaba Jean-Flory Tshibanda
- From the Department of Cardiology and Radiology, GIGA-Cardiovascular Sciences (P.L., A.N., C.D., A.H., A.G., L.J.-F.T., C.O.) and Hematology Department, University Hospital Sart Tilman (C.G., A.G.), University of Liège, Liège, Belgium; and Gruppo Villa Maria Care and Research, E.S. Health Science Foundation, Lugo (RA), Italy (P.L.)
| | - Cécile Oury
- From the Department of Cardiology and Radiology, GIGA-Cardiovascular Sciences (P.L., A.N., C.D., A.H., A.G., L.J.-F.T., C.O.) and Hematology Department, University Hospital Sart Tilman (C.G., A.G.), University of Liège, Liège, Belgium; and Gruppo Villa Maria Care and Research, E.S. Health Science Foundation, Lugo (RA), Italy (P.L.)
| |
Collapse
|
32
|
Gustavino B, Carboni G, Petrillo R, Paoluzzi G, Santovetti E, Rizzoni M. Exposure to 915 MHz radiation induces micronuclei inVicia fabaroot tips. Mutagenesis 2015; 31:187-92. [DOI: 10.1093/mutage/gev071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
33
|
Zuo WQ, Hu YJ, Yang Y, Zhao XY, Zhang YY, Kong W, Kong WJ. Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model. J Neuroinflammation 2015; 12:105. [PMID: 26022358 PMCID: PMC4458026 DOI: 10.1186/s12974-015-0300-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/10/2015] [Indexed: 01/12/2023] Open
Abstract
Background With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain unclear. Apart from RF-EMR, humans are also exposed to various physical and chemical factors. We established a lipopolysaccharide (LPS)-induced inflammation in vitro model to investigate whether the possible sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation (at specific absorption rates: 2, 4 W/kg) will increase. Methods Spiral ganglion neurons (SGN) were obtained from neonatal (1- to 3-day-old) Sprague Dawley® (SD) rats. After the SGN were treated with different concentrations (0, 20, 40, 50, 100, 200, and 400 μg/ml) of LPS, the Cell Counting Kit-8 (CCK-8) and alkaline comet assay were used to quantify cellular activity and DNA damage, respectively. The SGN were treated with the moderate LPS concentrations before RF-EMR exposure. After 24 h intermittent exposure at an absorption rate of 2 and 4 W/kg, DNA damage was examined by alkaline comet assay, ultrastructure changes were detected by transmission electron microscopy, and expression of the autophagy markers LC3-II and Beclin1 were examined by immunofluorescence and confocal laser scanning microscopy. Reactive oxygen species (ROS) production was quantified by the dichlorofluorescin-diacetate assay. Results LPS (100 μg/ml) induced DNA damage and suppressed cellular activity (P < 0.05). LPS (40 μg/ml) did not exhibit cellular activity changes or DNA damage (P > 0.05); therefore, 40 μg/ml was used to pretreat the concentration before exposure to RF-EMR. RF-EMR could not directly induce DNA damage. However, the 4 W/kg combined with LPS (40 μg/ml) group showed mitochondria vacuoles, karyopyknosis, presence of lysosomes and autophagosome, and increasing expression of LC3-II and Beclin1. The ROS values significantly increased in the 4 W/kg exposure, 4 W/kg combined with LPS (40 μg/ml) exposure, and H2O2 groups (P < 0.05, 0.01). Conclusions Short-term exposure to radiofrequency electromagnetic radiation could not directly induce DNA damage in normal spiral ganglion neurons, but it could cause the changes of cellular ultrastructure at special SAR 4.0 W/kg when cells are in fragile or micro-damaged condition. It seems that the sensitivity of SGN to damage caused by mobile phone electromagnetic radiation will increase in a lipopolysaccharide-induced inflammation in vitro model.
Collapse
Affiliation(s)
- Wen-Qi Zuo
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Yu-Juan Hu
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Yang Yang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Xue-Yan Zhao
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Yuan-Yuan Zhang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Wei-Jia Kong
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China. .,Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
34
|
Duan W, Liu C, Zhang L, He M, Xu S, Chen C, Pi H, Gao P, Zhang Y, Zhong M, Yu Z, Zhou Z. Comparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cells. Radiat Res 2015; 183:305-14. [PMID: 25688995 DOI: 10.1667/rr13851.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Extremely low-frequency electromagnetic fields (ELF-EMF) and radiofrequency electromagnetic fields (RF-EMF) have been considered to be possibly carcinogenic to humans. However, their genotoxic effects remain controversial. To make experiments controllable and results comparable, we standardized exposure conditions and explored the potential genotoxicity of 50 Hz ELF-EMF and 1800 MHz RF-EMF. A mouse spermatocyte-derived GC-2 cell line was intermittently (5 min on and 10 min off) exposed to 50 Hz ELF-EMF at an intensity of 1, 2 or 3 mT or to RF-EMF in GSM-Talk mode at the specific absorption rates (SAR) of 1, 2 or 4 W/kg. After exposure for 24 h, we found that neither ELF-EMF nor RF-EMF affected cell viability using Cell Counting Kit-8. Through the use of an alkaline comet assay and immunofluorescence against γ-H2AX foci, we found that ELF-EMF exposure resulted in a significant increase of DNA strand breaks at 3 mT, whereas RF-EMF exposure had insufficient energy to induce such effects. Using a formamidopyrimidine DNA glycosylase (FPG)-modified alkaline comet assay, we observed that RF-EMF exposure significantly induced oxidative DNA base damage at a SAR value of 4 W/kg, whereas ELF-EMF exposure did not. Our results suggest that both ELF-EMF and RF-EMF under the same experimental conditions may produce genotoxicity at relative high intensities, but they create different patterns of DNA damage. Therefore, the potential mechanisms underlying the genotoxicity of different frequency electromagnetic fields may be different.
Collapse
Affiliation(s)
- Weixia Duan
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Schmid G, Kuster N. The discrepancy between maximum in vitro exposure levels and realistic conservative exposure levels of mobile phones operating at 900/1800 MHz. Bioelectromagnetics 2015; 36:133-48. [DOI: 10.1002/bem.21895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/21/2014] [Indexed: 11/11/2022]
Affiliation(s)
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society (IT'IS); Zurich Switzerland
- Swiss Federal Institute of Technology (ETH); Zurich Switzerland
| |
Collapse
|
36
|
Liu K, Zhang G, Wang Z, Liu Y, Dong J, Dong X, Liu J, Cao J, Ao L, Zhang S. The protective effect of autophagy on mouse spermatocyte derived cells exposure to 1800MHz radiofrequency electromagnetic radiation. Toxicol Lett 2014; 228:216-24. [PMID: 24813634 DOI: 10.1016/j.toxlet.2014.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 01/06/2023]
Abstract
The increasing exposure to radiofrequency (RF) radiation emitted from mobile phone use has raised public concern regarding the biological effects of RF exposure on the male reproductive system. Autophagy contributes to maintaining intracellular homeostasis under environmental stress. To clarify whether RF exposure could induce autophagy in the spermatocyte, mouse spermatocyte-derived cells (GC-2) were exposed to 1800MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rate (SAR) values of 1w/kg, 2w/kg or 4w/kg for 24h, respectively. The results indicated that the expression of LC3-II increased in a dose- and time-dependent manner with RF exposure, and showed a significant change at the SAR value of 4w/kg. The autophagosome formation and the occurrence of autophagy were further confirmed by GFP-LC3 transient transfection assay and transmission electron microscopy (TEM) analysis. Furthermore, the conversion of LC3-I to LC3-II was enhanced by co-treatment with Chloroquine (CQ), indicating autophagic flux could be enhanced by RF exposure. Intracellular ROS levels significantly increased in a dose- and time-dependent manner after cells were exposed to RF. Pretreatment with anti-oxidative NAC obviously decreased the conversion of LC3-I to LC3-II and attenuated the degradation of p62 induced by RF exposure. Meanwhile, phosphorylated extracellular-signal-regulated kinase (ERK) significantly increased after RF exposure at the SAR value of 2w/kg and 4w/kg. Moreover, we observed that RF exposure did not increase the percentage of apoptotic cells, but inhibition of autophagy could increase the percentage of apoptotic cells. These findings suggested that autophagy flux could be enhanced by 1800MHz GSM exposure (4w/kg), which is mediated by ROS generation. Autophagy may play an important role in preventing cells from apoptotic cell death under RF exposure stress.
Collapse
Affiliation(s)
- Kaijun Liu
- Institute of Computing Medicine, Third Military Medical University, Chongqing, 400038, China; Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Guowei Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Zhi Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yong Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Jianyun Dong
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Xiaomei Dong
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Shaoxiang Zhang
- Institute of Computing Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
37
|
Ni S, Yu Y, Zhang Y, Wu W, Lai K, Yao K. Study of oxidative stress in human lens epithelial cells exposed to 1.8 GHz radiofrequency fields. PLoS One 2013; 8:e72370. [PMID: 23991100 PMCID: PMC3753251 DOI: 10.1371/journal.pone.0072370] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/09/2013] [Indexed: 12/23/2022] Open
Abstract
Objectives The aims of the present study were to determine oxidative stress and to explore possible reasons of reactive oxygen species (ROS) increase in human lens epithelial (HLE) B3 cells exposed to low intensity 1.8 GHz radiofrequency fields (RF). Methods The HLE B3 cells were divided into RF exposure and RF sham-exposure groups. The RF exposure intensity was at specific absorption rate (SAR) of 2, 3, or 4 W/kg. The ROS levels were measured by a fluorescent probe 2′7′-dichlorofluorescin diacetate (DCFH-DA) assay in the HLE B3 cells exposed to 1.8 GHz RF for 0.5, 1, and 1.5 h. Lipid peroxidation and cellular viability were detected by an MDA test and Cell Counting Kit-8 (CCK-8) assays, respectively, in the HLE B3 cells exposed to 1.8 GHz RF for 6, 12, and 24 h, respectively. The mRNA expression of SOD1, SOD2, CAT, and GPx1 genes and the expression of SOD1, SOD2, CAT, and GPx1 proteins was measured by qRT-PCR and Western blot assays in the HLE B3 cells exposed to 1.8 GHz RF for 1 h. Results The ROS and MDA levels significantly increased (P<0.05) in the RF exposure group and that the cellular viability, mRNA expression of four genes, and expression of four proteins significantly decreased (P<0.05) compared with the RF sham-exposure group. Conclusions Oxidative stress is present in HLE B3 cells exposed to 1.8 GHz low-intensity RF and that the increased production of ROS may be related to down-regulation of four antioxidant enzyme genes induced by RF exposure.
Collapse
Affiliation(s)
- Shuang Ni
- Eye Center, Second Affiliated Second Hospital of Zhejiang University School of medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Yibo Yu
- Eye Center, Second Affiliated Second Hospital of Zhejiang University School of medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Yidong Zhang
- Eye Center, Second Affiliated Second Hospital of Zhejiang University School of medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Wei Wu
- Eye Center, Second Affiliated Second Hospital of Zhejiang University School of medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Kairan Lai
- Eye Center, Second Affiliated Second Hospital of Zhejiang University School of medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Ke Yao
- Eye Center, Second Affiliated Second Hospital of Zhejiang University School of medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|