1
|
Malgwi IH, Halas V, Grünvald P, Schiavon S, Jócsák I. Genes Related to Fat Metabolism in Pigs and Intramuscular Fat Content of Pork: A Focus on Nutrigenetics and Nutrigenomics. Animals (Basel) 2022; 12:ani12020150. [PMID: 35049772 PMCID: PMC8772548 DOI: 10.3390/ani12020150] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The intramuscular fat (IMF) or marbling is an essential pork sensory quality that influences the preference of the consumers and premiums for pork. IMF is the streak of visible fat intermixed with the lean within a muscle fibre and determines sensorial qualities of pork such as flavour, tenderness and juiciness. Fat metabolism and IMF development are controlled by dietary nutrients, genes, and their metabolic pathways in the pig. Nutrigenetics explains how the genetic make-up of an individual pig influences the pig’s response to dietary nutrient intake. Differently, nutrigenomics is the analysis of how the entire genome of an individual pig is affected by dietary nutrient intake. The knowledge of nutrigenetics and nutrigenomics, when harmonized, is a powerful tool in estimating nutrient requirements for swine and programming dietary nutrient supply according to an individual pig’s genetic make-up. The current paper aimed to highlight the roles of nutrigenetics and nutrigenomics in elucidating the underlying mechanisms of fat metabolism and IMF deposition in pigs. This knowledge is essential in redefining nutritional intervention for swine production and the improvement of some economically important traits such as growth performance, backfat thickness, IMF accretion, disease resistance etc., in animals. Abstract Fat metabolism and intramuscular fat (IMF) are qualitative traits in pigs whose development are influenced by several genes and metabolic pathways. Nutrigenetics and nutrigenomics offer prospects in estimating nutrients required by a pig. Application of these emerging fields in nutritional science provides an opportunity for matching nutrients based on the genetic make-up of the pig for trait improvements. Today, integration of high throughput “omics” technologies into nutritional genomic research has revealed many quantitative trait loci (QTLs) and single nucleotide polymorphisms (SNPs) for the mutation(s) of key genes directly or indirectly involved in fat metabolism and IMF deposition in pigs. Nutrient–gene interaction and the underlying molecular mechanisms involved in fatty acid synthesis and marbling in pigs is difficult to unravel. While existing knowledge on QTLs and SNPs of genes related to fat metabolism and IMF development is yet to be harmonized, the scientific explanations behind the nature of the existing correlation between the nutrients, the genes and the environment remain unclear, being inconclusive or lacking precision. This paper aimed to: (1) discuss nutrigenetics, nutrigenomics and epigenetic mechanisms controlling fat metabolism and IMF accretion in pigs; (2) highlight the potentials of these concepts in pig nutritional programming and research.
Collapse
Affiliation(s)
- Isaac Hyeladi Malgwi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’ Università 16, 35020 Padova, Italy;
- Correspondence: ; Tel.: +39-33-17566768
| | - Veronika Halas
- Department of Farm Animal Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary; (V.H.); (P.G.)
| | - Petra Grünvald
- Department of Farm Animal Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary; (V.H.); (P.G.)
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’ Università 16, 35020 Padova, Italy;
| | - Ildikó Jócsák
- Institute of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary;
| |
Collapse
|
2
|
Gao F, Dong W, Liu P, Narayanan J, Fish BL, Jacobs ER, Medhora M. Molecular Changes in miRNA in Irradiated Rat Kidneys: Role of miR-34a and its Vascular Targets in the Notch Pathway. Radiat Res 2021; 196:611-622. [PMID: 34330145 PMCID: PMC10416360 DOI: 10.1667/rade-20-00078.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/19/2021] [Indexed: 11/03/2022]
Abstract
The mechanism(s) of vascular regression in adult organs remains an unexplored gap. Irradiation to the kidney results in vascular regression and renal failure. The goal of this work was to determine molecular mechanism(s) of radiation-induced vascular regression and its mitigation by the drug lisinopril. Female WAG/RijCmcr rats received either 13 Gy X-ray irradiation, sparing one leg, or no irradiation, the latter serving as age-matched controls. Some irradiated animals received lisinopril. Kidney miRNA-seq was performed 35 days postirradiation, before symptoms of nephropathy. MicroRNA expression profiles were compared with data from humans. MicroRNA targets were predicted using TargetScan and confirmed by qRT-PCR and Western blot. Renal vascular endothelial cell density was evaluated at 100 days to confirm vascular regression. The normal rat kidney microRNA profile resembled that of humans. MiR-34a was increased >7-fold and emerged as the predominant rat microRNA altered by radiation. Expression of Jagged1, a ligand in the Notch pathway of vascular development and a target of miR-34a-5p was decreased by radiation but not in irradiated rats receiving lisinopril. Radiation decreased endothelial cells in the kidneys at 100 days, confirming vascular regression. In conclusion, the results of this study showed that radiation greatly increased miRNA34-a in rat kidneys, while lisinopril mitigated radiation-induced decrease of the Notch ligand, Jagged1, a molecular target of miRNA34-a.
Collapse
Affiliation(s)
- Feng Gao
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of College of Dental Medicine - Illinois, Midwestern University, Downers Grove, Illinois
| | - Wei Dong
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Pengyuan Liu
- Department of Physiology Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Jayashree Narayanan
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Brian L. Fish
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Elizabeth R. Jacobs
- Department of Physiology Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Pulmonary Medicine Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Cardiovascular Center, Medical College of Wisconsin, Wauwatosa, Wisconsin
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee, Wisconsin
| | - Meetha Medhora
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Physiology Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Pulmonary Medicine Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Cardiovascular Center, Medical College of Wisconsin, Wauwatosa, Wisconsin
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee, Wisconsin
| |
Collapse
|
3
|
Qu H, Wu S, Li J, Ma T, Li J, Xiang B, Jiang H, Zhang Q. MiR-125b regulates the differentiation of hair follicles in Fine-wool Sheep and Cashmere goats by targeting MXD4 and FGFR2. Anim Biotechnol 2021; 34:357-364. [PMID: 34487480 DOI: 10.1080/10495398.2021.1968884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
With the development of miRNAs identification technology, more and more miRNAs have been discovered, and the role of miRNAs in the development of animal hair follicles has become a focus of research on hair-producing animals. In the previous experiment, compare the microRNA (miRNA) trancriptomes of goats and sheep skin using Solexa sequencing and differentially expressed miR-125b was screened. However, the mechanism of miR-125b regulating hair follicle development is not clear. Therefore, in the present study, the expression of miR-125b, MXD4 and FGFR2 in skin tissue of Fine-wool Sheep and Cashmere goats and HEK-293T cells was examined by qPCR and Western blot. Furthermore, the correlation between miR-125b and the predicted target gene (MXD4, FGFR2) was verified using the Dual-luciferase Reporter assay. We demonstrated that the expression of MXD4 and FGFR2 in Cashmere goats was significantly higher than that of Fine-wool Sheep, and the expression was opposite to that of miR-125b. miR-125b can down-regulate the levels of MXD4 and FGFR2. Dual-luciferase reporter gene assay showed that miR-125b could bind to the 3'-UTR region of target genes FGFR2 and MXD4, suggesting that MXD4 and FGFR2 were target genes of miR-125b. This study has shown that the growth and development of hair follicles in skin tissue of Fine-wool Sheep and Cashmere goats from the new regulatory levels of miRNAs, and clarified the mechanism of miR-125b and its target genes in the development of hair follicles in the skin.
Collapse
Affiliation(s)
- Haie Qu
- College of Veterinary Medicine, Jilin University, Changchun, China.,Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Sufang Wu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianping Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Tao Ma
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianyu Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ba Xiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Huaizhi Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qiaoling Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
4
|
Billa PA, Faulconnier Y, Ye T, Chervet M, Le Provost F, Pires JAA, Leroux C. Deep RNA-Seq reveals miRNome differences in mammary tissue of lactating Holstein and Montbéliarde cows. BMC Genomics 2019; 20:621. [PMID: 31362707 PMCID: PMC6668132 DOI: 10.1186/s12864-019-5987-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Background Genetic polymorphisms are known to influence milk production and composition. However, the genomic mechanisms involved in the genetic regulation of milk component synthesis are not completely understood. MicroRNAs (miRNAs) regulate gene expression. Previous research suggests that the high developmental potential of the mammary gland may depend in part on a specific miRNA expression pattern. The objective of the present study was to compare the mammary gland miRNomes of two dairy cow breeds, Holstein and Montbéliarde, which have different mammogenic potentials that are related to differences in dairy performance. Results Milk, fat, protein, and lactose yields were lower in Montbéliarde cows than in Holstein cows. We detected 754 distinct miRNAs in the mammary glands of Holstein (n = 5) and Montbéliarde (n = 6) midlactating cows using RNA-Seq technology, among which 738 were known and 16 were predicted miRNAs. The 25 most abundant miRNAs accounted for 90.6% of the total reads. The comparison of their abundances in the mammary glands of Holstein versus Montbéliarde cows identified 22 differentially expressed miRNAs (Padj ≤ 0.05). Among them, 11 presented a fold change ≥2, and 2 (miR-100 and miR-146b) were highly expressed. Among the most abundant miRNAs, miR-186 is known to inhibit cell proliferation and epithelial-to-mesenchymal transition. Data mining showed that 17 differentially expressed miRNAs with more than 20 reads were involved in the regulation of mammary gland plasticity. Several of them may potentially target mRNAs involved in signaling pathways (such as mTOR) and lipid metabolism, thereby indicating that they could influence milk composition. Conclusion We found differences in the mammary gland miRNomes of two dairy cattle breeds. These differences suggest a potential role for miRNAs in mammary gland plasticity and milk component synthesis, both of which are related to milk production and composition. Further research is warranted on the genetic regulation of miRNAs and their role in milk synthesis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5987-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P A Billa
- Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - Y Faulconnier
- Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - T Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, 67404, Illkirch, France
| | - M Chervet
- Department of Food Science & Technology, University of California Davis, Davis, CA, USA
| | - F Le Provost
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, F-78352, France
| | - J A A Pires
- Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - C Leroux
- Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France. .,Department of Food Science & Technology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
5
|
Hong X, Chen R, Yuan L, Zha J. Global microRNA and isomiR expression associated with liver metabolism is induced by organophosphorus flame retardant exposure in male Chinese rare minnow (Gobiocypris rarus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:829-838. [PMID: 30176492 DOI: 10.1016/j.scitotenv.2018.08.305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
To reveal the adverse effects of organophosphorus flame retardants (OPFRs) on aquatic organisms at the epigenetic level, male Chinese rare minnows were exposed to 0.24 mg/L tris(2‑butoxyethyl) phosphate (TBOEP), 0.04 mg/L tris(1,3‑dichloro‑2‑propyl) phosphate (TDCIPP), or 0.012 mg/L triphenyl phosphate (TPHP) for 14 days. The effects of sub-acute OPFR exposure on liver miRNA and the 3' isomiR expression profiles of Chinese rare minnows were investigated. Through small RNA sequencing and bioinformatics analysis, a total of 32, 84, and 19 differentially expressed miRNAs were detected for TBOEP, TDCIPP, and TPHP exposure, respectively (p < 0.05). Target prediction of the differentially expressed miRNAs and pathway enrichment analysis indicated that predicted altered mRNAs for all three OPFRs were associated with metabolic pathways, whereas base excision repair was only predicted to be perturbed by the TPHP treatment. In addition, 3' isomiR-Us were unexpectedly abundant in all groups (e.g., miR-143), and TDCIPP strongly increased the ratio of 3' isomiR-U expression. Finally, histological examination and metabolic enzyme activity analyses werein agreement with the predicted metabolic pathways. As such, our study indicates that the investigation of epigenetics changes in miRNA gene transcription is a considerable method for the assessment of aquatic toxicity.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
6
|
MiR-126-3p promotes the cell proliferation and inhibits the cell apoptosis by targeting TSC1 in the porcine granulosa cells. In Vitro Cell Dev Biol Anim 2018; 54:715-724. [PMID: 30341633 DOI: 10.1007/s11626-018-0292-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022]
Abstract
In mammalian ovaries, many studies demonstrated that the proliferation and apoptosis of granulosa cells are involved in folliculogenesis. Previous evidence suggests that miR-126-3p might get involved in the proliferation and apoptosis of granulosa cells, and tuberous sclerosis complex 1 (TSC1) gene was predicted as one target of miR-126-3p, and moreover, granulosa cell-specific TSC1 knockout stimulated folliculogenesis in mice. However, the molecular regulation of miR-126-3p on TSC1 and its effects on cell proliferation and apoptosis remain virtually unexplored in granulosa cells. Using porcine granulosa cells as a model, the luciferase report assay, mutation, deletion, Annexin-V/PI staining, and EdU assays were applied to investigate the molecular mechanism for miR-126-3p regulating the expression of TSC1 and their effects on the cell proliferation and apoptosis. We found that miR-126-3p showed a positive effect on cell proliferation and a negative effect on cell apoptosis in porcine granulosa cells, and knockdown of TSC1 significantly promoted cell proliferation and significantly inhibited cell apoptosis in porcine granulosa cells. Furthermore, miR-126-3p might target and repress the expressions of TSC1 at the post-transcriptional level, thereby promoting cell proliferation and inhibiting cell apoptosis of granulosa cells. These findings would provide of great insight in further exploring the molecular regulation of miR-126-3p and TSC1 on the functions of granulosa cells during the folliculogenesis in mammals.
Collapse
|
7
|
Miao Z, Wang S, Wang Y, Wei P, Khan MA, Zhang J, Guo L, Liu D. Comparison of microRNAs in the intramuscular adipose tissue from Jinhua and Landrace pigs. J Cell Biochem 2018; 120:192-200. [DOI: 10.1002/jcb.27298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology Xinxiang Henan China
| | - Shan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology Xinxiang Henan China
| | - Yimin Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology Xinxiang Henan China
| | - Panpeng Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology Xinxiang Henan China
| | - Muhammad Akram Khan
- Department of Pathobiology Faculty of Veterinary and Animal Sciences, PMAS‐Arid Agriculture University Rawalpindi Rawalpindi Pakistan
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology Xinxiang Henan China
| | - Liping Guo
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology Xinxiang Henan China
| | - Dongyang Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology Xinxiang Henan China
| |
Collapse
|
8
|
Expression and Regulation Profile of Mature MicroRNA in the Pig: Relevance to Xenotransplantation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2983908. [PMID: 29750148 PMCID: PMC5884403 DOI: 10.1155/2018/2983908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/15/2018] [Indexed: 12/15/2022]
Abstract
The pig is an important source of meat production and provides a valuable model for certain human diseases. MicroRNA (miRNA), which is noncoding RNA and regulates gene expression at the posttranscriptional level, plays a critical role in various biological processes. Studies on identification and function of mature miRNAs in multiple pig tissues are increasing, yet the literature is limited. Therefore, we reviewed current research to determine the miRNAs expressed in specific pig tissues that are involved in carcass values (including muscle and adipocytes), reproduction (including pituitary, testis, and ovary), and development of some solid organs (e.g., brain, lung, kidney, and liver). We also discuss the possible regulating mechanisms of miRNA. Finally, as pig organs are suitable candidates for xenotransplantation, biomarkers of their miRNA in xenotransplantation were evaluated.
Collapse
|
9
|
Ichii O, Horino T. MicroRNAs associated with the development of kidney diseases in humans and animals. J Toxicol Pathol 2018; 31:23-34. [PMID: 29479137 PMCID: PMC5820100 DOI: 10.1293/tox.2017-0051] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/10/2017] [Indexed: 12/20/2022] Open
Abstract
Mature microRNAs (miRNAs) are single-stranded RNAs with approximately 18-25 bases, and their sequences are highly conserved among animals. miRNAs act as posttranscriptional regulators by binding mRNAs, and their main function involves the degradation of their target mRNAs. Recent studies revealed altered expression of miRNAs in the kidneys during the progression of acute kidney injury (AKI) and chronic kidney disease (CKD) in humans and experimental rodent models by using high-throughput screening techniques including microarray and small RNA sequencing. Particularly, miR-21 seems to be strongly associated with renal pathogenesis both in the glomerulus and tubulointerstitium. Furthermore, abundant evidence has been gathered showing the involvement of miRNAs in renal fibrosis. Because of the complex morphofunctional organization of the mammalian kidneys, it is crucial both to determine the exact localization of the kidney cells that express the miRNAs, which has been addressed mainly using in situ hybridization methods, and to identify precisely which mRNAs are bound and degraded by these miRNAs, which has been studied mostly through in vitro analysis. To discover novel biomarker candidates, miRNA levels in urine supernatant, sediment, and exosomal fraction were comprehensively investigated in different types of kidney disease, including drug-induced AKI, ischemia-induced AKI, diabetic nephropathy, lupus nephritis, and IgA nephropathy. Recent studies also demonstrated the therapeutic effect of miRNA and/or anti-miRNA administrations. The intent of this review is to illustrate the state-of-the-art research in the field of miRNAs associated with renal pathogenesis, especially focusing on AKI and CKD in humans and animal models.
Collapse
Affiliation(s)
- Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18-Nishi 9, Kita-ku,
Sapporo, Hokkaido 060-0818, Japan
| | - Taro Horino
- Laboratory of Anatomy, Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18-Nishi 9, Kita-ku,
Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
10
|
Luo ZY, Dai XL, Ran XQ, Cen YX, Niu X, Li S, Huang SH, Wang JF. Identification and profile of microRNAs in Xiang pig testes in four different ages detected by Solexa sequencing. Theriogenology 2017; 117:61-71. [PMID: 28683952 DOI: 10.1016/j.theriogenology.2017.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 01/07/2023]
Abstract
To further understand the role of microRNA (miRNA) during testicular development, we constructed four small RNA libraries from the testes of the Chinese indigenous Xiang pig at four different ages, which were sequenced using high-throughput Solexa deep sequencing methods. It yielded over 23 million high-quality reads and 1,342,579 unique sequences. At two and three months of age, the proportion which represented miRNAs was the most abundant class of small RNAs, but it was gradually replaced by the category that represented piRNAs in adult testes. We identified 543 known and homologous conserved porcine miRNAs and 49 potential novel miRNAs. There were 306 known miRNAs which were co-expressed in four libraries. Six miRNAs and three potential novel miRNAs were validated in testes and sperms of Xiang pig by RT-qPCR method. Many clusters of mature miRNA variants were observed, in which let-7 family was the most abundant one. After comparison among libraries, 204 miRNAs were identified as being differentially expressed and likely involved in the development and spermatogenesis of pig testes. This work presented a general genome-wide expression profile of the testes-expressed small RNAs in different ages of pig testes. Our results suggested that miRNAs performed a role in the regulation of mRNAs in puberty pig testes while piRNAs likely functioned mainly in sexually mature pig testes.
Collapse
Affiliation(s)
- Zhi-Yu Luo
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xin-Lan Dai
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Xue-Qin Ran
- College of Animal Science, Guizhou University, Guiyang, China.
| | - Yong-Xiu Cen
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xi Niu
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Sheng Li
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Shi-Hui Huang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jia-Fu Wang
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China; Tongren University, Tongren, China.
| |
Collapse
|
11
|
Gao W, Sun W, Yin J, Lv X, Bao J, Yu J, Wang L, Jin C, Hu L. Screening candidate microRNAs (miRNAs) in different lambskin hair follicles in Hu sheep. PLoS One 2017; 12:e0176532. [PMID: 28464030 PMCID: PMC5413071 DOI: 10.1371/journal.pone.0176532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/12/2017] [Indexed: 12/31/2022] Open
Abstract
Hu sheep lambskin is a unique white lambskin from China that exhibits three types of flower patterns, including small waves, medium waves, and large waves, with small waves considered the best quality. However, our understanding of the molecular mechanism underlying flower pattern formation in Hu sheep lambskin is limited. The aim of the present study was to further explore the relevance between candidate microRNAs (miRNAs) and developmental characteristics of hair follicles and screen miRNAs for later functional validation. Herein, we employed Illumina Hiseq 2500 to identify differentially expressed miRNAs in hair follicles of different flower patterns with small, medium, and large waves to construct a comprehensive sequence database on the mechanism of hair follicle development. Paraffin sections of lambskin tissue were prepared to assess the structure of different hair follicles. Expression levels of candidate miRNAs in different flower patterns were analyzed by relative quantitation using real-time PCR, combined with histological observation and micro-observation technologies, and the correlation between expression levels of candidate miRNAs and histological properties of hair follicles was analyzed by using SPSS 17.0. A total of 522 differentially expressed miRNAs were identified, and RNA-seq analysis detected 7,266 target genes in different groups of flower patterns. Gene ontological analysis indicated these target genes were mainly involved in cell proliferation, differentiation, growth, apoptosis, and ion transport, and 14 miRNAs, including miR-143, miR-10a, and let-7 were screened as candidate miRNAs in Hu sheep hair follicle growth and development. In the same field of vision, variance analysis showed that the number of secondary follicles in small waves was significantly larger than that in large and medium waves (P<0.01); the diameter of the primary and secondary follicles in large waves was respectively larger than those in medium and small waves (P<0.01). Combined with correlation analysis between miRNA expression and histological properties of hair follicles, highly significant differences in miRNA-143 expression levels between large and small waves were observed (P<0.01), and significant differences in the miRNA-10a expression levels between large and small waves (P<0.05) and in let-7i expression levels between large and medium waves were observed (P<0.05). Significant differences in the expression of novel miRNAs of NW_004080184.1_6326 between medium and large waves were detected (P<0.05), and highly significant differences between medium and small waves were observed (P<0.01). Highly significant differences in the expression level of NW_004080165.1_8572 between medium and large and small waves (P<0.01), in that of NW_004080181.1_3961 between medium and small waves (P<0.01), and in that of NW_004080190.1_13733 between medium and large waves were observed, whereas no significant differences in the other miRNAs among large, medium, and small waves were detected. Overall, the present study showed that miRNA-143, miRNA-10a, let-7i, NW_004080184.1_6326, NW_004080165.1_8572, NW_004080181.1_3961, and NW_004080190.1_13733 could be considered as important candidate genes, indicating these seven miRNAs may play significant roles in hair follicle growth and development in Hu sheep lambskin.
Collapse
Affiliation(s)
- Wen Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- * E-mail:
| | - Jinfeng Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianjun Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiarui Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lihong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chengyan Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liang Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Kasimanickam V, Kastelic J. MicroRNA in sperm from Duroc, Landrace and Yorkshire boars. Sci Rep 2016; 6:32954. [PMID: 27597569 PMCID: PMC5011730 DOI: 10.1038/srep32954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022] Open
Abstract
Sperm contain microRNAs (miRNAs), which may have roles in epigenetic control. Regarding phylogenetic relationships among various swine breeds, Yorkshire and Landrace, are considered phenotypically and genetically very similar, but distinctly different from Duroc. The objective of the present study was to compare abundance of boar sperm miRNAs in these three breeds. Overall, 252 prioritized miRNAs were investigated using real-time PCR; relative expression of miRNAs in sperm was similar in Yorkshire and Landrace boars, but significantly different compared to Duroc. Seventeen miRNAs (hsa-miR-196a-5p, hsa-miR-514a-3p, hsa-miR-938, hsa-miR-372-3p, hsa-miR-558, hsa-miR-579-3p, hsa-miR-595, hsa-miR-648, hsa-miR-524-3p, hsa-miR-512-3p, hsa-miR-429, hsa-miR-639, hsa-miR-551a, hsa-miR-624-5p, hsa-miR-585-3p, hsa-miR-508-3p and hsa-miR-626) were down-regulated (P < 0.05; fold regulation ≤-2) in Yorkshire and Landrace sperm, compared to Duroc sperm. Furthermore, three miRNAs (hsa-miR-9-5p, hsa-miR-150-5p, and hsa-miR-99a-5p) were significantly up-regulated in Yorkshire and Landrace sperm compared to Duroc sperm, However, 240 miRNAs were not significantly different (within + 2 fold) between Yorkshire and Landrace sperm. We concluded that miRNAs in sperm were not significantly different between Yorkshire and Landrace boars, but there were significant differences between those two breeds and Duroc boars. Furthermore, integrated target genes for selected down-regulated miRNAs (identified via an in-silico method) appeared to participate in spermatogenesis and sperm functions.
Collapse
Affiliation(s)
- Vanmathy Kasimanickam
- Veterinary Clinical Sciences Department &Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - John Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N2, Canada
| |
Collapse
|
13
|
Zhou M, Hara H, Dai Y, Mou L, Cooper DKC, Wu C, Cai Z. Circulating Organ-Specific MicroRNAs Serve as Biomarkers in Organ-Specific Diseases: Implications for Organ Allo- and Xeno-Transplantation. Int J Mol Sci 2016; 17:ijms17081232. [PMID: 27490531 PMCID: PMC5000630 DOI: 10.3390/ijms17081232] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Different cell types possess different miRNA expression profiles, and cell/tissue/organ-specific miRNAs (or profiles) indicate different diseases. Circulating miRNA is either actively secreted by living cells or passively released during cell death. Circulating cell/tissue/organ-specific miRNA may serve as a non-invasive biomarker for allo- or xeno-transplantation to monitor organ survival and immune rejection. In this review, we summarize the proof of concept that circulating organ-specific miRNAs serve as non-invasive biomarkers for a wide spectrum of clinical organ-specific manifestations such as liver-related disease, heart-related disease, kidney-related disease, and lung-related disease. Furthermore, we summarize how circulating organ-specific miRNAs may have advantages over conventional methods for monitoring immune rejection in organ transplantation. Finally, we discuss the implications and challenges of applying miRNA to monitor organ survival and immune rejection in allo- or xeno-transplantation.
Collapse
Affiliation(s)
- Ming Zhou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China.
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China.
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China.
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China.
| |
Collapse
|
14
|
Hepatic expression of inflammatory genes and microRNAs in pigs with high “cholesteryl ester transfer protein” (CETP) activity. Mamm Genome 2016; 27:503-10. [DOI: 10.1007/s00335-016-9649-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
|
15
|
Samir M, Pessler F. Small Non-coding RNAs Associated with Viral Infectious Diseases of Veterinary Importance: Potential Clinical Applications. Front Vet Sci 2016; 3:22. [PMID: 27092305 PMCID: PMC4819147 DOI: 10.3389/fvets.2016.00022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) represent a class of small non-coding RNA (sncRNA) molecules that can regulate mRNAs by inducing their degradation or by blocking translation. Considering that miRNAs are ubiquitous, stable, and conserved across animal species, it seems feasible to exploit them for clinical applications. Unlike in human viral diseases, where some miRNA-based molecules have progressed to clinical application, in veterinary medicine, this concept is just starting to come into view. Clinically, miRNAs could represent powerful diagnostic tools to pinpoint animal viral diseases and/or prognostic tools to follow up disease progression or remission. Additionally, the possible consequences of miRNA dysregulation make them potential therapeutic targets and open the possibilities to use them as tools to generate viral disease-resistant livestock. This review presents an update of preclinical studies on using sncRNAs to combat viral diseases that affect pet and farm animals. Moreover, we discuss the possibilities and challenges of bringing these bench-based discoveries to the veterinary clinic.
Collapse
Affiliation(s)
- Mohamed Samir
- TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Zoonoses Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Frank Pessler
- TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
16
|
Farrell D, Shaughnessy RG, Britton L, MacHugh DE, Markey B, Gordon SV. The Identification of Circulating MiRNA in Bovine Serum and Their Potential as Novel Biomarkers of Early Mycobacterium avium subsp paratuberculosis Infection. PLoS One 2015; 10:e0134310. [PMID: 26218736 PMCID: PMC4517789 DOI: 10.1371/journal.pone.0134310] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/07/2015] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the aetiological agent of Johne's disease (JD), a chronic enteritis in ruminants that causes substantial economic loses to agriculture worldwide. Current diagnostic assays are hampered by low sensitivity and specificity that seriously complicate disease control; a new generation of diagnostic and prognostic assays are therefore urgently needed. Circulating microRNAs (miRNAs) have been shown to have significant potential as novel biomarkers for a range of human diseases, but their potential application in the veterinary sphere has been less well characterised. The aim of this study was therefore to apply RNA-sequencing approaches to serum from an experimental JD infection model as a route to identify novel diagnostic and prognostic miRNA biomarkers. Sera from experimental MAP-challenged calves (n = 6) and age-matched controls (n = 6) were used. We identified a subset of known miRNAs from bovine serum across all samples, with approximately 90 being at potentially functional abundance levels. The majority of known bovine miRNAs displayed multiple isomiRs that differed from the canonical sequences. Thirty novel miRNAs were identified after filtering and were found within sera from all animals tested. No significant differential miRNA expression was detected when comparing sera from MAP-challenged animals to their age-matched controls at six-month's post-infection. However, comparing sera from pre-infection bleeds to six-month's post-infection across all 12 animals did identify increased miR-205 (2-fold) and decreased miR-432 (2-fold) within both challenged and control groups, which suggests changes in circulating miRNA profiles due to ageing or development (P<0.00001). In conclusion our study has identified a range of novel miRNA in bovine serum, and shown the utility of small RNA sequencing approaches to explore the potential of miRNA as novel biomarkers for infectious disease in cattle.
Collapse
Affiliation(s)
- Damien Farrell
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | | | - Louise Britton
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - David E. MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Bryan Markey
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Baker LA, Lee KCL, Palacios Jimenez C, Alibhai H, Chang YM, Leckie PJ, Mookerjee RP, Davies NA, Andreola F, Jalan R. Circulating microRNAs Reveal Time Course of Organ Injury in a Porcine Model of Acetaminophen-Induced Acute Liver Failure. PLoS One 2015; 10:e0128076. [PMID: 26018205 PMCID: PMC4446266 DOI: 10.1371/journal.pone.0128076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/23/2015] [Indexed: 12/19/2022] Open
Abstract
Acute liver failure is a rare but catastrophic condition which can progress rapidly to multi-organ failure. Studies investigating the onset of individual organ injury such as the liver, kidneys and brain during the evolution of acute liver failure, are lacking. MicroRNAs are short, non-coding strands of RNA that are released into the circulation following tissue injury. In this study, we have characterised the release of both global microRNA and specific microRNA species into the plasma using a porcine model of acetaminophen-induced acute liver failure. Pigs were induced to acute liver failure with oral acetaminophen over 19h±2h and death occurred 13h±3h thereafter. Global microRNA concentrations increased 4h prior to acute liver failure in plasma (P<0.0001) but not in isolated exosomes, and were associated with increasing plasma levels of the damage-associated molecular pattern molecule, genomic DNA (P<0.0001). MiR122 increased around the time of onset of acute liver failure (P<0.0001) and was associated with increasing international normalised ratio (P<0.0001). MiR192 increased 8h after acute liver failure (P<0.0001) and was associated with increasing creatinine (P<0.0001). The increase in miR124-1 occurred concurrent with the pre-terminal increase in intracranial pressure (P<0.0001) and was associated with decreasing cerebral perfusion pressure (P<0.002). Conclusions: MicroRNAs were released passively into the circulation in response to acetaminophen-induced cellular damage. A significant increase in global microRNA was detectable prior to significant increases in miR122, miR192 and miR124-1, which were associated with clinical evidence of liver, kidney and brain injury respectively.
Collapse
Affiliation(s)
- Luisa A. Baker
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Karla C. L. Lee
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Carolina Palacios Jimenez
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Hatim Alibhai
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Yu-Mei Chang
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Pamela J. Leckie
- Liver Failure Group, University College London Institute for Liver and Digestive Health, University College London Medical School, Royal Free Hospital, London, United Kingdom
| | - Rajeshwar P. Mookerjee
- Liver Failure Group, University College London Institute for Liver and Digestive Health, University College London Medical School, Royal Free Hospital, London, United Kingdom
| | - Nathan A. Davies
- Liver Failure Group, University College London Institute for Liver and Digestive Health, University College London Medical School, Royal Free Hospital, London, United Kingdom
| | - Fausto Andreola
- Liver Failure Group, University College London Institute for Liver and Digestive Health, University College London Medical School, Royal Free Hospital, London, United Kingdom
| | - Rajiv Jalan
- Liver Failure Group, University College London Institute for Liver and Digestive Health, University College London Medical School, Royal Free Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Zhang R, Große-Brinkhaus C, Heidt H, Uddin MJ, Cinar MU, Tesfaye D, Tholen E, Looft C, Schellander K, Neuhoff C. Polymorphisms and expression analysis of SOX-6 in relation to porcine growth, carcass, and meat quality traits. Meat Sci 2015; 107:26-32. [PMID: 25935846 DOI: 10.1016/j.meatsci.2015.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/16/2015] [Accepted: 04/13/2015] [Indexed: 11/24/2022]
Abstract
The aim of the study was to investigate single nucleotide polymorphisms (SNPs) and expression of SOX-6 to support its candidacy for growth, carcass, and meat quality traits in pigs. The first SNP, rs81358375, was associated with pH 45 min post mortem in loin (pH1L), the thickness of backfat and side fat, and carcass length in Pietrain (Pi) population, and related with backfat thickness and daily gain in Duroc × Pietrain F2 (DuPi) population. The other SNP, rs321666676, was associated with meat colour in Pi population. In DuPi population, the protein, not mRNA, level of SOX-6 in high pH1L pigs was significantly less abundant compared with low pH1L pigs, where microRNAs targeting SOX-6 were also differently regulated. This paper shows that SOX-6 could be a potential candidate gene for porcine growth, carcass, and meat quality traits based on genetic association and gene expression.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Christine Große-Brinkhaus
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Hanna Heidt
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Muhammad Jasim Uddin
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany; Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Mehmet Ulas Cinar
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany; Faculty of Agriculture, Department of Animal Science, Erciyes University, 38039 Kayseri, Turkey.
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Ernst Tholen
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Christian Looft
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Christiane Neuhoff
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
19
|
Martini P, Sales G, Brugiolo M, Gandaglia A, Naso F, De Pittà C, Spina M, Gerosa G, Chemello F, Romualdi C, Cagnin S, Lanfranchi G. Tissue-specific expression and regulatory networks of pig microRNAome. PLoS One 2014; 9:e89755. [PMID: 24699212 PMCID: PMC3974652 DOI: 10.1371/journal.pone.0089755] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/23/2014] [Indexed: 12/19/2022] Open
Abstract
Background Despite the economic and medical importance of the pig, knowledge about its genome organization, gene expression regulation, and molecular mechanisms involved in physiological processes is far from that achieved for mouse and rat, the two most used model organisms in biomedical research. MicroRNAs (miRNAs) are a wide class of molecules that exert a recognized role in gene expression modulation, but only 280 miRNAs in pig have been characterized to date. Results We applied a novel computational approach to predict species-specific and conserved miRNAs in the pig genome, which were then subjected to experimental validation. We experimentally identified candidate miRNAs sequences grouped in high-confidence (424) and medium-confidence (353) miRNAs according to RNA-seq results. A group of miRNAs was also validated by PCR experiments. We established the subtle variability in expression of isomiRs and miRNA-miRNA star couples supporting a biological function for these molecules. Finally, miRNA and mRNA expression profiles produced from the same sample of 20 different tissue of the animal were combined, using a correlation threshold to filter miRNA-target predictions, to identify tissue-specific regulatory networks. Conclusions Our data represent a significant progress in the current understanding of miRNAome in pig. The identification of miRNAs, their target mRNAs, and the construction of regulatory circuits will provide new insights into the complex biological networks in several tissues of this important animal model.
Collapse
Affiliation(s)
- Paolo Martini
- Department of Biology, University of Padova, Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Padova, Italy
| | - Mattia Brugiolo
- Department of Biology, University of Padova, Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Alessandro Gandaglia
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Filippo Naso
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | - Michele Spina
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Gino Gerosa
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | | | - Stefano Cagnin
- Department of Biology, University of Padova, Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Gerolamo Lanfranchi
- Department of Biology, University of Padova, Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| |
Collapse
|
20
|
Le Guillou S, Marthey S, Laloë D, Laubier J, Mobuchon L, Leroux C, Le Provost F. Characterisation and comparison of lactating mouse and bovine mammary gland miRNomes. PLoS One 2014; 9:e91938. [PMID: 24658750 PMCID: PMC3962357 DOI: 10.1371/journal.pone.0091938] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/17/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The mammary gland is a dynamic organ that undergoes important physiological changes during reproductive cycles. Until now, data regarding the characterisation of miRNA in the mammary gland have been scarce and mainly focused on their abnormal expression in breast cancer. Our goal was to characterise the microRNA (miRNA) involved in mechanisms regulating the mammary function, with particular focus on the lactation stage. METHODOLOGY/PRINCIPAL FINDINGS Using high-throughput sequencing technology, the exhaustive repertoires of miRNA expressed (miRNome) in mouse and bovine mammary glands during established lactation were identified, characterized and compared. Furthermore, in order to obtain more information on miRNA loading in the RNA-induced silencing complex (RISC), the miRNome was compared with that obtained from RNA associated with the AGO2 protein (AGO2-miRNome) in mouse lactating mammary gland. This study enabled the identification of 164 and 167 miRNA in mouse and bovine, respectively. Among the 30 miRNA most highly expressed in each species, 24 were common to both species and six of them were preferentially highly expressed in lactating than non-lactating mammary gland. The potential functional roles of these 24 miRNA were deduced using DIANA-miRPath software, based on miRNA/mRNA interactions. Moreover, seven putative novel miRNA were identified. Using DAVID analysis, it was concluded that the predicted targets of two of these putative novel miRNA are involved in mammary gland morphogenesis. CONCLUSION/SIGNIFICANCE Our study provides an overview of the characteristics of lactating mouse and bovine mammary gland miRNA expression profiles. Moreover, species-conserved miRNA involved in this fundamental biological function were identified. These miRNomes will now be used as references for further studies during which the impact of animal breeding on the miRNA expression will be analysed.
Collapse
Affiliation(s)
- Sandrine Le Guillou
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Sylvain Marthey
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Denis Laloë
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Johann Laubier
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Lenha Mobuchon
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- INRA, UMR1213 Herbivores, Saint-Genès Champanelle, France
- Clermont Université, VetAgro Sup, UMR1213 Herbivores, Clermont-Ferrand, France
| | - Christine Leroux
- INRA, UMR1213 Herbivores, Saint-Genès Champanelle, France
- Clermont Université, VetAgro Sup, UMR1213 Herbivores, Clermont-Ferrand, France
| | - Fabienne Le Provost
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
21
|
Busk PK. A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics 2014; 15:29. [PMID: 24472427 PMCID: PMC3922658 DOI: 10.1186/1471-2105-15-29] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Background MicroRNAs are small but biologically important RNA molecules. Although different methods can be used for quantification of microRNAs, quantitative PCR is regarded as the reference that is used to validate other methods. Several commercial qPCR assays are available but they often come at a high price and the sequences of the primers are not disclosed. An alternative to commercial assays is to manually design primers but this work is tedious and, hence, not practical for the design of primers for a larger number of targets. Results I have developed the software miRprimer for automatic design of primers for the method miR-specific RT-qPCR, which is one of the best performing microRNA qPCR methods available. The algorithm is based on an implementation of the previously published rules for manual design of miR-specific primers with the additional feature of evaluating the propensity of formation of secondary structures and primer dimers. Testing of the primers showed that 76 out of 79 primers (96%) worked for quantification of microRNAs by miR-specific RT-qPCR of mammalian RNA samples. This success rate corresponds to the success rate of manual primer design. Furthermore, primers designed by this method have been distributed to several labs and used successfully in published studies. Conclusions The software miRprimer is an automatic and easy method for design of functional primers for miR-specific RT-qPCR. The application is available as stand-alone software that will work on the MS Windows platform and in a developer version written in the Ruby programming language.
Collapse
Affiliation(s)
- Peter K Busk
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University Copenhagen, A,C, Meyers Vænge 15, Copenhagen, SV 2450, Denmark.
| |
Collapse
|
22
|
The role of viral and host microRNAs in the Aujeszky's disease virus during the infection process. PLoS One 2014; 9:e86965. [PMID: 24475202 PMCID: PMC3901728 DOI: 10.1371/journal.pone.0086965] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/20/2013] [Indexed: 12/29/2022] Open
Abstract
Porcine production is a primary market in the world economy. Controlling swine diseases in the farm is essential in order to achieve the sector necessities. Aujeszky’s disease is a viral condition affecting pigs and is endemic in many countries of the world, causing important economic losses in the swine industry. microRNAs (miRNAs) are non-coding RNAs which modulates gene expression in animals, plants and viruses. With the aim of understanding miRNA roles during the Aujeszky’s disease virus [ADV] (also known as suid herpesvirus type 1 [SuHV-1]) infection, the expression profiles of host and viral miRNAs were determined through deep sequencing in SuHV-1 infected porcine cell line (PK-15) and in an animal experimental SuHV-1 infection with virulent (NIA-3) and attenuated (Begonia) strains. In the in vivo approach miR-206, miR-133a, miR-133b and miR-378 presented differential expression between virus strains infection. In the in vitro approach, most miRNAs were down-regulated in infected groups. miR-92a and miR-92b-3p were up-regulated in Begonia infected samples. Functional analysis of all this over expressed miRNAs during the infection revealed their association in pathways related to viral infection processes and immune response. Furthermore, 8 viral miRNAs were detected by stem loop RT-qPCR in both in vitro and in vivo approaches, presenting a gene regulatory network affecting 59 viral genes. Most described viral miRNAs were related to Large Latency Transcript (LLT) and to viral transcription activators EP0 and IE180, and also to regulatory genes regarding their important roles in the host – pathogen interaction during viral infection.
Collapse
|
23
|
Martini P, Sales G, Calura E, Brugiolo M, Lanfranchi G, Romualdi C, Cagnin S. Systems biology approach to the dissection of the complexity of regulatory networks in the S. scrofa cardiocirculatory system. Int J Mol Sci 2013; 14:23160-87. [PMID: 24284405 PMCID: PMC3856112 DOI: 10.3390/ijms141123160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/23/2013] [Accepted: 11/02/2013] [Indexed: 12/23/2022] Open
Abstract
Genome-wide experiments are routinely used to increase the understanding of the biological processes involved in the development and maintenance of a variety of pathologies. Although the technical feasibility of this type of experiment has improved in recent years, data analysis remains challenging. In this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. Here, we review strategies used in the gene set approach, and using datasets for the pig cardiocirculatory system as a case study, we demonstrate how the use of a combination of these strategies can enhance the interpretation of results. Gene set analyses are able to distinguish vessels from the heart and arteries from veins in a manner that is consistent with the different cellular composition of smooth muscle cells. By integrating microRNA elements in the regulatory circuits identified, we find that vessel specificity is maintained through specific miRNAs, such as miR-133a and miR-143, which show anti-correlated expression with their mRNA targets.
Collapse
Affiliation(s)
- Paolo Martini
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
| | - Gabriele Sales
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
| | - Enrica Calura
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
| | - Mattia Brugiolo
- C.R.I.B.I. Biotechnology Centre, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy; E-Mail:
| | - Gerolamo Lanfranchi
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
- C.R.I.B.I. Biotechnology Centre, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy; E-Mail:
| | - Chiara Romualdi
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
- Authors to whom correspondence should be addressed; E-Mails: (C.R.); (S.C.); Tel.: +39-049-827-7401 (C.R.); +39-049-827-6162 (S.C.); Fax: +39-049-827-6159 (C.R. & S.C.)
| | - Stefano Cagnin
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
- C.R.I.B.I. Biotechnology Centre, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (C.R.); (S.C.); Tel.: +39-049-827-7401 (C.R.); +39-049-827-6162 (S.C.); Fax: +39-049-827-6159 (C.R. & S.C.)
| |
Collapse
|