1
|
Soares ÉN, Costa ACDS, Ferrolho GDJ, Ureshino RP, Getachew B, Costa SL, da Silva VDA, Tizabi Y. Nicotinic Acetylcholine Receptors in Glial Cells as Molecular Target for Parkinson's Disease. Cells 2024; 13:474. [PMID: 38534318 PMCID: PMC10969434 DOI: 10.3390/cells13060474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.
Collapse
Affiliation(s)
- Érica Novaes Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Ana Carla dos Santos Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Gabriel de Jesus Ferrolho
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema 09961-400, SP, Brazil
- Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil
| | - Bruk Getachew
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
2
|
Patino J, Karagas NE, Chandra S, Thakur N, Stimming EF. Olfactory Dysfunction in Huntington's Disease. J Huntingtons Dis 2021; 10:413-422. [PMID: 34719504 PMCID: PMC8673514 DOI: 10.3233/jhd-210497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Olfactory dysfunction is a common symptom in patients with neurodegenerative disorders, including Huntington's disease (HD). Understanding its pathophysiology is important in establishing a preventive and therapeutic plan. In this literature review, we cover the physiology of olfaction, its role in neurodegeneration, and its characteristics in patients with HD. In the general population, olfactory dysfunction is present in 3.8-5.8%and the prevalence increases significantly in those older than 80 years. For HD, data regarding prevalence rates are lacking and the scales used have been inconsistent or have been restructured due to concerns about cross-cultural understanding. Pathogenic huntingtin deposits have been found in the olfactory bulb of individuals with HD, although no studies have correlated this with the grade of olfactory impairment. Olfactory dysfunction is present in both premanifest and manifest patients with HD, showing a progressive decline over time with more severe deficits at advanced stages. No specific treatment for olfactory impairment in HD has been proposed; identifying and avoiding potential medications that cause olfactory dysfunction, as well as general safety recommendations remain the basis of the therapeutic strategy.
Collapse
Affiliation(s)
- Jorge Patino
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- HDSA Center of Excellence, The University of Texas Health Science Center at Houston,, Houston, TX, USA
| | - Nicholas E. Karagas
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shivika Chandra
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- HDSA Center of Excellence, The University of Texas Health Science Center at Houston,, Houston, TX, USA
| | - Nivedita Thakur
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- HDSA Center of Excellence, The University of Texas Health Science Center at Houston,, Houston, TX, USA
| | - Erin Furr Stimming
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- HDSA Center of Excellence, The University of Texas Health Science Center at Houston,, Houston, TX, USA
| |
Collapse
|
3
|
Zeng H, Yu BF, Liu N, Yang YY, Xing HY, Liu XX, Zhou MW. Transcriptomic analysis of α-synuclein knockdown after T3 spinal cord injury in rats. BMC Genomics 2019; 20:851. [PMID: 31726970 PMCID: PMC6854783 DOI: 10.1186/s12864-019-6244-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background Endogenous α-synuclein (α-Syn) is involved in many pathophysiological processes in the secondary injury stage after acute spinal cord injury (SCI), and the mechanism governing these functions has not been thoroughly elucidated to date. This research aims to characterize the effect of α-Syn knockdown on transcriptional levels after SCI and to determine the mechanisms underlying α-Syn activity based on RNA-seq. Result The establishment of a rat model of lentiviral vector-mediated knockdown of α-Syn in Sprague-Dawley rats with T3 spinal cord contusion (LV_SCI group). The results of the RNA-seq analysis showed that there were 337 differentially expressed genes (DEGs) between the SCI group and the LV_SCI group, and 153 DEGs specific to LV_SCI between the (SCI vs LV_SCI) and (SCI vs CON) comparisons. The top 20 biological transition terms were identified by Gene ontology (GO) analysis. The Kyoto Gene and Genomic Encyclopedia (KEGG) analysis showed that the LV_SCI group significantly upregulated the cholinergic synaptic & nicotine addiction and the neuroactive ligand receptor interaction signaling pathway. Enriched chord analysis analyzes key genes. Further cluster analysis, gene and protein interaction network analysis and RT-qPCR results showed that Chrm2 and Chrnb2 together significantly in both pathways. The proliferation of muscarinic cholinergic receptor subtype 2 (Chrm2) and nicotinic cholinergic receptor subtype β2 (Chrnb2), and the neurogenesis were elevated in the injury site of LV_SCI group by immunofluorescence. Further by subcellular localization, the LV_SCI group enhanced the expression of Chrnb2 at the cell membrane. Conclusion Knockdown of α-Syn after SCI enhance motor function and promote neurogenesis probably through enhancing cholinergic signaling pathways and neuroreceptor interactions. This study not only further clarifies the understanding of the mechanism of knockdown of α-Syn on SCI but also helps to guide the treatment strategy for SCI.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Bao-Fu Yu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Nan Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Yan-Yan Yang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Hua-Yi Xing
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Xiao-Xie Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Mou-Wang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|
4
|
Catoni C, Calì T, Brini M. Calcium, Dopamine and Neuronal Calcium Sensor 1: Their Contribution to Parkinson's Disease. Front Mol Neurosci 2019; 12:55. [PMID: 30967759 PMCID: PMC6440390 DOI: 10.3389/fnmol.2019.00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/14/2019] [Indexed: 01/11/2023] Open
Abstract
Parkinson’s disease (PD) is a debilitating neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra pars compacta. The causes of PD in humans are still unknown, although metabolic characteristics of the neurons affected by the disease have been implicated in their selective susceptibility. Mitochondrial dysfunction and proteostatic stress are recognized to be important in the pathogenesis of both familial and sporadic PD, and they both culminate in bioenergetic deficits. Exposure to calcium overload has recently emerged as a key determinant, and pharmacological treatment that inhibits Ca2+ entry diminishes neuronal damage in chemical models of PD. In this review, we first introduce general concepts on neuronal Ca2+ signaling and then summarize the current knowledge on fundamental properties of substantia nigra pars compacta dopaminergic neurons, on the role of the interplay between Ca2+ and dopamine signaling in neuronal activity and susceptibility to cell death. We also discuss the possible involvement of a “neglected” player, the Neuronal Calcium Sensor-1 (NCS-1), which has been shown to participate to dopaminergic signaling by regulating dopamine dependent receptor desensitization in normal brain but, data supporting a direct role in PD pathogenesis are still missing. However, it is intriguing to speculate that the Ca2+-dependent modulation of NCS-1 activity could eventually counteract dopaminergic neurons degeneration.
Collapse
Affiliation(s)
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
5
|
Hassink GC, Raiss CC, Segers-Nolten IMJ, van Wezel RJA, Subramaniam V, le Feber J, Claessens MMAE. Exogenous α-synuclein hinders synaptic communication in cultured cortical primary rat neurons. PLoS One 2018; 13:e0193763. [PMID: 29565978 PMCID: PMC5863964 DOI: 10.1371/journal.pone.0193763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/17/2018] [Indexed: 12/25/2022] Open
Abstract
Amyloid aggregates of the protein α-synuclein (αS) called Lewy Bodies (LB) and Lewy Neurites (LN) are the pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. We have previously shown that high extracellular αS concentrations can be toxic to cells and that neurons take up αS. Here we aimed to get more insight into the toxicity mechanism associated with high extracellular αS concentrations (50-100 μM). High extracellular αS concentrations resulted in a reduction of the firing rate of the neuronal network by disrupting synaptic transmission, while the neuronal ability to fire action potentials was still intact. Furthermore, many cells developed αS deposits larger than 500 nm within five days, but otherwise appeared healthy. Synaptic dysfunction clearly occurred before the establishment of large intracellular deposits and neuronal death, suggesting that an excessive extracellular αS concentration caused synaptic failure and which later possibly contributed to neuronal death.
Collapse
Affiliation(s)
- G. C. Hassink
- Clinical Neurophysiology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
- Biomedical Signal and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
| | - C. C. Raiss
- Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente, Postbus, Enschede, the Netherlands
| | - I. M. J. Segers-Nolten
- Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente, Postbus, Enschede, the Netherlands
| | - R. J. A. van Wezel
- Biomedical Signal and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
- Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Postbus, The Netherlands
| | - V. Subramaniam
- Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente, Postbus, Enschede, the Netherlands
| | - J. le Feber
- Clinical Neurophysiology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
- Biomedical Signal and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
- * E-mail:
| | - M. M. A. E. Claessens
- Clinical Neurophysiology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
| |
Collapse
|
6
|
Doty RL. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol 2017; 16:478-488. [DOI: 10.1016/s1474-4422(17)30123-0] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/25/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
|
7
|
Ottolini D, Calí T, Szabò I, Brini M. Alpha-synuclein at the intracellular and the extracellular side: functional and dysfunctional implications. Biol Chem 2017; 398:77-100. [DOI: 10.1515/hsz-2016-0201] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022]
Abstract
Abstract
Alpha-synuclein (α-syn) is an abundant neuronal protein whose physiological function, even if still not completely understood, has been consistently related to synaptic function and vesicle trafficking. A group of disorders known as synucleinopathies, among which Parkinson’s disease (PD), is deeply associated with the misfolding and aggregation of α-syn, which can give rise to proteinaceous inclusion known as Lewy bodies (LB). Proteostasis stress is a relevant aspect in these diseases and, currently, the presence of oligomeric α-syn species rather than insoluble aggregated forms, appeared to be associated with cytotoxicity. Many observations suggest that α-syn is responsible for neurodegeneration by interfering with multiple signaling pathways. α-syn protein can directly form plasma membrane channels or modify with their activity, thus altering membrane permeability to ions, abnormally associate with mitochondria and cause mitochondrial dysfunction (i.e. mitochondrial depolarization, Ca2+ dys-homeostasis, cytochrome c release) and interfere with autophagy regulation. The picture is further complicated by the fact that single point mutations, duplications and triplication in α-syn gene are linked to autosomal dominant forms of PD. In this review we discuss the multi-faced aspect of α-syn biology and address the main hypothesis at the basis of its involvement in neuronal degeneration.
Collapse
|
8
|
Wu M, Puddifoot CA, Taylor P, Joiner WJ. Mechanisms of inhibition and potentiation of α4β2 nicotinic acetylcholine receptors by members of the Ly6 protein family. J Biol Chem 2015; 290:24509-18. [PMID: 26276394 DOI: 10.1074/jbc.m115.647248] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 11/06/2022] Open
Abstract
α4β2 nicotinic acetylcholine receptors (nAChRs) are abundantly expressed throughout the central nervous system and are thought to be the primary target of nicotine, the main addictive substance in cigarette smoking. Understanding the mechanisms by which these receptors are regulated may assist in developing compounds to selectively interfere with nicotine addiction. Here we report previously unrecognized modulatory properties of members of the Ly6 protein family on α4β2 nAChRs. Using a FRET-based Ca(2+) flux assay, we found that the maximum response of α4β2 receptors to agonist was strongly inhibited by Ly6h and Lynx2 but potentiated by Ly6g6e. The mechanisms underlying these opposing effects appear to be fundamentally distinct. Receptor inhibition by Lynx2 was accompanied by suppression of α4β2 expression at the cell surface, even when assays were preceded by chronic exposure of cells to an established chaperone, nicotine. Receptor inhibition by Lynx2 also was resistant to pretreatment with extracellular phospholipase C, which cleaves lipid moieties like those that attach Ly6 proteins to the plasma membrane. In contrast, potentiation of α4β2 activity by Ly6g6e was readily reversible by pretreatment with phospholipase C. Potentiation was also accompanied by slowing of receptor desensitization and an increase in peak currents. Collectively our data support roles for Lynx2 and Ly6g6e in intracellular trafficking and allosteric potentiation of α4β2 nAChRs, respectively.
Collapse
Affiliation(s)
| | | | - Palmer Taylor
- From the Department of Pharmacology, Biomedical Sciences Graduate Program, Neuroscience Graduate Program, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0636
| | - William J Joiner
- From the Department of Pharmacology, Biomedical Sciences Graduate Program, Neuroscience Graduate Program, Center for Circadian Biology, and
| |
Collapse
|
9
|
Lawand NB, Saadé NE, El-Agnaf OM, Safieh-Garabedian B. Targeting α-synuclein as a therapeutic strategy for Parkinson's disease. Expert Opin Ther Targets 2015; 19:1351-60. [PMID: 26135549 DOI: 10.1517/14728222.2015.1062877] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION α-Synuclein, a neuronal protein, plays a central role in the pathophysiology of Parkinson's disease (PD), the second most prevalent neurodegenerative disorder. Cases of PD have increased tremendously over the past decade necessitating the identification of new therapeutic targets to reduce patient morbidity and to improve PD patients' quality of life. AREAS COVERED The purpose of this article is to provide an update on the role of α-synuclein in fibrils formation and review its role as an effective immunotherapeutic target for PD. The rapidly expanding evidence for the contribution of α-synuclein to the pathogenesis of PD led to the development of antibodies against the C terminus of α-synuclein and other molecules involved in the inflammatory signaling pathways that were found to contribute significantly to initiation and progression of the disease. EXPERT OPINION The readers will obtain new insights on the mechanisms by which α-synuclein can trigger the development of PD and other related degenerative disorders along with the potential role of active and passive antibodies targeted against specific form of α-synuclein aggregates to clear neurotoxicity, stop the propagation of the prion-like behavior of these oligomers and reverse neuronal degeneration associated with PD.
Collapse
Affiliation(s)
- Nada B Lawand
- a 1 American University of Beirut, Department of Anatomy, Cell Biology and Physiology Sciences , Beirut, Lebanon
| | - Nayef E Saadé
- a 1 American University of Beirut, Department of Anatomy, Cell Biology and Physiology Sciences , Beirut, Lebanon
| | - Omar M El-Agnaf
- b 2 Hamad Ben Khalifa University, College of Science and Engineering, Education City, Qatar Foundation , Doha, Qatar
| | - Bared Safieh-Garabedian
- c 3 Qatar University, College of Medicine, Department of Biological and Environmental Sciences , Doha, Qatar
| |
Collapse
|
10
|
De Genst E, Messer A, Dobson CM. Antibodies and protein misfolding: From structural research tools to therapeutic strategies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1907-1919. [PMID: 25194824 DOI: 10.1016/j.bbapap.2014.08.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023]
Abstract
Protein misfolding disorders, including the neurodegenerative conditions Alzheimer's disease (AD) and Parkinson's disease (PD) represent one of the major medical challenges or our time. The underlying molecular mechanisms that govern protein misfolding and its links with disease are very complex processes, involving the formation of transiently populated but highly toxic molecular species within the crowded environment of the cell and tissue. Nevertheless, much progress has been made in understanding these events in recent years through innovative experiments and therapeutic strategies, and in this review we present an overview of the key roles of antibodies and antibody fragments in these endeavors. We discuss in particular how these species are being used in combination with a variety of powerful biochemical and biophysical methodologies, including a range of spectroscopic and microscopic techniques applied not just in vitro but also in situ and in vivo, both to gain a better understanding of the mechanistic nature of protein misfolding and aggregation and also to design novel therapeutic strategies to combat the family of diseases with which they are associated. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Anne Messer
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|