1
|
Ferreira G, Cardozo R, Sastre S, Costa C, Santander A, Chavarría L, Guizzo V, Puglisi J, Nicolson GL. Bacterial toxins and heart function: heat-labile Escherichia coli enterotoxin B promotes changes in cardiac function with possible relevance for sudden cardiac death. Biophys Rev 2023; 15:447-473. [PMID: 37681088 PMCID: PMC10480140 DOI: 10.1007/s12551-023-01100-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial toxins can cause cardiomyopathy, though it is not its most common cause. Some bacterial toxins can form pores in the membrane of cardiomyocytes, while others can bind to membrane receptors. Enterotoxigenic E. coli can secrete enterotoxins, including heat-resistant (ST) or labile (LT) enterotoxins. LT is an AB5-type toxin that can bind to specific cell receptors and disrupt essential host functions, causing several common conditions, such as certain diarrhea. The pentameric B subunit of LT, without A subunit (LTB), binds specifically to certain plasma membrane ganglioside receptors, found in lipid rafts of cardiomyocytes. Isolated guinea pig hearts and cardiomyocytes were exposed to different concentrations of purified LTB. In isolated hearts, mechanical and electrical alternans and an increment of heart rate variability, with an IC50 of ~0.2 μg/ml LTB, were observed. In isolated cardiomyocytes, LTB promoted significant decreases in the amplitude and the duration of action potentials. Na+ currents were inhibited whereas L-type Ca2+ currents were augmented at their peak and their fast inactivation was promoted. Delayed rectifier K+ currents decreased. Measurements of basal Ca2+ or Ca2+ release events in cells exposed to LTB suggest that LTB impairs Ca2+ homeostasis. Impaired calcium homeostasis is linked to sudden cardiac death. The results are consistent with the recent view that the B subunit is not merely a carrier of the A subunit, having a role explaining sudden cardiac death in children (SIDS) infected with enterotoxigenic E. coli, explaining several epidemiological findings that establish a strong relationship between SIDS and ETEC E. coli. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01100-6.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Romina Cardozo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Santiago Sastre
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics and Centro de Investigaciones Biomédicas (CeInBio), Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Carlos Costa
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Axel Santander
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Luisina Chavarría
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Valentina Guizzo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - José Puglisi
- College of Medicine, California North State University, 9700 West Taron Drive, Elk Grove, CA 95757 USA
| | - G. L. Nicolson
- Institute for Molecular Medicine, Beach, Huntington, CA USA
| |
Collapse
|
2
|
Kanaporis G, Martinez‐Hernandez E, Blatter LA. Calcium- and voltage-driven atrial alternans: Insight from [Ca] i and V m asynchrony. Physiol Rep 2023; 11:e15703. [PMID: 37226365 PMCID: PMC10209431 DOI: 10.14814/phy2.15703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/26/2023] Open
Abstract
Cardiac alternans is defined as beat-to-beat alternations in contraction strength, action potential duration (APD), and Ca transient (CaT) amplitude. Cardiac excitation-contraction coupling relies on the activity of two bidirectionally coupled excitable systems, membrane voltage (Vm ) and Ca release. Alternans has been classified as Vm - or Ca-driven, depending whether a disturbance of Vm or [Ca]i regulation drives the alternans. We determined the primary driver of pacing induced alternans in rabbit atrial myocytes, using combined patch clamp and fluorescence [Ca]i and Vm measurements. APD and CaT alternans are typically synchronized; however, uncoupling between APD and CaT regulation can lead to CaT alternans in the absence of APD alternans, and APD alternans can fail to precipitate CaT alternans, suggesting a considerable degree of independence of CaT and APD alternans. Using alternans AP voltage clamp protocols with extra APs showed that most frequently the pre-existing CaT alternans pattern prevailed after the extra-beat, indicating that alternans is Ca-driven. In electrically coupled cell pairs, dyssynchrony of APD and CaT alternans points to autonomous regulation of CaT alternans. Thus, with three novel experimental protocols, we collected evidence for Ca-driven alternans; however, the intimately intertwined regulation of Vm and [Ca]i precludes entirely independent development of CaT and APD alternans.
Collapse
Affiliation(s)
- G. Kanaporis
- Department of Physiology & BiophysicsRush University Medical CenterChicagoIllinoisUSA
| | - E. Martinez‐Hernandez
- Department of Physiology & BiophysicsRush University Medical CenterChicagoIllinoisUSA
| | - L. A. Blatter
- Department of Physiology & BiophysicsRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
3
|
Martinez-Hernandez E, Kanaporis G, Blatter LA. Mechanism of carvedilol induced action potential and calcium alternans. Channels (Austin) 2022; 16:97-112. [PMID: 35501948 PMCID: PMC9067505 DOI: 10.1080/19336950.2022.2055521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Carvedilol is a nonspecific β-blocker clinically used for the treatment of cardiovascular diseases but has also been shown to have profound effects on excitation-contraction coupling and Ca signaling at the cellular level. We investigate the mechanism by which carvedilol facilitates Ca transient (CaT) and action potential duration (APD) alternans in rabbit atrial myocytes. Carvedilol lowered the frequency threshold for pacing-induced CaT alternans and facilitated alternans in a concentration-dependent manner. Carvedilol prolonged the sarcoplasmic reticulum (SR) Ca release refractoriness by significantly increasing the time constant τ of recovery of SR Ca release; however, no changes in L-type calcium current recovery from inactivation or SR Ca load were found after carvedilol treatment. Carvedilol enhanced the degree of APD alternans nearly two-fold. Carvedilol slowed the APD restitution kinetics and steepened the APD restitution curve at the pacing frequency (2 Hz) where alternans were elicited. No effect on the CaT or APD alternans ratios was observed in experiments with a different β-blocker (metoprolol), excluding the possibility that the carvedilol effect on CaT and APD alternans was determined by its β-blocking properties. These data suggest that carvedilol contributes to the generation of CaT and APD alternans in atrial myocytes by modulating the restitution of CaT and APD.
Collapse
Affiliation(s)
| | - Giedrius Kanaporis
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, Illinois, USA
| | - Lothar A. Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, Illinois, USA,CONTACT Lothar A. Blatter Department of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison Street, Chicago, IL60612, USA
| |
Collapse
|
4
|
Huang C, Song Z, Qu Z. Synchronization of spatially discordant voltage and calcium alternans in cardiac tissue. Phys Rev E 2022; 106:024406. [PMID: 36109882 PMCID: PMC11316446 DOI: 10.1103/physreve.106.024406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/18/2022] [Indexed: 06/01/2023]
Abstract
The heart is an excitable medium which is excited by membrane potential depolarization and propagation. Membrane potential depolarization brings in calcium (Ca) through the Ca channels to trigger intracellular Ca release for contraction of the heart. Ca also affects voltage via Ca-dependent ionic currents, and thus, voltage and Ca are bidirectionally coupled. It has been shown that the voltage subsystem or the Ca subsystem can generate its own dynamical instabilities which are affected by their bidirectional couplings, leading to complex dynamics of action potential and Ca cycling. Moreover, the dynamics become spatiotemporal in tissue in which cells are diffusively coupled through voltage. A widely investigated spatiotemporal dynamics is spatially discordant alternans (SDA) in which action potential duration (APD) or Ca amplitude exhibits temporally period-2 and spatially out-of-phase patterns, i.e., APD-SDA and Ca-SDA patterns, respectively. However, the mechanisms of formation, stability, and synchronization of APD-SDA and Ca-SDA patterns remain incompletely understood. In this paper, we use cardiac tissue models described by an amplitude equation, coupled iterated maps, and reaction-diffusion equations with detailed physiology (the ionic model) to perform analytical and computational investigations. We show that, when the Ca subsystem is stable, the Ca-SDA pattern always follows the APD-SDA pattern, and thus, they are always synchronized. When the Ca subsystem is unstable, synchronization of APD-SDA and Ca-SDA patterns depends on the stabilities of both subsystems, their coupling strengths, and the spatial scales of the initial Ca-SDA patterns. Spontaneous (initial condition-independent) synchronization is promoted by enhancing APD instability and reducing Ca instability as well as stronger Ca-to-APD and APD-to-Ca coupling, a pattern formation caused by dynamical instabilities. When Ca is more unstable and APD is less unstable or APD-to-Ca coupling is weak, synchronization of APD-SDA and Ca-SDA patterns is promoted by larger initially synchronized Ca-SDA clusters, i.e., initial condition-dependent synchronization. The synchronized APD-SDA and Ca-SDA patterns can be locked in-phase, antiphase, or quasiperiodic depending on the coupling relationship between APD and Ca. These theoretical and simulation results provide mechanistic insights into the APD-SDA and Ca-SDA dynamics observed in experimental studies.
Collapse
Affiliation(s)
- Chunli Huang
- School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou 510420, China
- Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Zhen Song
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Computational Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
5
|
Colman MA, Alvarez-Lacalle E, Echebarria B, Sato D, Sutanto H, Heijman J. Multi-Scale Computational Modeling of Spatial Calcium Handling From Nanodomain to Whole-Heart: Overview and Perspectives. Front Physiol 2022; 13:836622. [PMID: 35370783 PMCID: PMC8964409 DOI: 10.3389/fphys.2022.836622] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of intracellular calcium is a critical component of cardiac electrophysiology and excitation-contraction coupling. The calcium spark, the fundamental element of the intracellular calcium transient, is initiated in specialized nanodomains which co-locate the ryanodine receptors and L-type calcium channels. However, calcium homeostasis is ultimately regulated at the cellular scale, by the interaction of spatially separated but diffusively coupled nanodomains with other sub-cellular and surface-membrane calcium transport channels with strong non-linear interactions; and cardiac electrophysiology and arrhythmia mechanisms are ultimately tissue-scale phenomena, regulated by the interaction of a heterogeneous population of coupled myocytes. Recent advances in imaging modalities and image-analysis are enabling the super-resolution reconstruction of the structures responsible for regulating calcium homeostasis, including the internal structure of nanodomains themselves. Extrapolating functional and imaging data from the nanodomain to the whole-heart is non-trivial, yet essential for translational insight into disease mechanisms. Computational modeling has important roles to play in relating structural and functional data at the sub-cellular scale and translating data across the scales. This review covers recent methodological advances that enable image-based modeling of the single nanodomain and whole cardiomyocyte, as well as the development of multi-scale simulation approaches to integrate data from nanometer to whole-heart. Firstly, methods to overcome the computational challenges of simulating spatial calcium dynamics in the nanodomain are discussed, including image-based modeling at this scale. Then, recent whole-cell models, capable of capturing a range of different structures (such as the T-system and mitochondria) and cellular heterogeneity/variability are discussed at two different levels of discretization. Novel methods to integrate the models and data across the scales and simulate stochastic dynamics in tissue-scale models are then discussed, enabling elucidation of the mechanisms by which nanodomain remodeling underlies arrhythmia and contractile dysfunction. Perspectives on model differences and future directions are provided throughout.
Collapse
Affiliation(s)
- Michael A. Colman
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Blas Echebarria
- Departament de Fisica, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Daisuke Sato
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Henry Sutanto
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
6
|
Borile G, Zaglia T, E. Lehnart S, Mongillo M. Multiphoton Imaging of Ca 2+ Instability in Acute Myocardial Slices from a RyR2R2474S Murine Model of Catecholaminergic Polymorphic Ventricular Tachycardia. J Clin Med 2021; 10:jcm10132821. [PMID: 34206855 PMCID: PMC8269190 DOI: 10.3390/jcm10132821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/27/2022] Open
Abstract
Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) is a familial stress-induced arrhythmia syndrome, mostly caused by mutations in Ryanodine receptor 2 (RyR2), the sarcoplasmic reticulum (SR) Ca2+ release channel in cardiomyocytes. Pathogenetic mutations lead to gain of function in the channel, causing arrhythmias by promoting diastolic spontaneous Ca2+ release (SCR) from the SR and delayed afterdepolarizations. While the study of Ca2+ dynamics in single cells from murine CPVT models has increased our understanding of the disease pathogenesis, questions remain on the mechanisms triggering the lethal arrhythmias at tissue level. Here, we combined subcellular analysis of Ca2+ signals in isolated cardiomyocytes and in acute thick ventricular slices of RyR2R2474S knock-in mice, electrically paced at different rates (1–5 Hz), to identify arrhythmogenic Ca2+ dynamics, from the sub- to the multicellular perspective. In both models, RyR2R2474S cardiomyocytes had increased propensity to develop SCR upon adrenergic stimulation, which manifested, in the slices, with Ca2+ alternans and synchronous Ca2+ release events in neighboring cardiomyocytes. Analysis of Ca2+ dynamics in multiple cells in the tissue suggests that SCRs beget SCRs in contiguous cells, overcoming the protective electrotonic myocardial coupling, and potentially generating arrhythmia triggering foci. We suggest that intercellular interactions may underscore arrhythmic propensity in CPVT hearts with ‘leaky’ RyR2.
Collapse
Affiliation(s)
- Giulia Borile
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.B.); (T.Z.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.B.); (T.Z.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Stephan E. Lehnart
- Heart Research Heart Research Center Göttingen, Cellular Biophysics and Translational Cardi-Ology Section, Department of Cardiology & Pulmonology, University Medical Center Göttingen, 37073 Göttingen, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37073 Göttingen, Germany
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.B.); (T.Z.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
- Correspondence: ; Tel.: +39-049-7923229; Fax: +39-049-7923250
| |
Collapse
|
7
|
Wang L, Myles RC, Lee IJ, Bers DM, Ripplinger CM. Role of Reduced Sarco-Endoplasmic Reticulum Ca 2+-ATPase Function on Sarcoplasmic Reticulum Ca 2+ Alternans in the Intact Rabbit Heart. Front Physiol 2021; 12:656516. [PMID: 34045974 PMCID: PMC8144333 DOI: 10.3389/fphys.2021.656516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/29/2021] [Indexed: 01/16/2023] Open
Abstract
Sarcoplasmic reticulum (SR) Ca2+ cycling is tightly regulated by ryanodine receptor (RyR) Ca2+ release and sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) Ca2+ uptake during each excitation–contraction coupling cycle. We previously showed that RyR refractoriness plays a key role in the onset of SR Ca2+ alternans in the intact rabbit heart, which contributes to arrhythmogenic action potential duration (APD) alternans. Recent studies have also implicated impaired SERCA function, a key feature of heart failure, in cardiac alternans and arrhythmias. However, the relationship between reduced SERCA function and SR Ca2+ alternans is not well understood. Simultaneous optical mapping of transmembrane potential (Vm) and SR Ca2+ was performed in isolated rabbit hearts (n = 10) using the voltage-sensitive dye RH237 and the low-affinity Ca2+ indicator Fluo-5N-AM. Alternans was induced by rapid ventricular pacing. SERCA was inhibited with cyclopiazonic acid (CPA; 1–10 μM). SERCA inhibition (1, 5, and 10 μM of CPA) resulted in dose-dependent slowing of SR Ca2+ reuptake, with the time constant (tau) increasing from 70.8 ± 3.5 ms at baseline to 85.5 ± 6.6, 129.9 ± 20.7, and 271.3 ± 37.6 ms, respectively (p < 0.05 vs. baseline for all doses). At fast pacing frequencies, CPA significantly increased the magnitude of SR Ca2+ and APD alternans, most strongly at 10 μM (pacing cycle length = 220 ms: SR Ca2+ alternans magnitude: 57.1 ± 4.7 vs. 13.4 ± 8.9 AU; APD alternans magnitude 3.8 ± 1.9 vs. 0.2 ± 0.19 AU; p < 0.05 10 μM of CPA vs. baseline for both). SERCA inhibition also promoted the emergence of spatially discordant alternans. Notably, at all CPA doses, alternation of SR Ca2+ release occurred prior to alternation of diastolic SR Ca2+ load as pacing frequency increased. Simultaneous optical mapping of SR Ca2+ and Vm in the intact rabbit heart revealed that SERCA inhibition exacerbates pacing-induced SR Ca2+ and APD alternans magnitude, particularly at fast pacing frequencies. Importantly, SR Ca2+ release alternans always occurred before the onset of SR Ca2+ load alternans. These findings suggest that even in settings of diminished SERCA function, relative refractoriness of RyR Ca2+ release governs the onset of intracellular Ca2+ alternans.
Collapse
Affiliation(s)
- Lianguo Wang
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Rachel C Myles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - I-Ju Lee
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Donald M Bers
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Blatter LA, Kanaporis G, Martinez-Hernandez E, Oropeza-Almazan Y, Banach K. Excitation-contraction coupling and calcium release in atrial muscle. Pflugers Arch 2021; 473:317-329. [PMID: 33398498 DOI: 10.1007/s00424-020-02506-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 01/02/2023]
Abstract
In cardiac muscle, the process of excitation-contraction coupling (ECC) describes the chain of events that links action potential induced myocyte membrane depolarization, surface membrane ion channel activation, triggering of Ca2+ induced Ca2+ release from the sarcoplasmic reticulum (SR) Ca2+ store to activation of the contractile machinery that is ultimately responsible for the pump function of the heart. Here we review similarities and differences of structural and functional attributes of ECC between atrial and ventricular tissue. We explore a novel "fire-diffuse-uptake-fire" paradigm of atrial ECC and Ca2+ release that assigns a novel role to the SR SERCA pump and involves a concerted "tandem" activation of the ryanodine receptor Ca2+ release channel by cytosolic and luminal Ca2+. We discuss the contribution of the inositol 1,4,5-trisphosphate (IP3) receptor Ca2+ release channel as an auxiliary pathway to Ca2+ signaling, and we review IP3 receptor-induced Ca2+ release involvement in beat-to-beat ECC, nuclear Ca2+ signaling, and arrhythmogenesis. Finally, we explore the topic of electromechanical and Ca2+ alternans and its ramifications for atrial arrhythmia.
Collapse
Affiliation(s)
- L A Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison Street, Chicago, IL, 60612, USA.
| | - G Kanaporis
- Department of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison Street, Chicago, IL, 60612, USA
| | - E Martinez-Hernandez
- Department of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison Street, Chicago, IL, 60612, USA
| | - Y Oropeza-Almazan
- Department of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison Street, Chicago, IL, 60612, USA
| | - K Banach
- Department of Internal Medicine/Cardiology, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
9
|
Wei J, Yao J, Belke D, Guo W, Zhong X, Sun B, Wang R, Paul Estillore J, Vallmitjana A, Benitez R, Hove-Madsen L, Alvarez-Lacalle E, Echebarria B, Chen SRW. Ca 2+-CaM Dependent Inactivation of RyR2 Underlies Ca 2+ Alternans in Intact Heart. Circ Res 2020; 128:e63-e83. [PMID: 33375811 DOI: 10.1161/circresaha.120.318429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RATIONALE Ca2+ alternans plays an essential role in cardiac alternans that can lead to ventricular fibrillation, but the mechanism underlying Ca2+ alternans remains undefined. Increasing evidence suggests that Ca2+ alternans results from alternations in the inactivation of cardiac RyR2 (ryanodine receptor 2). However, what inactivates RyR2 and how RyR2 inactivation leads to Ca2+ alternans are unknown. OBJECTIVE To determine the role of CaM (calmodulin) on Ca2+ alternans in intact working mouse hearts. METHODS AND RESULTS We used an in vivo local gene delivery approach to alter CaM function by directly injecting adenoviruses expressing CaM-wild type, a loss-of-function CaM mutation, CaM (1-4), and a gain-of-function mutation, CaM-M37Q, into the anterior wall of the left ventricle of RyR2 wild type or mutant mouse hearts. We monitored Ca2+ transients in ventricular myocytes near the adenovirus-injection sites in Langendorff-perfused intact working hearts using confocal Ca2+ imaging. We found that CaM-wild type and CaM-M37Q promoted Ca2+ alternans and prolonged Ca2+ transient recovery in intact RyR2 wild type and mutant hearts, whereas CaM (1-4) exerted opposite effects. Altered CaM function also affected the recovery from inactivation of the L-type Ca2+ current but had no significant impact on sarcoplasmic reticulum Ca2+ content. Furthermore, we developed a novel numerical myocyte model of Ca2+ alternans that incorporates Ca2+-CaM-dependent regulation of RyR2 and the L-type Ca2+ channel. Remarkably, the new model recapitulates the impact on Ca2+ alternans of altered CaM and RyR2 functions under 9 different experimental conditions. Our simulations reveal that diastolic cytosolic Ca2+ elevation as a result of rapid pacing triggers Ca2+-CaM dependent inactivation of RyR2. The resultant RyR2 inactivation diminishes sarcoplasmic reticulum Ca2+ release, which, in turn, reduces diastolic cytosolic Ca2+, leading to alternations in diastolic cytosolic Ca2+, RyR2 inactivation, and sarcoplasmic reticulum Ca2+ release (ie, Ca2+ alternans). CONCLUSIONS Our results demonstrate that inactivation of RyR2 by Ca2+-CaM is a major determinant of Ca2+ alternans, making Ca2+-CaM dependent regulation of RyR2 an important therapeutic target for cardiac alternans.
Collapse
Affiliation(s)
- Jinhong Wei
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Jinjing Yao
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Darrell Belke
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Wenting Guo
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Xiaowei Zhong
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Bo Sun
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - John Paul Estillore
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| | - Alexander Vallmitjana
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain (A.V., R.B.)
| | - Raul Benitez
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain (A.V., R.B.).,Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain (R.B.)
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona IIBB-CSIC, CIBERCV and IIB Sant Pau, Hospital de Sant Pau, Barcelona, Spain (L.H.-M.)
| | - Enrique Alvarez-Lacalle
- Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain (E.A.-L., B.E.)
| | - Blas Echebarria
- Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain (E.A.-L., B.E.)
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (J.W., J.Y., D.B., W.G., X.Z., B.S., R.W., J.P.E., S.R.W.C.)
| |
Collapse
|
10
|
Marchena M, Echebarria B, Shiferaw Y, Alvarez-Lacalle E. Buffering and total calcium levels determine the presence of oscillatory regimes in cardiac cells. PLoS Comput Biol 2020; 16:e1007728. [PMID: 32970668 PMCID: PMC7537911 DOI: 10.1371/journal.pcbi.1007728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 10/06/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Calcium oscillations and waves induce depolarization in cardiac cells which are believed to cause life-threathening arrhythimas. In this work, we study the conditions for the appearance of calcium oscillations in both a detailed subcellular model of calcium dynamics and a minimal model that takes into account just the minimal ingredients of the calcium toolkit. To avoid the effects of homeostatic changes and the interaction with the action potential we consider the somewhat artificial condition of a cell without pacing and with no calcium exchange with the extracellular medium. Both the full subcellular model and the minimal model present the same scenarios depending on the calcium load: two stationary states, one with closed ryanodine receptors (RyR) and most calcium in the cell stored in the sarcoplasmic reticulum (SR), and another, with open RyRs and a depleted SR. In between, calcium oscillations may appear. The robustness of these oscillations is determined by the amount of calsequestrin (CSQ). The lack of this buffer in the SR enhances the appearance of oscillations. The minimal model allows us to relate the stability of the oscillating state to the nullcline structure of the system, and find that its range of existence is bounded by a homoclinic and a Hopf bifurcation, resulting in a sudden transition to the oscillatory regime as the cell calcium load is increased. Adding a small amount of noise to the RyR behavior increases the parameter region where oscillations appear and provides a gradual transition from the resting state to the oscillatory regime, as observed in the subcellular model and experimentally. In cardiac cells, calcium plays a very important role. An increase in calcium levels is the trigger used by the cell to initiate contraction. Besides, calcium modulates several transmembrane currents, affecting the cell transmembrane potential. Thus, dysregulations in calcium handling have been associated with the appearance of arrhythmias. Often, this dysregulation results in the appearance of periodic calcium waves or global oscillations, providing a pro-arrhythmic substrate. In this paper, we study the onset of calcium oscillations in cardiac cells using both a detailed subcellular model of calcium dynamics and a minimal model that takes into account the essential ingredients of the calcium toolkit. Both reproduce the main experimental results and link this behavior with the presence of different steady-state solutions and bifurcations that depend on the total amount of calcium in the cell and in the level of buffering present. We expect that this work will help to clarify the conditions under which calcium oscillations appear in cardiac myocytes and, therefore, will represent a step further in the understanding of the origin of cardiac arrhythmias.
Collapse
Affiliation(s)
- Miquel Marchena
- Departament de Física, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Blas Echebarria
- Departament de Física, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Yohannes Shiferaw
- Physics Department, California State University, Northridge, California 91330, USA
| | | |
Collapse
|
11
|
Two-variable nullcline analysis of ionic general equilibrium predicts calcium homeostasis in ventricular myocytes. PLoS Comput Biol 2020; 16:e1007572. [PMID: 32502205 PMCID: PMC7316341 DOI: 10.1371/journal.pcbi.1007572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/25/2020] [Accepted: 05/05/2020] [Indexed: 01/16/2023] Open
Abstract
Ventricular contraction is roughly proportional to the amount of calcium released from the Sarcoplasmic Reticulum (SR) during systole. While it is rather straightforward to measure calcium levels and contractibility under different physiological conditions, the complexity of calcium handling during systole and diastole has made the prediction of its release at steady state impossible. Here we approach the problem analyzing the evolution of intracellular and extracellular calcium fluxes during a single beat which is away from homeostatic balance. Using an in-silico subcellular model of rabbit ventricular myocyte, we show that the high dimensional nonlinear problem of finding the steady state can be reduced to a two-variable general equilibrium condition where pre-systolic calcium level in the cytosol and in the SR must fulfill simultaneously two different equalities. This renders calcium homeostasis as a problem that can be studied in terms of its equilibrium structure, leading to precise predictions of steady state from single-beat measurements. We show how changes in ion channels modify the general equilibrium, as shocks would do in general equilibrium macroeconomic models. This allows us to predict when an enhanced entrance of calcium in the cell reduces its contractibility and explain why SERCA gene therapy, a change in calcium handling to treat heart failure, might fail to improve contraction even when it successfully increases SERCA expression. Cardiomyocytes, upon voltage excitation, release calcium, which leads to cell contraction. However, under some pathological conditions, calcium handling is impaired. Recently, SERCA gene therapy, whose aim is to improve Ca2+ sequestration by the Sarcoplasmic Reticulum (SR), has failed to improve the prognosis of patients with Heart Failure. This, together with recent counterintuitive results in calcium handling, has highlighted the need for a framework to understand calcium homeostasis across species and pathologies. We show here that the proper framework is a general equilibrium approach of two independent variables. The development of this framework allows us to find a possible mechanism for the failure of SERCA gene therapy even when it manages to increase Ca SERCA expression.
Collapse
|
12
|
Marchena M, Echebarria B. Influence of the tubular network on the characteristics of calcium transients in cardiac myocytes. PLoS One 2020; 15:e0231056. [PMID: 32302318 PMCID: PMC7164608 DOI: 10.1371/journal.pone.0231056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/14/2020] [Indexed: 01/09/2023] Open
Abstract
Transverse and axial tubules (TATS) are an essential ingredient of the excitation-contraction machinery that allow the effective coupling of L-type Calcium Channels (LCC) and ryanodine receptors (RyR2). They form a regular network in ventricular cells, while their presence in atrial myocytes is variable regionally and among animal species We have studied the effect of variations in the TAT network using a bidomain computational model of an atrial myocyte with variable density of tubules. At each z-line the t-tubule length is obtained from an exponential distribution, with a given mean penetration length. This gives rise to a distribution of t-tubules in the cell that is characterized by the fractional area (F.A.) occupied by the t-tubules. To obtain consistent results, we average over different realizations of the same mean penetration length. To this, in some simulations we add the effect of a network of axial tubules. Then we study global properties of calcium signaling, as well as regional heterogeneities and local properties of sparks and RyR2 openings. In agreement with recent experiments in detubulated ventricular and atrial cells, we find that detubulation reduces the calcium transient and synchronization in release. However, it does not affect sarcoplasmic reticulum (SR) load, so the decrease in SR calcium release is due to regional differences in Ca2+ release, that is restricted to the cell periphery in detubulated cells. Despite the decrease in release, the release gain is larger in detubulated cells, due to recruitment of orphaned RyR2s, i.e, those that are not confronting a cluster of LCCs. This probably provides a safeguard mechanism, allowing physiological values to be maintained upon small changes in the t-tubule density. Finally, we do not find any relevant change in spark properties between tubulated and detubulated cells, suggesting that the differences found in experiments could be due to differential properties of the RyR2s in the membrane and in the t-tubules, not incorporated in the present model. This work will help understand the effect of detubulation, that has been shown to occur in disease conditions such as heart failure (HF) in ventricular cells, or atrial fibrillation (AF) in atrial cells.
Collapse
Affiliation(s)
- Miquel Marchena
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Blas Echebarria
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona, Spain
- * E-mail:
| |
Collapse
|
13
|
Veasy J, Lai YM, Coombes S, Thul R. Complex patterns of subcellular cardiac alternans. J Theor Biol 2019; 478:102-114. [PMID: 31220466 DOI: 10.1016/j.jtbi.2019.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 10/26/2022]
Abstract
Cardiac alternans, in which the membrane potential and the intracellular calcium concentration exhibit alternating durations and peak amplitudes at consecutive beats, constitute a precursor to fatal cardiac arrhythmia such as sudden cardiac death. A crucial question therefore concerns the onset of cardiac alternans. Typically, alternans are only reported when they are fully developed. Here, we present a modelling approach to explore recently discovered microscopic alternans, which represent one of the earliest manifestations of cardiac alternans. In this case, the regular periodic dynamics of the local intracellular calcium concentration is already unstable, while the whole-cell behaviour suggests a healthy cell state. In particular, we use our model to investigate the impact of calcium diffusion in both the cytosol and the sarcoplasmic reticulum on the formation of microscopic calcium alternans. We find that for dominant cytosolic coupling, calcium alternans emerge via the traditional period doubling bifurcation. In contrast, dominant luminal coupling leads to a novel route to calcium alternans through a saddle-node bifurcation at the network level. Combining semi-analytical and computational approaches, we compute areas of stability in parameter space and find that as we cross from stable to unstable regions, the emergent patterns of the intracellular calcium concentration change abruptly in a fashion that is highly dependent upon position along the stability boundary. Our results demonstrate that microscopic calcium alternans may possess a much richer dynamical repertoire than previously thought and further strengthen the role of luminal calcium in shaping cardiac calcium dynamics.
Collapse
Affiliation(s)
- Joshua Veasy
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Yi Ming Lai
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stephen Coombes
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Rüdiger Thul
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
14
|
Hamilton S, Terentyev D. Altered Intracellular Calcium Homeostasis and Arrhythmogenesis in the Aged Heart. Int J Mol Sci 2019; 20:ijms20102386. [PMID: 31091723 PMCID: PMC6566636 DOI: 10.3390/ijms20102386] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Aging of the heart is associated with a blunted response to sympathetic stimulation, reduced contractility, and increased propensity for arrhythmias, with the risk of sudden cardiac death significantly increased in the elderly population. The altered cardiac structural and functional phenotype, as well as age-associated prevalent comorbidities including hypertension and atherosclerosis, predispose the heart to atrial fibrillation, heart failure, and ventricular tachyarrhythmias. At the cellular level, perturbations in mitochondrial function, excitation-contraction coupling, and calcium homeostasis contribute to this electrical and contractile dysfunction. Major determinants of cardiac contractility are the intracellular release of Ca2+ from the sarcoplasmic reticulum by the ryanodine receptors (RyR2), and the following sequestration of Ca2+ by the sarco/endoplasmic Ca2+-ATPase (SERCa2a). Activity of RyR2 and SERCa2a in myocytes is not only dependent on expression levels and interacting accessory proteins, but on fine-tuned regulation via post-translational modifications. In this paper, we review how aberrant changes in intracellular Ca2+ cycling via these proteins contributes to arrhythmogenesis in the aged heart.
Collapse
Affiliation(s)
- Shanna Hamilton
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Dmitry Terentyev
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol 2018. [PMID: 30425651 DOI: 10.3389/fphys.2018.01517, 10.3389/fpls.2018.01517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
16
|
Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol 2018; 9:1517. [PMID: 30425651 PMCID: PMC6218530 DOI: 10.3389/fphys.2018.01517] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022] Open
Abstract
A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
17
|
Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol 2018; 9:1517. [PMID: 30425651 PMCID: PMC6218530 DOI: 10.3389/fphys.2018.01517,+10.3389/fpls.2018.01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States,*Correspondence: Dmitry Terentyev,
| |
Collapse
|
18
|
Sun B, Wei J, Zhong X, Guo W, Yao J, Wang R, Vallmitjana A, Benitez R, Hove-Madsen L, Chen SRW. The cardiac ryanodine receptor, but not sarcoplasmic reticulum Ca 2+-ATPase, is a major determinant of Ca 2+ alternans in intact mouse hearts. J Biol Chem 2018; 293:13650-13661. [PMID: 29986885 DOI: 10.1074/jbc.ra118.003760] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/06/2018] [Indexed: 11/06/2022] Open
Abstract
Sarcoplasmic reticulum (SR) Ca2+ cycling is governed by the cardiac ryanodine receptor (RyR2) and SR Ca2+-ATPase (SERCA2a). Abnormal SR Ca2+ cycling is thought to be the primary cause of Ca2+ alternans that can elicit ventricular arrhythmias and sudden cardiac arrest. Although alterations in either RyR2 or SERCA2a function are expected to affect SR Ca2+ cycling, whether and to what extent altered RyR2 or SERCA2a function affects Ca2+ alternans is unclear. Here, we employed a gain-of-function RyR2 variant (R4496C) and the phospholamban-knockout (PLB-KO) mouse model to assess the effect of genetically enhanced RyR2 or SERCA2a function on Ca2+ alternans. Confocal Ca2+ imaging revealed that RyR2-R4496C shortened SR Ca2+ release refractoriness and markedly suppressed rapid pacing-induced Ca2+ alternans. Interestingly, despite enhancing RyR2 function, intact RyR2-R4496C hearts exhibited no detectable spontaneous SR Ca2+ release events during pacing. Unlike for RyR2, enhancing SERCA2a function by ablating PLB exerted a relatively minor effect on Ca2+ alternans in intact hearts expressing RyR2 WT or a loss-of-function RyR2 variant, E4872Q, that promotes Ca2+ alternans. Furthermore, partial SERCA2a inhibition with 3 μm 2,5-di-tert-butylhydroquinone (tBHQ) also had little impact on Ca2+ alternans, whereas strong SERCA2a inhibition with 10 μm tBHQ markedly reduced the amplitude of Ca2+ transients and suppressed Ca2+ alternans in intact hearts. Our results demonstrate that enhanced RyR2 function suppresses Ca2+ alternans in the absence of spontaneous Ca2+ release and that RyR2, but not SERCA2a, is a key determinant of Ca2+ alternans in intact working hearts, making RyR2 an important therapeutic target for cardiac alternans.
Collapse
Affiliation(s)
- Bo Sun
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jinhong Wei
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xiaowei Zhong
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Wenting Guo
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jinjing Yao
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ruiwu Wang
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Alexander Vallmitjana
- the Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona 08034, Spain, and
| | - Raul Benitez
- the Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona 08034, Spain, and
| | - Leif Hove-Madsen
- the Biomedical Research Institute of Barcelona (IIBB), CSIC, Sant Pau, Hospital de Sant Pau, Barcelona 08025, Spain
| | - S R Wayne Chen
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada,
| |
Collapse
|
19
|
Cantalapiedra IR, Alvarez-Lacalle E, Peñaranda A, Echebarria B. Minimal model for calcium alternans due to SR release refractoriness. CHAOS (WOODBURY, N.Y.) 2017; 27:093928. [PMID: 28964152 DOI: 10.1063/1.5000709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the heart, rapid pacing rates may induce alternations in the strength of cardiac contraction, termed pulsus alternans. Often, this is due to an instability in the dynamics of the intracellular calcium concentration, whose transients become larger and smaller at consecutive beats. This alternation has been linked experimentally and theoretically to two different mechanisms: an instability due to (1) a strong dependence of calcium release on sarcoplasmic reticulum (SR) load, together with a slow calcium reuptake into the SR or (2) to SR release refractoriness, due to a slow recovery of the ryanodine receptors (RyR2) from inactivation. The relationship between calcium alternans and refractoriness of the RyR2 has been more elusive than the corresponding SR Ca load mechanism. To study the former, we reduce a general calcium model, which mimics the deterministic evolution of a calcium release unit, to its most basic elements. We show that calcium alternans can be understood using a simple nonlinear equation for calcium concentration at the dyadic space, coupled to a relaxation equation for the number of recovered RyR2s. Depending on the number of RyR2s that are recovered at the beginning of a stimulation, the increase in calcium concentration may pass, or not, over an excitability threshold that limits the occurrence of a large calcium transient. When the recovery of the RyR2 is slow, this produces naturally a period doubling bifurcation, resulting in calcium alternans. We then study the effects of inactivation, calcium diffusion, and release conductance for the onset of alternans. We find that the development of alternans requires a well-defined value of diffusion while it is less sensitive to the values of inactivation or release conductance.
Collapse
Affiliation(s)
- Inma R Cantalapiedra
- Departament de Física. Universitat Politècnica de Catalunya, Av Dr. Marañon 50 (EPSEB), Barcelona, Spain
| | - Enrique Alvarez-Lacalle
- Departament de Física. Universitat Politècnica de Catalunya, Av Dr. Marañon 50 (EPSEB), Barcelona, Spain
| | - Angelina Peñaranda
- Departament de Física. Universitat Politècnica de Catalunya, Av Dr. Marañon 50 (EPSEB), Barcelona, Spain
| | - Blas Echebarria
- Departament de Física. Universitat Politècnica de Catalunya, Av Dr. Marañon 50 (EPSEB), Barcelona, Spain
| |
Collapse
|
20
|
Suppression of ryanodine receptor function prolongs Ca2+ release refractoriness and promotes cardiac alternans in intact hearts. Biochem J 2016; 473:3951-3964. [PMID: 27582498 DOI: 10.1042/bcj20160606] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022]
Abstract
Beat-to-beat alternations in the amplitude of the cytosolic Ca2+ transient (Ca2+ alternans) are thought to be the primary cause of cardiac alternans that can lead to cardiac arrhythmias and sudden death. Despite its important role in arrhythmogenesis, the mechanism underlying Ca2+ alternans remains poorly understood. Here, we investigated the role of cardiac ryanodine receptor (RyR2), the major Ca2+ release channel responsible for cytosolic Ca2+ transients, in cardiac alternans. Using a unique mouse model harboring a suppression-of-function (SOF) RyR2 mutation (E4872Q), we assessed the effect of genetically suppressing RyR2 function on Ca2+ and action potential duration (APD) alternans in intact hearts, and electrocardiogram (ECG) alternans in vivo We found that RyR2-SOF hearts displayed prolonged sarcoplasmic reticulum Ca2+ release refractoriness and enhanced propensity for Ca2+ alternans. RyR2-SOF hearts/mice also exhibited increased propensity for APD and ECG alternans. Caffeine, which enhances RyR2 activity and the propensity for catecholaminergic polymorphic ventricular tachycardia (CPVT), suppressed Ca2+ alternans in RyR2-SOF hearts, whereas carvedilol, a β-blocker that suppresses RyR2 activity and CPVT, promoted Ca2+ alternans in these hearts. Thus, RyR2 function is an important determinant of Ca2+, APD, and ECG alternans. Our data also indicate that the activity of RyR2 influences the propensity for cardiac alternans and CPVT in an opposite manner. Therefore, overly suppressing or enhancing RyR2 function is pro-arrhythmic.
Collapse
|
21
|
Echebarria B, Alvarez-Lacalle E, Cantalapiedra IR, Peñaranda A. Mechanisms Underlying Electro-Mechanical Cardiac Alternans. SEMA SIMAI SPRINGER SERIES 2016. [DOI: 10.1007/978-3-319-33054-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Abstract
Despite improvements in the therapy of underlying heart disease, sudden cardiac death is a major cause of death worldwide. Disturbed Na and Ca handling is known to be a major predisposing factor for life-threatening tachyarrhythmias. In cardiomyocytes, many ion channels and transporters, including voltage-gated Na and Ca channels, cardiac ryanodine receptors, Na/Ca-exchanger, and SR Ca-ATPase are involved in this regulation. We have learned a lot about the pathophysiological relevance of disturbed ion channel function from monogenetic disorders. Changes in the gating of a single ion channel and the activity of an ion pump suffice to dramatically increase the propensity for arrhythmias even in structurally normal hearts. Nevertheless, patients with heart failure with acquired dysfunction in many ion channels and transporters exhibit profound dysregulation of Na and Ca handling and Ca/calmodulin-dependent protein kinase and are especially prone to arrhythmias. A deeper understanding of the underlying arrhythmic principles is mandatory if we are to improve their outcome. This review addresses basic tachyarrhythmic mechanisms, the underlying ionic mechanisms and the consequences for ion homeostasis, and the situation in complex diseases like heart failure.
Collapse
Affiliation(s)
- Stefan Wagner
- From the Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany (S.W., L.S.M.); and Department of Pharmacology, University of California, Davis, CA (D.M.B.)
| | - Lars S Maier
- From the Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany (S.W., L.S.M.); and Department of Pharmacology, University of California, Davis, CA (D.M.B.).
| | - Donald M Bers
- From the Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany (S.W., L.S.M.); and Department of Pharmacology, University of California, Davis, CA (D.M.B.)
| |
Collapse
|
23
|
Edwards JN, Blatter LA. Cardiac alternans and intracellular calcium cycling. Clin Exp Pharmacol Physiol 2015; 41:524-32. [PMID: 25040398 DOI: 10.1111/1440-1681.12231] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 12/20/2022]
Abstract
Cardiac alternans refers to a condition in which there is a periodic beat-to-beat oscillation in electrical activity and the strength of cardiac muscle contraction at a constant heart rate. Clinically, cardiac alternans occurs in settings that are typical for cardiac arrhythmias and has been causally linked to these conditions. At the cellular level, alternans is defined as beat-to-beat alternations in contraction amplitude (mechanical alternans), action potential duration (APD; electrical or APD alternans) and Ca(2+) transient amplitude (Ca(2+) alternans). The cause of alternans is multifactorial; however, alternans always originate from disturbances of the bidirectional coupling between membrane voltage (Vm ) and intracellular calcium ([Ca(2+) ]i ). Bidirectional coupling refers to the fact that, in cardiac cells, Vm depolarization and the generation of action potentials cause the elevation of [Ca(2+) ]i that is required for contraction (a process referred to as excitation-contraction coupling); conversely, changes of [Ca(2+) ]i control Vm because important membrane currents are Ca(2+) dependent. Evidence is mounting that alternans is ultimately caused by disturbances of cellular Ca(2+) signalling. Herein we review how two key factors of cardiac cellular Ca(2+) cycling, namely the release of Ca(2+) from internal stores and the capability of clearing the cytosol from Ca(2+) after each beat, determine the conditions under which alternans occurs. The contributions from key Ca(2+) -handling proteins (i.e. surface membrane channels, ion pumps and transporters and internal Ca(2+) release channels) are discussed.
Collapse
Affiliation(s)
- Joshua N Edwards
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
24
|
Chang KC, Bayer JD, Trayanova NA. Disrupted calcium release as a mechanism for atrial alternans associated with human atrial fibrillation. PLoS Comput Biol 2014; 10:e1004011. [PMID: 25501557 PMCID: PMC4263367 DOI: 10.1371/journal.pcbi.1004011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/29/2014] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, but our knowledge of the arrhythmogenic substrate is incomplete. Alternans, the beat-to-beat alternation in the shape of cardiac electrical signals, typically occurs at fast heart rates and leads to arrhythmia. However, atrial alternans have been observed at slower pacing rates in AF patients than in controls, suggesting that increased vulnerability to arrhythmia in AF patients may be due to the proarrythmic influence of alternans at these slower rates. As such, alternans may present a useful therapeutic target for the treatment and prevention of AF, but the mechanism underlying alternans occurrence in AF patients at heart rates near rest is unknown. The goal of this study was to determine how cellular changes that occur in human AF affect the appearance of alternans at heart rates near rest. To achieve this, we developed a computational model of human atrial tissue incorporating electrophysiological remodeling associated with chronic AF (cAF) and performed parameter sensitivity analysis of ionic model parameters to determine which cellular changes led to alternans. Of the 20 parameters tested, only decreasing the ryanodine receptor (RyR) inactivation rate constant (kiCa) produced action potential duration (APD) alternans seen clinically at slower pacing rates. Using single-cell clamps of voltage, fluxes, and state variables, we determined that alternans onset was Ca2+-driven rather than voltage-driven and occurred as a result of decreased RyR inactivation which led to increased steepness of the sarcoplasmic reticulum (SR) Ca2+ release slope. Iterated map analysis revealed that because SR Ca2+ uptake efficiency was much higher in control atrial cells than in cAF cells, drastic reductions in kiCa were required to produce alternans at comparable pacing rates in control atrial cells. These findings suggest that RyR kinetics may play a critical role in altered Ca2+ homeostasis which drives proarrhythmic APD alternans in patients with AF. Atrial fibrillation is an irregular heart rhythm affecting millions of people worldwide. Effective treatment of this cardiac disorder relies upon our detailed knowledge and understanding of the mechanisms that lead to arrhythmia. Recent clinical observations have suggested that alternans, a phenomenon where the shape of the electrical signal in the heart alternates from beat to beat, may play an important role in this process, but the underlying mechanisms remain unknown. In this study, we use computational models to conduct a detailed examination of the causes and contributors to alternans associated with human atrial fibrillation. We find that in atria remodeled by atrial fibrillation, alternans appears near resting heart rates because several aspects of calcium cycling are disrupted in the atrial cells. In particular, the release and uptake of calcium from the cellular storage compartment, the sarcoplasmic reticulum, becomes imbalanced, leading to alternation in calcium signals from beat to beat. These findings provide important insights into the mechanisms of proarrhythmic alternans in human atrial fibrillation which may be used to develop novel therapeutic targets and treatment strategies in the future.
Collapse
Affiliation(s)
- Kelly C. Chang
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jason D. Bayer
- IHU-LIRYC - L'Institut de RYthmologie et Modélisation Cardiaque, University of Bordeaux, Bordeaux, France
| | - Natalia A. Trayanova
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Escobar AL, Valdivia HH. Cardiac alternans and ventricular fibrillation: a bad case of ryanodine receptors reneging on their duty. Circ Res 2014; 114:1369-71. [PMID: 24763460 DOI: 10.1161/circresaha.114.303823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ariel L Escobar
- From the School of Engineering, Bioengineering Program, University of California-Merced (A.L.E.); and Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan-Ann Arbor (H.H.V.)
| | | |
Collapse
|
26
|
Lugo CA, Cantalapiedra IR, Peñaranda A, Hove-Madsen L, Echebarria B. Are SR Ca content fluctuations or SR refractoriness the key to atrial cardiac alternans?: insights from a human atrial model. Am J Physiol Heart Circ Physiol 2014; 306:H1540-52. [DOI: 10.1152/ajpheart.00515.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the important role of electromechanical alternans in cardiac arrhythmogenesis, its molecular origin is not well understood. The appearance of calcium alternans has often been associated to fluctuations in the sarcoplasmic reticulum (SR) Ca loading. However, cytosolic calcium alternans observed without concurrent oscillations in the SR Ca content suggests an alternative mechanism related to a dysfunction in the dynamics of the ryanodine receptor (RyR2). We have investigated the effect of SR release refractoriness in the appearance of alternans, using a mathematical model of a single human atrial cell, based on the model by Nygren et al. ( 30 ), where we modified the dynamics of the RyR2 and of SR Ca release. The genesis of calcium alternans was studied stimulating the cell for different periods and values of the RyR2 recovery time from inactivation. At fast rates cytosolic calcium alternans were obtained without concurrent SR Ca content fluctuations. A transition from regular response to alternans was also observed, changing the recovery time from inactivation of the RyR2. This transition was found to be hysteretic, so for a given set of parameters different responses were observed. We then studied the relevance of RyR2 refractoriness for the generation of alternans, reproducing the same protocols as in recent experiments. In particular, restitution of Ca release during alternans was studied with a S1S2 protocol, obtaining a different response if the S2 stimulation was given after a long or a short release. We show that the experimental results can be explained by RyR2 refractoriness, arising from a slow RyR2 recovery from inactivation, stressing the role of the RyR2 in the genesis of alternans.
Collapse
Affiliation(s)
- Carlos A. Lugo
- Departament de Física Aplicada, Universitat Politècnica de Catalunya. BarcelonaTech, Barcelona, Spain
- Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial, Ctra de Torrejón a Ajalvir, Madrid, Spain; and
| | - Inma R. Cantalapiedra
- Departament de Física Aplicada, Universitat Politècnica de Catalunya. BarcelonaTech, Barcelona, Spain
| | - Angelina Peñaranda
- Departament de Física Aplicada, Universitat Politècnica de Catalunya. BarcelonaTech, Barcelona, Spain
| | - Leif Hove-Madsen
- Cardiovascular Research Centre, Hospital de Sant Pau, Barcelona, Spain
| | - Blas Echebarria
- Departament de Física Aplicada, Universitat Politècnica de Catalunya. BarcelonaTech, Barcelona, Spain
| |
Collapse
|
27
|
Wang L, Myles RC, De Jesus NM, Ohlendorf AKP, Bers DM, Ripplinger CM. Optical mapping of sarcoplasmic reticulum Ca2+ in the intact heart: ryanodine receptor refractoriness during alternans and fibrillation. Circ Res 2014; 114:1410-21. [PMID: 24568740 DOI: 10.1161/circresaha.114.302505] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Sarcoplasmic reticulum (SR) Ca(2+) cycling is key to normal excitation-contraction coupling but may also contribute to pathological cardiac alternans and arrhythmia. OBJECTIVE To measure intra-SR free [Ca(2+)] ([Ca(2+)]SR) changes in intact hearts during alternans and ventricular fibrillation (VF). METHODS AND RESULTS Simultaneous optical mapping of Vm (with RH237) and [Ca(2+)]SR (with Fluo-5N AM) was performed in Langendorff-perfused rabbit hearts. Alternans and VF were induced by rapid pacing. SR Ca(2+) and action potential duration (APD) alternans occurred in-phase, but SR Ca(2+) alternans emerged first as cycle length was progressively reduced (217±10 versus 190±13 ms; P<0.05). Ryanodine receptor (RyR) refractoriness played a key role in the onset of SR Ca(2+) alternans, with SR Ca(2+) release alternans routinely occurring without changes in diastolic [Ca(2+)]SR. Sensitizing RyR with caffeine (200 μmol/L) significantly reduced the pacing threshold for both SR Ca(2+) and APD alternans (188±15 and 173±12 ms; P<0.05 versus baseline). Caffeine also reduced the magnitude of spatially discordant SR Ca(2+) alternans, but not APD alternans, the pacing threshold for discordance, or threshold for VF. During VF, [Ca(2+)]SR was high, but RyR remained nearly continuously refractory, resulting in minimal SR Ca(2+) release throughout VF. CONCLUSIONS In intact hearts, RyR refractoriness initiates SR Ca(2+) release alternans that can be amplified by diastolic [Ca(2+)]SR alternans and lead to APD alternans. Sensitizing RyR suppresses spatially concordant but not discordant SR Ca(2+) and APD alternans. Despite increased [Ca(2+)]SR during VF, SR Ca(2+) release was nearly continuously refractory. This novel method provides insight into SR Ca(2+) handling during cardiac alternans and arrhythmia.
Collapse
Affiliation(s)
- Lianguo Wang
- From the Department of Pharmacology, School of Medicine, University of California, Davis (L.W., N.M.D.J., A.K.P.O., D.M.B., C.M.R.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.C.M.)
| | | | | | | | | | | |
Collapse
|