1
|
Vahrmeijer N, Kriel J, Harrington BM, van Staden ADP, Vlok AJ, Engelbrecht L, Du Toit A, Loos B. Antisecretory Factor 16 (AF16): A Promising Avenue for the Treatment of Traumatic Brain Injury-An In Vitro Model Approach. J Mol Neurosci 2024; 74:106. [PMID: 39505761 PMCID: PMC11541381 DOI: 10.1007/s12031-024-02268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/16/2024] [Indexed: 11/08/2024]
Abstract
Traumatic brain injury (TBI) is caused by an external mechanical force to the head, resulting in abnormal brain functioning and clinical manifestations. Antisecretory factor (AF16) is a potential therapeutic agent for TBI treatment due to its ability to inhibit fluid secretion and decrease inflammation, intracranial pressure, and interstitial fluid build-up, key hallmarks presented in TBI. Here, we investigated the effect of AF16 in an in vitro model of neuronal injury, as well as its impact on key components of the autophagy pathway and mitochondrial dynamics. N2Awt cells were treated with AF16, injured using a scratch assay, and analysed using confocal microscopy, correlative light and electron microscopy (CLEM), flow cytometry, and western blotting. Our results reveal that AF16 enhances autophagy activity, regulates mitochondrial dynamics, and provides protection as early as 6 h post-injury. Fluorescently labelled AF16 was observed to localise to lysosomes and the autophagy compartment, suggesting a role for autophagy and mitochondrial quality control in conferring AF16-associated neuronal protection. This study concludes that AF16 has potential as a therapeutic agent for TBI treatment through is regulation of autophagy and mitochondrial dynamics.
Collapse
Affiliation(s)
- Nicola Vahrmeijer
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa
| | - Jurgen Kriel
- Central Analytical Facilities, Stellenbosch University, Tygerberg Medical Campus, Clinical Building, 7Th Floor, Room 7063, Stellenbosch, South Africa
| | - Bradley M Harrington
- Department of Neurosurgery, Tygerberg University Hospital, Tygerberg, Cape Town, South Africa
| | - Anton Du Preez van Staden
- Division Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Adriaan Johannes Vlok
- Department of Neurosurgery, Tygerberg University Hospital, Tygerberg, Cape Town, South Africa
| | - Lize Engelbrecht
- Central Analytical Facilities, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa
| | - Andre Du Toit
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa.
| |
Collapse
|
2
|
Timechko EE, Yakimov AM, Paramonova AI, Usoltseva AA, Utyashev NP, Ivin NO, Utyasheva AA, Yakunina AV, Kalinin VA, Dmitrenko DV. Mass Spectrometry as a Quantitative Proteomic Analysis Tool for the Search for Temporal Lobe Epilepsy Biomarkers: A Systematic Review. Int J Mol Sci 2023; 24:11130. [PMID: 37446307 DOI: 10.3390/ijms241311130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of epilepsy in adults. Tissue reorganization at the site of the epileptogenic focus is accompanied by changes in the expression patterns of protein molecules. The study of mRNA and its corresponding proteins is crucial for understanding the pathogenesis of the disease. Protein expression profiles do not always directly correlate with the levels of their transcripts; therefore, it is protein profiling that is no less important for understanding the molecular mechanisms and biological processes of TLE. The study and annotation of proteins that are statistically significantly different in patients with TLE is an approach to search for biomarkers of this disease, various stages of its development, as well as a method for searching for specific targets for the development of a further therapeutic strategy. When writing a systematic review, the following aggregators of scientific journals were used: MDPI, PubMed, ScienceDirect, Springer, and Web of Science. Scientific articles were searched using the following keywords: "proteomic", "mass-spectrometry", "protein expression", "temporal lobe epilepsy", and "biomarkers". Publications from 2003 to the present have been analyzed. Studies of brain tissues, experimental models of epilepsy, as well as biological fluids, were analyzed. For each of the groups, aberrantly expressed proteins found in various studies were isolated. Most of the studies omitted important characteristics of the studied patients, such as: duration of illness, type and response to therapy, gender, etc. Proteins that overlap across different tissue types and different studies have been highlighted: DPYSL, SYT1, STMN1, APOE, NME1, and others. The most common biological processes for them were the positive regulation of neurofibrillary tangle assembly, the regulation of amyloid fibril formation, lipoprotein catabolic process, the positive regulation of vesicle fusion, the positive regulation of oxidative stress-induced intrinsic apoptotic signaling pathway, removal of superoxide radicals, axon extension, and the regulation of actin filament depolymerization. MS-based proteomic profiling for a relevant study must accept a number of limitations, the most important of which is the need to compare different types of neurological and, in particular, epileptic disorders. Such a criterion could increase the specificity of the search work and, in the future, lead to the discovery of biomarkers for a particular disease.
Collapse
Affiliation(s)
- Elena E Timechko
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Alexey M Yakimov
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Anastasia I Paramonova
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Anna A Usoltseva
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Nikita P Utyashev
- Federal State Budgetary Institution "National Medical and Surgical Center Named after N.I. Pirogov", 105203 Moscow, Russia
| | - Nikita O Ivin
- Federal State Budgetary Institution "National Medical and Surgical Center Named after N.I. Pirogov", 105203 Moscow, Russia
| | - Anna A Utyasheva
- Federal State Budgetary Institution "National Medical and Surgical Center Named after N.I. Pirogov", 105203 Moscow, Russia
| | - Albina V Yakunina
- Department of Neurology and Neurobiology of Postgraduate Education, Samara State Medical University, 443079 Samara, Russia
| | - Vladimir A Kalinin
- Department of Neurology and Neurobiology of Postgraduate Education, Samara State Medical University, 443079 Samara, Russia
| | - Diana V Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| |
Collapse
|
3
|
Misan N, Michalak S, Kapska K, Osztynowicz K, Ropacka-Lesiak M, Kawka-Paciorkowska K. Does the Blood-Brain Barrier Integrity Change in Regard to the Onset of Fetal Growth Restriction? Int J Mol Sci 2023; 24:ijms24031965. [PMID: 36768287 PMCID: PMC9916066 DOI: 10.3390/ijms24031965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
The aim of the study was to determine whether early-onset and late-onset fetal growth restriction (FGR) differentially affects the blood-brain barrier integrity. Furthermore, the purpose of the study was to investigate the relationship between the blood-brain barrier breakdown and neurological disorders in FGR newborns. To evaluate the serum tight junction (TJ) proteins and the placental TJ proteins expression, an ELISA method was used. A significant difference in serum OCLN concentrations was noticed in pregnancies complicated by the early-onset FGR, in relation to the intraventricular hemorrhage (IVH) occurrence in newborns. No significant differences in concentrations of the NR1 subunit of the N-methyl-d-aspartate receptor (NR1), nucleoside diphosphate kinase A (NME1), S100 calcium-binding protein B (S100B), occludin (OCLN), claudin-5 (CLN5), zonula occludens-1 (zo-1), the CLN5/zo-1 ratio, and the placental expression of OCLN, CLN5, claudin-4 (CLN4), zo-1 were noticed between groups. The early-onset FGR was associated with a higher release of NME1 into the maternal circulation in relation to the brain-sparing effect and premature delivery. Additionally, in late-onset FGR, the higher release of the S100B into the maternal serum in regard to fetal distress was observed. Furthermore, there was a higher release of zo-1 into the maternal circulation in relation to newborns' moderate acidosis in late-onset FGR. Blood-brain barrier disintegration is not dependent on pregnancy advancement at the time of FGR diagnosis. NME1 may serve as a biomarker useful in the prediction of fetal circulatory centralization and extremely low birth weight in pregnancies complicated by the early-onset FGR. Moreover, the serum zo-1 concentration may have prognostic value for moderate neonatal acidosis in late-onset FGR pregnancies.
Collapse
Affiliation(s)
- Natalia Misan
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
- Correspondence:
| | - Sławomir Michalak
- Department of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- Department of Neurosurgery and Neurotraumatology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Katarzyna Kapska
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Krystyna Osztynowicz
- Department of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Mariola Ropacka-Lesiak
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | | |
Collapse
|
4
|
Misan N, Michalak S, Rzymski P, Poniedziałek B, Kapska K, Osztynowicz K, Ropacka-Lesiak M. Molecular Indicators of Blood-Brain Barrier Breakdown and Neuronal Injury in Pregnancy Complicated by Fetal Growth Restriction. Int J Mol Sci 2022; 23:ijms232213798. [PMID: 36430274 PMCID: PMC9695431 DOI: 10.3390/ijms232213798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
This study evaluated the damage to the endothelial tight junctions (TJs) in pregnancies complicated by fetal growth restriction (FGR) and investigated whether FGR is related to blood-brain barrier disintegration and, subsequently, to the appearance of proteins indicative of neuronal injury in maternal blood. The studied group included 90 pregnant women diagnosed with FGR. The control group consisted of 70 women with an uncomplicated pregnancy. The biochemical measurements included serum neuronal proteins (subunit of the N-methyl-D-aspartate receptor-NR1, nucleoside diphosphate kinase A-NME1, and S100 calcium-binding protein B-S100B), serum TJ proteins (occludin-OCLN, claudin-5-CLN5, zonula occludens-zo-1, and OCLN/zo-1 and CLN5/zo-1 ratios), and placental expression of TJ proteins (OCLN, claudin-4 CLN4, CLN5, zo-1). The significantly higher serum S100B and CLN5 levels and serum CLN5/zo-1 ratio were observed in FGR compared to healthy pregnancies. Moreover, FGR was characterized by increased placental CLN5 expression. Both serum NME1 levels and placental CLN4 expression in FGR pregnancies were significantly related to the incidence of neurological disorders in newborns. Mothers of FGR neonates who developed neurological complications and intraventricular hemorrhage (IVH) had statistically higher NME1 concentrations during pregnancy and significantly lower placental CLN4 expression than mothers of FGR neonates without neurological abnormalities. The serum NME1 levels and placental CLN4 expression were predictive markers of IVH in the FGR group. The blood-brain barrier is destabilized in pregnancies complicated by FGR. Neurological disorders, including IVH, are associated with higher serum concentrations of NME1 and the decreased placental expression of CLN4. The serum NME1 levels and placental CLN4 expression may serve as biomarkers, helpful in predicting IVH in FGR. It may allow for more precise monitoring and influence decision-making on the optimal delivery time to avoid developing neurological complications.
Collapse
Affiliation(s)
- Natalia Misan
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
- Correspondence:
| | - Sławomir Michalak
- Department of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61-848 Poznan, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznań, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61-848 Poznan, Poland
| | - Katarzyna Kapska
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Krystyna Osztynowicz
- Department of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Mariola Ropacka-Lesiak
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| |
Collapse
|
5
|
Misan N, Michalak S, Kapska K, Osztynowicz K, Ropacka-Lesiak M. Blood-Brain Barrier Disintegration in Growth-Restricted Fetuses with Brain Sparing Effect. Int J Mol Sci 2022; 23:ijms232012349. [PMID: 36293204 PMCID: PMC9604432 DOI: 10.3390/ijms232012349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
The endothelial cells of the blood-brain barrier adhere closely, which is provided by tight junctions (TJs). The aim of the study was to assess the damage to the endothelial TJs in pregnancy, complicated by fetal growth restriction (FGR) and circulatory centralization (brain-sparing effect, BS). The serum concentrations of NR1 subunit of the N-methyl-D-aspartate receptor (NR1), nucleoside diphosphate kinase A (NME1), S100 calcium-binding protein B (S100B), occludin (OCLN), claudin-5 (CLN5), and zonula occludens protein – 1 (zo-1), and the placental expressions of OCLN, claudin-4 (CLN4), CLN5, and zo-1 were assessed with ELISA. The significantly higher serum NME1 concentrations and the serum CLN5/zo-1 index were observed in FGR pregnancy with BS, as compared to the FGR group without BS. The FGR newborns with BS were about 20 times more likely to develop an intraventricular hemorrhage (IVH) than the FGR infants without BS. The cerebroplacental ratio (CPR) allowed to predict the IVH in growth-restricted fetuses. The significantly lower placental CLN4 expression was observed in the FGR group with BS and who postnatally developed an IVH, as compared to the growth-restricted infants with BS without IVH signs. Pregnancy complicated by FGR and BS is associated with the destabilization of the fetal blood-brain barrier. The IVH in newborns is reflected in the inhibition of the placental CLN4 expression, which may be a useful marker in the prediction of an IVH among growth-restricted fetuses.
Collapse
Affiliation(s)
- Natalia Misan
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland
- Correspondence:
| | - Sławomir Michalak
- Department of Neurochemistry and Neuropathology, Chair of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland
| | - Katarzyna Kapska
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland
| | - Krystyna Osztynowicz
- Department of Neurochemistry and Neuropathology, Chair of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland
| | - Mariola Ropacka-Lesiak
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland
| |
Collapse
|
6
|
Srinivasan G, Brafman DA. The Emergence of Model Systems to Investigate the Link Between Traumatic Brain Injury and Alzheimer's Disease. Front Aging Neurosci 2022; 13:813544. [PMID: 35211003 PMCID: PMC8862182 DOI: 10.3389/fnagi.2021.813544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous epidemiological studies have demonstrated that individuals who have sustained a traumatic brain injury (TBI) have an elevated risk for developing Alzheimer's disease and Alzheimer's-related dementias (AD/ADRD). Despite these connections, the underlying mechanisms by which TBI induces AD-related pathology, neuronal dysfunction, and cognitive decline have yet to be elucidated. In this review, we will discuss the various in vivo and in vitro models that are being employed to provide more definite mechanistic relationships between TBI-induced mechanical injury and AD-related phenotypes. In particular, we will highlight the strengths and weaknesses of each of these model systems as it relates to advancing the understanding of the mechanisms that lead to TBI-induced AD onset and progression as well as providing platforms to evaluate potential therapies. Finally, we will discuss how emerging methods including the use of human induced pluripotent stem cell (hiPSC)-derived cultures and genome engineering technologies can be employed to generate better models of TBI-induced AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
7
|
Anantha J, Goulding SR, Tuboly E, O'Mahony AG, Moloney GM, Lomansey G, McCarthy CM, Collins LM, Sullivan AM, O'Keeffe GW. NME1 Protects Against Neurotoxin-, α-Synuclein- and LRRK2-Induced Neurite Degeneration in Cell Models of Parkinson's Disease. Mol Neurobiol 2022; 59:61-76. [PMID: 34623600 PMCID: PMC8786793 DOI: 10.1007/s12035-021-02569-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterised by the progressive degeneration of midbrain dopaminergic neurons, coupled with the intracellular accumulation of α-synuclein. Axonal degeneration is a central part of the pathology of PD. While the majority of PD cases are sporadic, some are genetic; the G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is the most common genetic form. The application of neurotrophic factors to protect dopaminergic neurons is a proposed experimental therapy. One such neurotrophic factor is growth differentiation factor (GDF)5. GDF5 is a dopaminergic neurotrophic factor that has been shown to upregulate the expression of a protein called nucleoside diphosphate kinase A (NME1). However, whether NME1 is neuroprotective in cell models of axonal degeneration of relevance to PD is unknown. Here we show that treatment with NME1 can promote neurite growth in SH-SY5Y cells, and in cultured dopaminergic neurons treated with the neurotoxin 6-hydroxydopamine (6-OHDA). Similar effects of NME1 were found in SH-SY5Y cells and dopaminergic neurons overexpressing human wild-type α-synuclein, and in stable SH-SY5Y cell lines carrying the G2019S LRRK2 mutation. We found that the effects of NME1 require the RORα/ROR2 receptors. Furthermore, increased NF-κB-dependent transcription was partially required for the neurite growth-promoting effects of NME1. Finally, a combined bioinformatics and biochemical analysis of the mitochondrial oxygen consumption rate revealed that NME1 enhanced mitochondrial function, which is known to be impaired in PD. These data show that recombinant NME1 is worthy of further study as a potential therapeutic agent for axonal protection in PD.
Collapse
Affiliation(s)
- Jayanth Anantha
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Susan R Goulding
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Eszter Tuboly
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Adam G O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gareth Lomansey
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Cathal M McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Louise M Collins
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
- Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland.
| |
Collapse
|
8
|
Streubel-Gallasch L, Zyśk M, Beretta C, Erlandsson A. Traumatic brain injury in the presence of Aβ pathology affects neuronal survival, glial activation and autophagy. Sci Rep 2021; 11:22982. [PMID: 34837024 PMCID: PMC8626479 DOI: 10.1038/s41598-021-02371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
Traumatic brain injury (TBI) presents a widespread health problem in the elderly population. In addition to the acute injury, epidemiological studies have observed an increased probability and earlier onset of dementias in the elderly following TBI. However, the underlying mechanisms of the connection between TBI and Alzheimer's disease in the aged brain and potential exacerbating factors is still evolving. The aim of this study was to investigate cellular injury-induced processes in the presence of amyloid β (Aβ) pathology. For this purpose, a co-culture system of cortical stem-cell derived astrocytes, neurons and oligodendrocytes were exposed to Aβ42 protofibrils prior to a mechanically induced scratch injury. Cellular responses, including neurodegeneration, glial activation and autophagy was assessed by immunoblotting, immunocytochemistry, ELISA and transmission electron microscopy. Our results demonstrate that the combined burden of Aβ exposure and experimental TBI causes a decline in the number of neurons, the differential expression of the key astrocytic markers glial fibrillary acidic protein and S100 calcium-binding protein beta, mitochondrial alterations and prevents the upregulation of autophagy. Our study provides valuable information about the impact of TBI sustained in the presence of Aβ deposits and helps to advance the understanding of geriatric TBI on the cellular level.
Collapse
Affiliation(s)
- Linn Streubel-Gallasch
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Marlena Zyśk
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Chiara Beretta
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden.
| |
Collapse
|
9
|
Wu YH, Rosset S, Lee TR, Dragunow M, Park T, Shim V. In Vitro Models of Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2021; 38:2336-2372. [PMID: 33563092 DOI: 10.1089/neu.2020.7402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health challenge that is also the third leading cause of death worldwide. It is also the leading cause of long-term disability in children and young adults worldwide. Despite a large body of research using predominantly in vivo and in vitro rodent models of brain injury, there is no medication that can reduce brain damage or promote brain repair mainly due to our lack of understanding in the mechanisms and pathophysiology of the TBI. The aim of this review is to examine in vitro TBI studies conducted from 2008-2018 to better understand the TBI in vitro model available in the literature. Specifically, our focus was to perform a detailed analysis of the in vitro experimental protocols used and their subsequent biological findings. Our review showed that the uniaxial stretch is the most frequently used way of load application, accounting for more than two-thirds of the studies reviewed. The rate and magnitude of the loading were varied significantly from study to study but can generally be categorized into mild, moderate, and severe injuries. The in vitro studies reviewed here examined key processes in TBI pathophysiology such as membrane disruptions leading to ionic dysregulation, inflammation, and the subsequent damages to the microtubules and axons, as well as cell death. Overall, the studies examined in this review contributed to the betterment of our understanding of TBI as a disease process. Yet, our review also revealed the areas where more work needs to be done such as: 1) diversification of load application methods that will include complex loading that mimics in vivo head impacts; 2) more widespread use of human brain cells, especially patient-matched human cells in the experimental set-up; and 3) need for building a more high-throughput system to be able to discover effective therapeutic targets for TBI.
Collapse
Affiliation(s)
- Yi-Han Wu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Samuel Rosset
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Tae-Rin Lee
- Advanced Institute of Convergence Technology, Seoul National University, Seoul, Korea
| | - Mike Dragunow
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Thomas Park
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Parittotokkaporn S, Dravid A, Raos BJ, Rosset S, Svirskis D, O'Carroll SJ. Stretchable microchannel-on-a-chip: A simple model for evaluating the effects of uniaxial strain on neuronal injury. J Neurosci Methods 2021; 362:109302. [PMID: 34343573 DOI: 10.1016/j.jneumeth.2021.109302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Axonal injury is a major component of traumatic spinal cord injury (SCI), associated with rapid deformation of spinal tissue and axonal projections. In vitro models enable us to examine these effects and screen potential therapies in a controlled, reproducible manner. NEW METHOD A customized, stretchable microchannel system was developed using polydimethylsiloxane microchannels. Cortical and spinal embryonic rat neurons were cultured within the microchannel structures, allowing a uniaxial strain to be applied to isolated axonal processes. Global strains of up to 52% were applied to the stretchable microchannel-on-a-chip platform leading to local strains of up to 12% being experienced by axons isolated in the microchannels. RESULTS Individual axons exposed to local strains between 3.2% and 8.7% developed beading within 30-minutes of injury. At higher local strains of 9.8% and 12% individual axons ruptured within 30-minutes of injury. Axon bundles, or fascicles, were more resistant to rupture at each strain level, compared to individual axons. At lower local strain of 3.2%, axon bundles inside microchannels and neuronal cells near entrances of them progressively swelled and degenerated over a period of 7 days after injury. COMPARISON WITH EXISTING METHOD(S) This method is simple, reliable and reproducible with good control and measurement of injury tolerance and morphological deformations using standard laboratory equipment. By measuring local strains, we observed that axonal injuries occur at a lower strain magnitude and a lower strain rate than previous methods reporting global strains, which may not accurately reflect the true axonal strain. CONCLUSIONS We describe a novel stretchable microchannel-on-a-chip platform to study the effect of varying local strain on morphological characteristics of neuronal injury.
Collapse
Affiliation(s)
- Sam Parittotokkaporn
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand
| | - Anusha Dravid
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Brad J Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Samuel Rosset
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand.
| |
Collapse
|
11
|
Best HL, Clare AJ, McDonald KO, Wicky HE, Hughes SM. An altered secretome is an early marker of the pathogenesis of CLN6 Batten disease. J Neurochem 2021; 157:764-780. [PMID: 33368303 DOI: 10.1111/jnc.15285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/20/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of inherited childhood neurodegenerative disorders. In addition to the accumulation of auto-fluorescent storage material in lysosomes, NCLs are largely characterised by region-specific neuroinflammation that can predict neuron loss. These phenotypes suggest alterations in the extracellular environment-making the secretome an area of significant interest. This study investigated the secretome in the CLN6 (ceroid-lipofuscinosis neuronal protein 6) variant of NCL. To investigate the CLN6 secretome, we co-cultured neurons and glia isolated from Cln6nclf or Cln6± mice, and utilised mass spectrometry to compare protein constituents of conditioned media. The significant changes noted in cathepsin enzymes, were investigated further via western blotting and enzyme activity assays. Viral-mediated gene therapy was used to try and rescue the wild-type phenotype and restore the secretome-both in vitro in co-cultures and in vivo in mouse plasma. In Cln6nclf cells, proteomics revealed a marked increase in catabolic and cytoskeletal-associated proteins-revealing new similarities between the pathogenic signatures of NCLs with other neurodegenerative disorders. These changes were, in part, corrected by gene therapy intervention, suggesting these proteins as candidate in vitro biomarkers. Importantly, these in vitro changes show promise for in vivo translation, with Cathepsin L (CTSL) activity reduced in both co-cultures and Cln6nclf plasma samples post gene-therapy. This work suggests the secretome plays a role in CLN6 pathogenesis and highlights its potential use as an in vitro model. Proteomic changes present a list of candidate biomarkers for monitoring disease and assessing potential therapeutics in future studies.
Collapse
Affiliation(s)
- Hannah L Best
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Alison J Clare
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Kirstin O McDonald
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Hollie E Wicky
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Anantha J, Goulding SR, Wyatt SL, Concannon RM, Collins LM, Sullivan AM, O'Keeffe GW. STRAP and NME1 Mediate the Neurite Growth-Promoting Effects of the Neurotrophic Factor GDF5. iScience 2020; 23:101457. [PMID: 32853992 PMCID: PMC7452236 DOI: 10.1016/j.isci.2020.101457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
Loss of midbrain dopaminergic (mDA) neurons and their axons is central to Parkinson's disease (PD). Growth differentiation factor (GDF)5 is a potential neurotrophic factor for PD therapy. However, the molecular mediators of its neurotrophic action are unknown. Our proteomics analysis shows that GDF5 increases the expression of serine threonine receptor-associated protein kinase (STRAP) and nucleoside diphosphate kinase (NME)1 in the SH-SY5Y neuronal cell line. GDF5 overexpression increased NME1 expression in adult rat brain in vivo. NME and STRAP mRNAs are expressed in developing and adult rodent midbrain. Expression of both STRAP and NME1 is necessary and sufficient for the promotion of neurite growth in SH-SY5Y cells by GDF5. NME1 treatment increased neurite growth in both SH-SY5Y cells and cultured mDA neurons. Expression patterns of NME and STRAP are altered in PD midbrain. NME1 and STRAP are thus key mediators of GDF5's neurotrophic effects, rationalizing their future study as therapeutic targets for PD.
Collapse
Affiliation(s)
- Jayanth Anantha
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Susan R. Goulding
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Sean L. Wyatt
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
| | - Ruth M. Concannon
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Louise M. Collins
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- Department of Physiology, UCC, Cork, Ireland
| | - Aideen M. Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- APC Microbiome Ireland, UCC, Cork, Ireland
- Cork Neuroscience Centre, UCC, Cork, Ireland
| | - Gerard W. O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- APC Microbiome Ireland, UCC, Cork, Ireland
- Cork Neuroscience Centre, UCC, Cork, Ireland
| |
Collapse
|
13
|
de Amorim VCM, Júnior MSO, da Silva AB, David JM, David JPL, de Fátima Dias Costa M, Butt AM, da Silva VDA, Costa SL. Agathisflavone modulates astrocytic responses and increases the population of neurons in an in vitro model of traumatic brain injury. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1921-1930. [PMID: 32444988 DOI: 10.1007/s00210-020-01905-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/10/2020] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is a critical health problem worldwide, with a high incidence rate and potentially severe long-term consequences. Depending on the level of mechanical stress, astrocytes react with complex morphological and functional changes known as reactive astrogliosis. In cases of severe tissue injury, astrocytes proliferate in the area immediately adjacent to the lesion to form the glial scar, which is a major barrier to neuronal regeneration in the central nervous system. The flavonoid agathisflavone has been shown to have neuroprotective, neurogenic, and immunomodulatory effects and could have beneficial effects in situations of TBI. In this study, we investigated the effects of agathisflavone on modulating the responses of astrocytes and neurons to injury, using the in vitro scratch wound model of TBI in primary cultures of rat cerebral cortex. In control conditions, the scratch wound induced an astroglial injury response, characterized by upregulation of glial fibrillary acidic protein (GFAP) and hypertrophy, together with the reduction in proportion of neurons within the lesion site. Treatment with agathisflavone (1 μM) decreased astroglial GFAP expression and hypertrophy and induced an increase in the number of neurons and neurite outgrowth into the lesion site. Agathisflavone also induced increased expression of the neurotrophic factors NGF and GDNF, which are associated with the neuroprotective profile of glial cells. These results demonstrate that in an in vitro model of TBI, the flavonoid agathisflavone modulates the astrocytic injury response and glial scar formation, stimulating neural recomposition.
Collapse
Affiliation(s)
- Vanessa Cristina Meira de Amorim
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil
| | - Markley Silva Oliveira Júnior
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil
| | - Alessandra Bispo da Silva
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil
| | - Jorge M David
- Department of General and Inorganic Chemistry, Institute of Chemistry, Federal University of Bahia, R. Barão de Jeremoabo, Salvador, BA, 40170-115, Brazil
| | - Juceni Pereira Lima David
- Department of Medication, Faculty of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, Salvador, BA, 40170-115, Brazil
| | - Maria de Fátima Dias Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, Winston Churchill Avenue, Portsmouth, PO1 2UP, UK
| | - Victor Diogenes Amaral da Silva
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil
| | - Silvia Lima Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil.
| |
Collapse
|
14
|
Ahmed ME, Selvakumar GP, Kempuraj D, Raikwar SP, Thangavel R, Bazley K, Wu K, Khan O, Kukulka K, Bussinger B, Dubova I, Zaheer S, Govindarajan R, Iyer S, Burton C, James D, Zaheer A. Neuroinflammation Mediated by Glia Maturation Factor Exacerbates Neuronal Injury in an in vitro Model of Traumatic Brain Injury. J Neurotrauma 2020; 37:1645-1655. [PMID: 32200671 DOI: 10.1089/neu.2019.6932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) is the primary cause of death and disability affecting over 10 million people in the industrialized world. TBI causes a wide spectrum of secondary molecular and cellular complications in the brain. However, the pathological events are still not yet fully understood. Previously, we have shown that the glia maturation factor (GMF) is a mediator of neuroinflammation in neurodegenerative diseases. To identify the potential molecular pathways accompanying TBI, we used an in vitro cell culture model of TBI. A standardized injury was induced by scalpel cut through a mixed primary cell culture of astrocytes, microglia and neurons obtained from both wild type (WT) and GMF-deficient (GMF-KO) mice. Cell culture medium and whole-cell lysates were collected at 24, 48, and 72 h after the scalpel cuts injury and probed for oxidative stress using immunofluorescence analysis. Results showed that oxidative stress markers such as glutathione and glutathione peroxidase were significantly reduced, while release of cytosolic enzyme lactate dehydrogenase along with nitric oxide and prostaglandin E2 were significantly increased in injured WT cells compared with injured GMF-KO cells. In addition, injured WT cells showed increased levels of oxidation product 4-hydroxynonenal and 8-oxo-2'-deoxyguanosine compared with injured GMF-KO cells. Further, we found that injured WT cells showed a significantly increased expression of glial fibrillary acidic protein, ionized calcium binding adaptor molecule 1, and phosphorylated ezrin/radixin/moesin proteins, and reduced microtubule associated protein expression compared with injured GMF-KO cells after injury. Collectively, our results demonstrate that GMF exacerbates the oxidative stress-mediated neuroinflammation that could be brought about by TBI-induced astroglial activation.
Collapse
Affiliation(s)
- Mohammad Ejaz Ahmed
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Harry S Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Harry S Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - Duraisamy Kempuraj
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Harry S Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - Sudhanshu P Raikwar
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Harry S Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - Ramasamy Thangavel
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Harry S Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - Kieran Bazley
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kristopher Wu
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Osaid Khan
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Klaudia Kukulka
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Bret Bussinger
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Iuliia Dubova
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Harry S Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - Smita Zaheer
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Raghav Govindarajan
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Shankar Iyer
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Harry S Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | | | | | - Asgar Zaheer
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Harry S Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| |
Collapse
|
15
|
Harbuzariu A, Pitts S, Cespedes JC, Harp KO, Nti A, Shaw AP, Liu M, Stiles JK. Modelling heme-mediated brain injury associated with cerebral malaria in human brain cortical organoids. Sci Rep 2019; 9:19162. [PMID: 31844087 PMCID: PMC6914785 DOI: 10.1038/s41598-019-55631-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/26/2019] [Indexed: 01/09/2023] Open
Abstract
Human cerebral malaria (HCM), a severe encephalopathy associated with Plasmodium falciparum infection, has a 20-30% mortality rate and predominantly affects African children. The mechanisms mediating HCM-associated brain injury are difficult to study in human subjects, highlighting the urgent need for non-invasive ex vivo human models. HCM elevates the systemic levels of free heme, which damages the blood-brain barrier and neurons in distinct regions of the brain. We determined the effects of heme on induced pluripotent stem cells (iPSCs) and a three-dimensional cortical organoid system and assessed apoptosis and differentiation. We evaluated biomarkers associated with heme-induced brain injury, including a pro-inflammatory chemokine, CXCL-10, and its receptor, CXCR3, brain-derived neurotrophic factor (BDNF) and a receptor tyrosine-protein kinase, ERBB4, in the organoids. We then tested the neuroprotective effect of neuregulin-1 (NRG-1) against heme treatment in organoids. Neural stem and mature cells differentially expressed CXCL-10, CXCR3, BDNF and ERBB4 in the developing organoids and in response to heme-induced neuronal injury. The organoids underwent apoptosis and structural changes that were attenuated by NRG-1. Thus, cortical organoids can be used to model heme-induced cortical brain injury associated with HCM pathogenesis as well as for testing agents that reduce brain injury and neurological sequelae.
Collapse
Affiliation(s)
- Adriana Harbuzariu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA, 30310, USA.
| | - Sidney Pitts
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA, 30310, USA
| | - Juan Carlos Cespedes
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA, 30310, USA
| | - Keri Oxendine Harp
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA, 30310, USA
| | - Annette Nti
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA, 30310, USA
| | - Andrew P Shaw
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA, 30310, USA
| | - Jonathan K Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA, 30310, USA.
| |
Collapse
|
16
|
Zhang J, Shi C, Wang H, Gao C, Chang P, Chen X, Shan H, Zhang M, Tao L. Hydrogen sulfide protects against cell damage through modulation of PI3K/Akt/Nrf2 signaling. Int J Biochem Cell Biol 2019; 117:105636. [PMID: 31654751 DOI: 10.1016/j.biocel.2019.105636] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/01/2023]
Abstract
Hydrogen sulfide as the third endogenous gaseous mediator had protective effects against traumatic brain injury-induced neuronal damage in mice. However, the exact pathophysiological mechanism underlying traumatic brain injury is complicated and the protective role of H2S is not yet fully known. Therefore, we combined the mechanical injury (scratch) with secondary injury including metabolic impairment (no glucose) together to investigate the underlying cellular mechanism of hydrogen sulfide in vitro models of traumatic brain injury. In the present study, we found that H2S could prevent the scratch-induced decrease in the expression of cystathionine-β-synthetase, a key enzyme involved in the source of hydrogen sulfide, and endogenous hydrogen sulfide generation in PC12 cells. We also found that hydrogen sulfide could prevent scratch-induced cellular injury, alteration of mitochondrial membrane potential, intracellular accumulation of reactive oxygen species and cell death (autophagic cell death and apoptosis) in PC12 cells. It was also found that blocking PI3K/AKT pathway by LY294002, abolished the protection of H2S against scratch-induced cellular reactive oxygen species level and NRF2 accumulation and function in the nucleus. These results suggest that hydrogen sulfide protects against cell damage induced by scratch injury through modulation of the PI3K/Akt/Nrf2 pathway. This study raises the possibility that hydrogen sulfide may have therapeutic efficacy in traumatic brain injury.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| | - Chaoqun Shi
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| | - Haochen Wang
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| | - Cheng Gao
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| | - Pan Chang
- Central Laboratory, The Second Affiliated Hospital of Xi'an Medical College, Xi'an, Shaanxi, 710038, China
| | - Xiping Chen
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, China.
| | - Mingyang Zhang
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China; School of Pharmacy, Soochow University, Suzhou, 215000, China.
| | - Luyang Tao
- Institute of Forensic Sciences, Soochow University, Suzhou, 215123, China
| |
Collapse
|
17
|
Derouiche A, Geiger KD. Perspectives for Ezrin and Radixin in Astrocytes: Kinases, Functions and Pathology. Int J Mol Sci 2019; 20:ijms20153776. [PMID: 31382374 PMCID: PMC6695708 DOI: 10.3390/ijms20153776] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are increasingly perceived as active partners in physiological brain function and behaviour. The structural correlations of the glia–synaptic interaction are the peripheral astrocyte processes (PAPs), where ezrin and radixin, the two astrocytic members of the ezrin-radixin-moesin (ERM) family of proteins are preferentially localised. While the molecular mechanisms of ERM (in)activation appear universal, at least in mammalian cells, and have been studied in great detail, the actual ezrin and radixin kinases, phosphatases and binding partners appear cell type specific and may be multiplexed within a cell. In astrocytes, ezrin is involved in process motility, which can be stimulated by the neurotransmitter glutamate, through activation of the glial metabotropic glutamate receptors (mGluRs) 3 or 5. However, it has remained open how this mGluR stimulus is transduced to ezrin activation. Knowing upstream signals of ezrin activation, ezrin kinase(s), and membrane-bound binding partners of ezrin in astrocytes might open new approaches to the glial role in brain function. Ezrin has also been implicated in invasive behaviour of astrocytomas, and glial activation. Here, we review data pertaining to potential molecular interaction partners of ezrin in astrocytes, with a focus on PKC and GRK2, and in gliomas and other diseases, to stimulate further research on their potential roles in glia-synaptic physiology and pathology.
Collapse
Affiliation(s)
- Amin Derouiche
- Institute of Anatomy II, Goethe-University Frankfurt, D-60590 Frankfurt am Main, Germany.
| | - Kathrin D Geiger
- Neuropathology, Institute for Pathology, Carl Gustav Carus University Hospital, TU Dresden, D-01307 Dresden, Germany
| |
Collapse
|
18
|
Zou H, Bao WX, Luo BY. Applications of Proteomics in Traumatic Brain Injury: Current Status and Potential Prospects. Chin Med J (Engl) 2019; 131:2143-2145. [PMID: 30203786 PMCID: PMC6144836 DOI: 10.4103/0366-6999.240794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Hai Zou
- Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 331003, China
| | - Wang-Xiao Bao
- Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 331003, China
| | - Ben-Yan Luo
- Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 331003, China
| |
Collapse
|
19
|
Mikhailova MM, Bolshakov AP, Chaban EA, Paltsev MA, Panteleyev AA. Primary culture of mouse embryonic spinal cord neurons: cell composition and suitability for axonal regeneration studies. Int J Neurosci 2019; 129:762-769. [PMID: 30621485 DOI: 10.1080/00207454.2019.1567508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: Primary culture is an effective experimental model to study molecular mechanisms that drive axonal regeneration after central nervous system injury. However, the culture of spinal cord (SC) cells remains poorly characterized. Here, we have analyzed the cell composition of a primary SC culture during its maturation. Methods: Primary cell culture was prepared from mouse embryo spinal cords. After 2, 7, and 14 days of cultivation, the cells were fixed and stained with antibodies against β3-tubulin, nestin, crmp1, SMI-32, DCC or GFAP. We counted percentage of cells positive for the mentioned markers and measured the length of cell processes. Results: We found that β3-tubulin and nestin were both expressed at day 2 of culture in vitro. Surprisingly (given the use of differentiation-supporting culture medium), the number of nestin+ cells has significantly increased during the first week of cultivation. The GFAP+ cells appeared only at the seventh day in vitro, and their fraction increased during the following cultivation. At 14 day in vitro, SC culture contained cells that expressed the markers typical of commissural and motor neurons. At this age, the neurons had the ability to repair injured neurites after mechanical damage. Conclusion: Primary culture of SC cells is a dynamically developing cell population that contains all main types of SC cells and is capable of self-repair. Therefore, the culture of mouse embryonic SC cells represents an adequate experimental model for studying cellular and molecular processes taking place in SC neurons after axonal damage in the absence of external inhibitors.
Collapse
Affiliation(s)
- Mariya M Mikhailova
- a National Research Center Kurchatov Institute , Moscow , Russian Federation
| | - Alexey P Bolshakov
- b Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences , Moscow , Russian Federation
| | - Ekaterina A Chaban
- c Emanuel Institute of Biochemical Physics Russian Academy of Sciences , Moscow , Russian Federation
| | - Mikhail A Paltsev
- c Emanuel Institute of Biochemical Physics Russian Academy of Sciences , Moscow , Russian Federation
| | - Andrey A Panteleyev
- a National Research Center Kurchatov Institute , Moscow , Russian Federation
| |
Collapse
|
20
|
Characterization of neurite dystrophy after trauma by high speed structured illumination microscopy and lattice light sheet microscopy. J Neurosci Methods 2018; 312:154-161. [PMID: 30529411 DOI: 10.1016/j.jneumeth.2018.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Unbiased screening studies have repeatedly identified actin-related proteins as one of the families of proteins most influenced by neurotrauma. Nevertheless, the status quo model of cytoskeletal reorganization after neurotrauma excludes actin and incorporates only changes in microtubules and intermediate filaments. Actin is excluded in part because it is difficult to image with conventional techniques. However, recent innovations in fluorescent microscopy provide an opportunity to image the actin cytoskeleton at super-resolution resolution in living cells. This study applied these innovations to an in vitro model of neurotrauma. NEW METHOD New methods are introduced for traumatizing neurons before imaging them with high speed structured illumination microscopy or lattice light sheet microscopy. Also, methods for analyzing structured illumination microscopy images to quantify post-traumatic neurite dystrophy are presented. RESULTS Human induced pluripotent stem cell-derived neurons exhibited actin organization typical of immature neurons. Neurite dystrophy increased after trauma but was not influenced by jasplakinolide treatment. The F-actin content of dystrophies varied greatly from one dystrophy to another. COMPARISON WITH EXISTING METHODS In contrast to fixation dependent methods, these methods capture the evolution of the actin cytoskeleton over time in a living cell. In contrast to prior methods based on counting dystrophies, this quantification scheme parameterizes the severity of a given dystrophy as it evolves from a local swelling to an almost-perfect spheroid that threatens to transect the neurite. CONCLUSIONS These methods can be used to investigate genetic factors and therapeutic interventions that modulate the course of neurite dystrophy after trauma.
Collapse
|
21
|
Giraud T, Jeanneau C, Bergmann M, Laurent P, About I. Tricalcium Silicate Capping Materials Modulate Pulp Healing and Inflammatory Activity In Vitro. J Endod 2018; 44:1686-1691. [PMID: 30217466 DOI: 10.1016/j.joen.2018.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION On stimulation by lipoteichoic acid or by a physical injury, fibroblasts have been shown to play a major role in the initiation of the pulp inflammatory reaction and healing through secretion of complement proteins and growth factors. The application of direct pulp-capping materials on these cells may interfere with the inflammatory and the healing processes within the pulp's inextensible environment. This work was designed to study in vitro the effects of silicate-based materials on pulp fibroblast modulation of the initial steps of pulp inflammation and healing. METHODS The effects of Biodentine, TheraCal, and Xeno III eluates were studied on lipoteichoic acid-stimulated and physically injured fibroblasts. Cytokine secretion (interleukin 6, vascular endothelial growth factor, fibroblast growth factor-2, and transforming growth factor-β1) was quantified by enzyme-linked immunosorbent assay. Inflammatory THP-1 adhesion to endothelial cells and their migration and activation were studied in vitro. Human pulp fibroblast proliferation was investigated with the MTT test, and their migration to the injury site was studied with the scratch healing assay. RESULTS Interleukin 6 and vascular endothelial growth factor secretion increased with all materials but to a lesser extent with Biodentine. Fibroblast growth factor-2 and transforming growth factor-β1 secretion was significantly higher with Biodentine than with all other materials. THP-1 cell adhesion to endothelial cells and their activation were reduced by Biodentine and TheraCal. However, their migration decreased only with Biodentine. Fibroblast proliferation significantly increased with Biodentine but significantly decreased with Xeno III after day 6. Finally, only Biodentine induced fibroblast migration to the injury site in the scratch assay. CONCLUSIONS These results confirm that pulp-capping materials affect the early steps of pulp inflammation and healing. They show that Biodentine had the highest pulp healing and anti-inflammatory potential when compared with the resin-containing materials. This highlights the interest of the material choice for direct pulp-capping.
Collapse
Affiliation(s)
- Thomas Giraud
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France; APHM, Hôpital Timone, Service d'Odontologie, Marseille, France
| | | | - Madison Bergmann
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Patrick Laurent
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France; APHM, Hôpital Timone, Service d'Odontologie, Marseille, France
| | - Imad About
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France.
| |
Collapse
|
22
|
Romani P, Ignesti M, Gargiulo G, Hsu T, Cavaliere V. Extracellular NME proteins: a player or a bystander? J Transl Med 2018; 98:248-257. [PMID: 29035383 DOI: 10.1038/labinvest.2017.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/27/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
The Nm23/NME gene family has been under intensive study since Nm23H1/NME1 was identified as the first metastasis suppressor. Inverse correlation between the expression levels of NME1/2 and prognosis has indeed been demonstrated in different tumor cohorts. Interestingly, the presence of NME proteins in the extracellular environment in normal and tumoral conditions has also been noted. In many reported cases, however, these extracellular NME proteins exhibit anti-differentiation or oncogenic functions, contradicting their canonical anti-metastatic action. This emerging field thus warrants further investigation. In this review, we summarize the current understanding of extracellular NME proteins. A role in promoting stem cell pluripotency and inducing development of central nervous system as well as a neuroprotective function of extracellular NME have been suggested. Moreover, a tumor-promoting function of extracellular NME also emerged at least in some tumor cohorts. In this complex scenario, the secretory mechanism through which NME proteins exit cells is far from being understood. Recently, some evidence obtained in the Drosophila and cancer cell line models points to the involvement of Dynamin in controlling the balance between intra- and extracellular levels of NME. Further analyses on extracellular NME will lead to a better understanding of its physiological function and in turn will allow understanding of how its deregulation contributes to carcinogenesis.
Collapse
Affiliation(s)
- Patrizia Romani
- Dipartimento di Farmacia e biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italia
| | - Marilena Ignesti
- Dipartimento di Farmacia e biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italia
| | - Giuseppe Gargiulo
- Dipartimento di Farmacia e biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italia
| | - Tien Hsu
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA.,National Central University, Department of Biomedical Sciences and Technology, Jhongli, Taiwan
| | - Valeria Cavaliere
- Dipartimento di Farmacia e biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italia
| |
Collapse
|
23
|
Baez-Jurado E, Hidalgo-Lanussa O, Guio-Vega G, Ashraf GM, Echeverria V, Aliev G, Barreto GE. Conditioned Medium of Human Adipose Mesenchymal Stem Cells Increases Wound Closure and Protects Human Astrocytes Following Scratch Assay In Vitro. Mol Neurobiol 2017; 55:5377-5392. [PMID: 28936798 DOI: 10.1007/s12035-017-0771-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022]
Abstract
Astrocytes perform essential functions in the preservation of neural tissue. For this reason, these cells can respond with changes in gene expression, hypertrophy, and proliferation upon a traumatic brain injury event (TBI). Different therapeutic strategies may be focused on preserving astrocyte functions and favor a non-generalized and non-sustained protective response over time post-injury. A recent strategy has been the use of the conditioned medium of human adipose mesenchymal stem cells (CM-hMSCA) as a therapeutic strategy for the treatment of various neuropathologies. However, although there is a lot of information about its effect on neuronal protection, studies on astrocytes are scarce and its specific action in glial cells is not well explored. In the present study, the effects of CM-hMSCA on human astrocytes subjected to scratch assay were assessed. Our findings indicated that CM-hMSCA improved cell viability, reduced nuclear fragmentation, and preserved mitochondrial membrane potential. These effects were accompanied by morphological changes and an increased polarity index thus reflecting the ability of astrocytes to migrate to the wound stimulated by CM-hMSCA. In conclusion, CM-hMSCA may be considered as a promising therapeutic strategy for the protection of astrocyte function in brain pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Gina Guio-Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Valentina Echeverria
- Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, 33744, USA.,Fac. Cs de la Salud, Universidad San Sebastián, Lientur 1457, 4080871, Concepción, Chile
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia.,GALLY International Biomedical Research Consulting LLC, San Antonio, TX, 78229, USA.,School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, 30097, USA
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia. .,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
24
|
Kim C, Park JM, Kong T, Lee S, Seo KW, Choi Y, Song YS, Moon J. Double-Injected Human Stem Cells Enhance Rehabilitation in TBI Mice Via Modulation of Survival and Inflammation. Mol Neurobiol 2017; 55:4870-4884. [PMID: 28736792 PMCID: PMC5948256 DOI: 10.1007/s12035-017-0683-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/07/2017] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI), a complicated form of brain damage, is a major cause of mortality in adults. Following mechanical and structural primary insults, a battery of secondary insults, including neurotransmitter-mediated cytotoxicity, dysregulation of calcium and macromolecule homeostasis, and increased oxidative stress, exacerbate brain injury and functional deficits. Although stem cell therapy is considered to be an alternative treatment for brain injuries, such as TBI and stroke, many obstacles remain. In particular, the time window for TBI treatment with either drugs or stem cells and their efficacy is still vague. Human placenta-derived mesenchymal stem cells (hpMSCs) have received extensive attention in stem cell therapy because they can be acquired in large numbers without ethical issues and because of their immune-modulating capacity and effectiveness in several diseases, such as Alzheimer’s disease and stroke. Here, we tested the feasibility of hpMSCs for TBI treatment with an animal model and attempted to identify appropriate time points for cell treatments. Double injections at 4 and 24 h post-injury significantly reduced the infarct size and suppressed astrocyte and microglial activation around the injury. With reduced damage, double-injected mice showed enhanced anti-inflammatory- and TNF-α receptor 2 (TNFR2)-associated survival signals and suppressed pro-inflammatory and oxidative responses. In addition, double-treated TBI mice displayed restored sensory motor functions and reduced neurotoxic Aβ42 plaque formation around the damaged areas. In this study, we showed the extended therapeutic potentials of hpMSCs and concluded that treatment within an appropriate time window is critical for TBI recovery.
Collapse
Affiliation(s)
- Chul Kim
- General Research Institute, CHA general Hospital, Seoul, South Korea
| | - Ji-Min Park
- Department of Biotechnology, College of Life Science, CHA University, Pangyo-ro 335 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Seoul, South Korea.,General Research Institute, CHA general Hospital, Seoul, South Korea
| | - TaeHo Kong
- Department of Biotechnology, College of Life Science, CHA University, Pangyo-ro 335 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Seoul, South Korea.,General Research Institute, CHA general Hospital, Seoul, South Korea
| | - Seungmin Lee
- General Research Institute, CHA general Hospital, Seoul, South Korea
| | - Ki-Weon Seo
- General Research Institute, CHA general Hospital, Seoul, South Korea.,SK Chemicals, Eco-Hub, 332 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13493, South Korea
| | - Yuri Choi
- Department of Biotechnology, College of Life Science, CHA University, Pangyo-ro 335 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Seoul, South Korea
| | - Young Sook Song
- General Research Institute, CHA general Hospital, Seoul, South Korea
| | - Jisook Moon
- Department of Biotechnology, College of Life Science, CHA University, Pangyo-ro 335 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Seoul, South Korea. .,General Research Institute, CHA general Hospital, Seoul, South Korea.
| |
Collapse
|
25
|
Sarkis GA, Mangaonkar MD, Moghieb A, Lelling B, Guertin M, Yadikar H, Yang Z, Kobeissy F, Wang KKW. The Application of Proteomics to Traumatic Brain and Spinal Cord Injuries. Curr Neurol Neurosci Rep 2017; 17:23. [DOI: 10.1007/s11910-017-0736-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Shai AN, Fedulova MV, Kvacheva YE, Shigeev SV, Kovalev AV. [The importance of marker proteins of the nervous tissue for morphological diagnostics of the craniocerebral injury]. Sud Med Ekspert 2017; 60:40-45. [PMID: 28766528 DOI: 10.17116/sudmed201760440-45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The present review of the literature involves 50 publications concerning various substrates of importance as the biological markers of axonal damages with special reference to the secondary molecular and cellular mechanisms on which to base in vitro and in vivo modeling of the craniocerebral injury. The results of the investigations with the application of mass-spectrometry for the identification of the proteins specifically synthesized in response to the injury are presented; their biological functions are described. The use of the sequential microscopic imaging technique and the immunohistochemical methods made it possible to determine that the majority of the marker proteins are involved in the specific intracellular processes that are triggered in response to the traumatic impact including apoptosis, proliferation, formation of lamellipodia, axon regeneration, actin remodeling, cell migration and inflammation. In addition, a rise in the amount of intracellular actin-associated proteins has been observed. It is concluded that the investigations into the properties and the physiological role of beta-amyloid precursor protein (beta-APP) are of special value for the characteristic of nervous tissue damages and morphological diagnostics of the craniocerebral injury.
Collapse
Affiliation(s)
- A N Shai
- Russian Federal Centre of Forensic Medical Expertise, Ministry of Health of the Russia, Moscow, Russia, 125284
| | - M V Fedulova
- Russian Federal Centre of Forensic Medical Expertise, Ministry of Health of the Russia, Moscow, Russia, 125284
| | - Yu E Kvacheva
- Russian Federal Centre of Forensic Medical Expertise, Ministry of Health of the Russia, Moscow, Russia, 125284
| | - S V Shigeev
- Russian Federal Centre of Forensic Medical Expertise, Ministry of Health of the Russia, Moscow, Russia, 125284
| | - A V Kovalev
- Russian Federal Centre of Forensic Medical Expertise, Ministry of Health of the Russia, Moscow, Russia, 125284
| |
Collapse
|
27
|
Ghoshal S, Bondada V, Saatman KE, Guttmann RP, Geddes JW. Phage display for identification of serum biomarkers of traumatic brain injury. J Neurosci Methods 2016; 272:33-37. [PMID: 27168498 DOI: 10.1016/j.jneumeth.2016.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND The extent and severity of traumatic brain injuries (TBIs) can be difficult to determine with current diagnostic methods. To address this, there has been increased interest in developing biomarkers to assist in the diagnosis, determination of injury severity, evaluation of recovery and therapeutic efficacy, and prediction of outcomes. Several promising serum TBI biomarkers have been identified using hypothesis-driven approaches, largely examining proteins that are abundant in neurons and non-neural cells in the CNS. NEW METHOD An unbiased approach, phage display, was used to identify serum TBI biomarkers. In this proof-of-concept study, mice received a TBI using the controlled cortical impact model of TBI (1mm injury depth, 3.5m/s velocity) and phage display was utilized to identify putative serum biomarkers at 6h postinjury. RESULTS An engineered phage which preferentially bound to injured serum was sequenced to identify the 12-mer 'recognizer' peptide expressed on the coat protein. Following synthesis of the recognizer peptide, pull down, and mass spectrometry analysis, the target protein was identified as glial fibrillary acidic protein (GFAP). COMPARISON WITH EXISTING METHODS AND CONCLUSIONS GFAP has previously been identified as a promising TBI biomarker. The results provide proof of concept regarding the ability of phage display to identify TBI serum biomarkers. This methodology is currently being applied to serum biomarkers of mild TBI.
Collapse
Affiliation(s)
- Sarbani Ghoshal
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Vimala Bondada
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Kathryn E Saatman
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Rodney P Guttmann
- Department of Gerontology, University of Kentucky, Lexington, KY, USA
| | - James W Geddes
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
28
|
Surgucheva I, He S, Rich MC, Sharma R, Ninkina NN, Stahel PF, Surguchov A. Role of synucleins in traumatic brain injury — an experimental in vitro and in vivo study in mice. Mol Cell Neurosci 2015; 63:114-23. [PMID: 25447944 DOI: 10.1016/j.mcn.2014.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/16/2014] [Accepted: 10/23/2014] [Indexed: 11/25/2022] Open
Abstract
Synucleins are small prone to aggregate proteins associated with several neurodegenerative diseases (NDDs), however their role in traumatic brain injury (TBI) is an emerging area of investigation. Using in vitro scratch injury model and in vivo mouse weight-drop model we have found that the injury causes alterations in the expression and localization of synucleins near the damaged area. Before injury, α-synuclein is diffused in the cytoplasm of neurons and γ-synuclein is both in the cytoplasm and nucleus of oligodendrocytes. After the scratch injury of the mixed neuronal and glial culture, α-synuclein forms punctate structures in the cytoplasm of neurons and γ-synuclein is almost completely localized to the nucleus of the oligodendrocytes. Furthermore, the amount of post-translationally modified Met38-oxidized γ-synuclein is increased 3.8 fold 24 h after the scratch. α- and γ-synuclein containing cells increased in the initially cell free scratch zone up to 24 h after the scratch.Intracellular expression and localization of synucleins are also changed in a mouse model of focal closed head injury, using a standardized weight drop device. γ-Synuclein goes from diffuse to punctate staining in a piriform cortex near the amygdala, which may reflect the first steps in the formation of deposits/inclusions. Surprisingly, oxidized γ-synuclein co-localizes with cofilin-actin rods in the thalamus, which are absent in all other regions of the brain. These structures reach their peak amounts 7 days after injury. The changes in γ-synuclein localization are accompanied by injury-induced alterations in the morphology of both astrocytes and neurons.
Collapse
|
29
|
Brizuela M, Blizzard CA, Chuckowree JA, Dawkins E, Gasperini RJ, Young KM, Dickson TC. The microtubule-stabilizing drug Epothilone D increases axonal sprouting following transection injury in vitro. Mol Cell Neurosci 2015; 66:129-40. [PMID: 25684676 DOI: 10.1016/j.mcn.2015.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 11/26/2022] Open
Abstract
Neuronal cytoskeletal alterations, in particular the loss and misalignment of microtubules, are considered a hallmark feature of the degeneration that occurs after traumatic brain injury (TBI). Therefore, microtubule-stabilizing drugs are attractive potential therapeutics for use following TBI. The best-known drug in this category is Paclitaxel, a widely used anti-cancer drug that has produced promising outcomes when employed in the treatment of various animal models of nervous system trauma. However, Paclitaxel is not ideal for the treatment of patients with TBI due to its limited blood-brain barrier (BBB) permeability. Herein we have characterized the effect of the brain penetrant microtubule-stabilizing agent Epothilone D (Epo D) on post-injury axonal sprouting in an in vitro model of CNS trauma. Epo D was found to modulate axonal sprout number in a dose dependent manner, increasing the number of axonal sprouts generated post-injury. Elevated sprouting was observed when analyzing the total population of injured neurons, as well as in selective analysis of Thy1-YFP-labeled excitatory neurons. However, we found no effect of Epo D on axonal sprout length or outgrowth speed. These findings indicate that Epo D specifically affects injury-induced axonal sprout generation, but not net growth. Our investigation demonstrates that primary cultures of cortical neurons are tolerant of Epo D exposure, and that Epo D significantly increases their regenerative response following structural injury. Therefore Epo D may be a potent therapeutic for enhancing regeneration following CNS injury. This article is part of a Special Issue entitled 'Traumatic Brain Injury'.
Collapse
Affiliation(s)
- Mariana Brizuela
- Menzies Institute for Medical Research Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Jyoti A Chuckowree
- Menzies Institute for Medical Research Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Edgar Dawkins
- Menzies Institute for Medical Research Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Robert J Gasperini
- Menzies Institute for Medical Research Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
30
|
Abstract
Effective traumatic brain injury (TBI) therapeutics remains stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development because it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Finally, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for patients with TBI.
Collapse
Affiliation(s)
- Pavel N. Lizhnyak
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Andrew K. Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
31
|
Lööv C, Nadadhur AG, Hillered L, Clausen F, Erlandsson A. Extracellular ezrin: a novel biomarker for traumatic brain injury. J Neurotrauma 2014; 32:244-51. [PMID: 25087457 DOI: 10.1089/neu.2014.3517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a heterogeneous disease, and the discovery of diagnostic and prognostic TBI biomarkers is highly desirable in order to individualize patient care. We have previously published a study in which we identified possible TBI biomarkers by mass spectrometry 24 h after injury in a cell culture model. Ezrin-radixin-moesin (ERM) proteins were found abundantly in the medium after trauma, and in the present study we have identified extracellular ezrin as a possible biomarker for brain trauma by analyzing cell culture medium from injured primary neurons and glia and by measuring ezrin in cerebrospinal fluid (CSF) from both rats and humans. Our results show that extracellular ezrin concentration was substantially increased in cell culture medium after injury, but that the intracellular expression of the protein remained stable over time. Controlled cortical impact injured rats showed an increased amount of ezrin in CSF at both day 3 and day 7 after trauma. Moreover, ezrin was present in all ventricular CSF samples from seven humans with severe TBI. In contrast to intracellular ezrin, which is distinctly activated following TBI, extracellular ezrin is nonphosphorylated. This is the first report of extracellular ERM proteins in human and experimental models of TBI, providing a scientific foundation for further assessment of ezrin as a potential biomarker.
Collapse
Affiliation(s)
- Camilla Lööv
- 1 Department of Neuroscience, Division of Neurosurgery, Uppsala University Hospital , Uppsala, Sweden
| | | | | | | | | |
Collapse
|
32
|
Combes RD. A critical review of anaesthetised animal models and alternatives for military research, testing and training, with a focus on blast damage, haemorrhage and resuscitation. Altern Lab Anim 2014; 41:385-415. [PMID: 24329746 DOI: 10.1177/026119291304100508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Military research, testing, and surgical and resuscitation training, are aimed at mitigating the consequences of warfare and terrorism to armed forces and civilians. Traumatisation and tissue damage due to explosions, and acute loss of blood due to haemorrhage, remain crucial, potentially preventable, causes of battlefield casualties and mortalities. There is also the additional threat from inhalation of chemical and aerosolised biological weapons. The use of anaesthetised animal models, and their respective replacement alternatives, for military purposes -- particularly for blast injury, haemorrhaging and resuscitation training -- is critically reviewed. Scientific problems with the animal models include the use of crude, uncontrolled and non-standardised methods for traumatisation, an inability to model all key trauma mechanisms, and complex modulating effects of general anaesthesia on target organ physiology. Such effects depend on the anaesthetic and influence the cardiovascular system, respiration, breathing, cerebral haemodynamics, neuroprotection, and the integrity of the blood-brain barrier. Some anaesthetics also bind to the NMDA brain receptor with possible differential consequences in control and anaesthetised animals. There is also some evidence for gender-specific effects. Despite the fact that these issues are widely known, there is little published information on their potential, at best, to complicate data interpretation and, at worst, to invalidate animal models. There is also a paucity of detail on the anaesthesiology used in studies, and this can hinder correct data evaluation. Welfare issues relate mainly to the possibility of acute pain as a side-effect of traumatisation in recovered animals. Moreover, there is the increased potential for animals to suffer when anaesthesia is temporary, and the procedures invasive. These dilemmas can be addressed, however, as a diverse range of replacement approaches exist, including computer and mathematical dynamic modelling of the human body, cadavers, interactive human patient simulators for training, in vitro techniques involving organotypic cultures of target organs, and epidemiological and clinical studies. While the first four of these have long proven useful for developing protective measures and predicting the consequences of trauma, and although many phenomena and their sequelae arising from different forms of trauma in vivo can be induced and reproduced in vitro, non-animal approaches require further development, and their validation and use need to be coordinated and harmonised. Recommendations to these ends are proposed, and the scientific and welfare problems associated with animal models are addressed, with the future focus being on the use of batteries of complementary replacement methods deployed in integrated strategies, and on greater transparency and scientific cooperation.
Collapse
|
33
|
Bigler ED. Neuroimaging biomarkers in mild traumatic brain injury (mTBI). Neuropsychol Rev 2013; 23:169-209. [PMID: 23974873 DOI: 10.1007/s11065-013-9237-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 08/07/2013] [Indexed: 12/14/2022]
Abstract
Reviewed herein are contemporary neuroimaging methods that detect abnormalities associated with mild traumatic brain injury (mTBI). Despite advances in demonstrating underlying neuropathology in a subset of individuals who sustain mTBI, considerable disagreement persists in neuropsychology about mTBI outcome and metrics for evaluation. This review outlines a thesis for the select use of sensitive neuroimaging methods as potential biomarkers of brain injury recognizing that the majority of individuals who sustain an mTBI recover without neuroimaging signs or neuropsychological sequelae detected with methods currently applied. Magnetic resonance imaging (MRI) provides several measures that could serve as mTBI biomarkers including the detection of hemosiderin and white matter abnormalities, assessment of white matter integrity derived from diffusion tensor imaging (DTI), and quantitative measures that directly assess neuroanatomy. Improved prediction of neuropsychological outcomes in mTBI may be achieved with the use of targeted neuroimaging markers.
Collapse
Affiliation(s)
- Erin D Bigler
- Department of Psychology, Brigham Young University, 1001 SWKT, Provo, UT 84602, USA.
| |
Collapse
|