1
|
Soda K. Changes in Whole Blood Polyamine Levels and Their Background in Age-Related Diseases and Healthy Longevity. Biomedicines 2023; 11:2827. [PMID: 37893199 PMCID: PMC10604715 DOI: 10.3390/biomedicines11102827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The relationship between polyamines and healthy longevity has received much attention in recent years. However, conducting research without understanding the properties of polyamines can lead to unexpected pitfalls. The most fundamental consideration in conducting polyamine studies is that bovine serum used for cell culture contains bovine serum amine oxidase. Bovine serum amine oxidase, which is not inactivated by heat treatment, breaks down spermine and spermidine to produce the highly toxic aldehyde acrolein, which causes cell damage and activates autophagy. However, no such enzyme activity has been found in humans. Polyamine catabolism does not produce toxic aldehydes under normal conditions, but inflammation and some pathogens provoke an inducible enzyme, spermine oxidase, which only breaks down spermine to produce acrolein, resulting in cytotoxicity and the activation of autophagy. Therefore, spermine oxidase activation reduces spermine concentration and the ratio of spermine to spermidine, a feature recently reported in patients with age-related diseases. Spermine, which is increased by a long-term, continuous high polyamine diet, suppresses aberrant gene methylation and the pro-inflammatory status that progress with age and are strongly associated with the development of several age-related diseases and senescence. Changes in spermine concentration and the spermine/spermidine ratio should be considered as indicators of human health status.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan;
- Saitama Ken-o Hospital, Saitama 363-0008, Japan
| |
Collapse
|
2
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
3
|
Sanayama H, Ito K, Ookawara S, Uemura T, Sakiyama Y, Sugawara H, Tabei K, Igarashi K, Soda K. Whole Blood Spermine/Spermidine Ratio as a New Indicator of Sarcopenia Status in Older Adults. Biomedicines 2023; 11:biomedicines11051403. [PMID: 37239074 DOI: 10.3390/biomedicines11051403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Early diagnosis and therapeutic intervention improve the quality of life and prognosis of patients with sarcopenia. The natural polyamines spermine and spermidine are involved in many physiological activities. Therefore, we investigated blood polyamine levels as a potential biomarker for sarcopenia. Subjects were Japanese patients >70 years of age who visited outpatient clinics or resided in nursing homes. Sarcopenia was determined based on muscle mass, muscle strength, and physical performance according to the criteria of the Asian Working Group for Sarcopenia (2019). The analysis included 182 patients (male: 38%, age: 83 [76-90] years). Spermidine levels were higher (p = 0.002) and the spermine/spermidine ratio was lower (p < 0.001) in the sarcopenia group than in the non-sarcopenia group. Polyamine concentration analysis showed that the odds ratios for age and spermidine changed in parallel with sarcopenia progression, and the odds ratio for the spermine/spermidine ratio changed inversely with the degree of sarcopenia progression. Additionally, when the odds ratio was analyzed with spermine/spermidine instead of polyamine concentrations, only for spermine/spermidine, the odds ratio values varied in parallel with the progression of sarcopenia. Based on the present data, we believe that the blood spermine/spermidine ratio may be a diagnostic indicator of risk for sarcopenia.
Collapse
Affiliation(s)
- Hidenori Sanayama
- Division of Neurology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Kiyonori Ito
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Takeshi Uemura
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Josai University, Saitama 330-0295, Japan
| | - Yoshio Sakiyama
- Division of Neurology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Hitoshi Sugawara
- Division of General Medicine, Department of Comprehensive Medicine 1, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Kaoru Tabei
- Department of Internal Medicine, Minamiuonuma City Hospital, Niigata 949-6680, Japan
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba 260-0856, Japan
| | - Kuniyasu Soda
- Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
- Saitama Ken-o Hospital, Saitama 363-0008, Japan
| |
Collapse
|
4
|
Soda K. Overview of Polyamines as Nutrients for Human Healthy Long Life and Effect of Increased Polyamine Intake on DNA Methylation. Cells 2022; 11:cells11010164. [PMID: 35011727 PMCID: PMC8750749 DOI: 10.3390/cells11010164] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Polyamines, spermidine and spermine, are synthesized in every living cell and are therefore contained in foods, especially in those that are thought to contribute to health and longevity. They have many physiological activities similar to those of antioxidant and anti-inflammatory substances such as polyphenols. These include antioxidant and anti-inflammatory properties, cell and gene protection, and autophagy activation. We have first reported that increased polyamine intake (spermidine much more so than spermine) over a long period increased blood spermine levels and inhibited aging-associated pathologies and pro-inflammatory status in humans and mice and extended life span of mice. However, it is unlikely that the life-extending effect of polyamines is exerted by the same bioactivity as polyphenols because most studies using polyphenols and antioxidants have failed to demonstrate their life-extending effects. Recent investigations revealed that aging-associated pathologies and lifespan are closely associated with DNA methylation, a regulatory mechanism of gene expression. There is a close relationship between polyamine metabolism and DNA methylation. We have shown that the changes in polyamine metabolism affect the concentrations of substances and enzyme activities involved in DNA methylation. I consider that the increased capability of regulation of DNA methylation by spermine is a key of healthy long life of humans.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City 330-0834, Saitama, Japan
| |
Collapse
|
5
|
Gao P, Ren G. Identification of potential target genes of non-small cell lung cancer in response to resveratrol treatment by bioinformatics analysis. Aging (Albany NY) 2021; 13:23245-23261. [PMID: 34633989 PMCID: PMC8544309 DOI: 10.18632/aging.203616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type in lung cancer in the world, and it severely threatens the life of patients. Resveratrol has been reported to inhibit cancer. However, mechanisms of resveratrol inhibiting NSCLC were unclear. The aim of this study was to identify differentially expressed genes (DEGs) of NSCLC treated with resveratrol and reveal the potential targets of resveratrol in NSCLC. We obtained mRNA expression profiles of two datasets from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) and 271 DEGs were selected for further analysis. Data from STRING shown that 177 nodes and 342 edges were in the protein-protein interaction (PPI) network, and 10 hub genes (ANPEP, CD69, ITGAL, PECAM1, PTPRC, CD34, ITGA1, CCL2, SOX2, and EGFR) were identified by Cytoscape plus-in cytoHubba. Survival analysis revealed that NSCLC patients showing low expression of PECAM1, ANPEP, CD69, ITGAL, and PTPRC were associated with worse overall survival (OS) (P < 0.05), and high expression of SOX2 and EGFR was associated with worse OS for NSCLC patients (P < 0.05). Overall, we identified ANPEP, CD69, ITGAL, and PTPRC as potential candidate genes which were main effects of resveratrol on the treatment of NSCLC. ANPEP, ITGAL, CD69, and PTPRC are all clusters of differentiation (CD) antigens, might be the targets of resveratrol. The bioinformatic results suggested that the inhibitory effect of resveratrol on lung cancer may be related to the immune signaling pathway. Further studies are needed to validate these findings and to explore their functional mechanisms.
Collapse
Affiliation(s)
- Peng Gao
- Institute of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Guanghui Ren
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
6
|
Sagar NA, Tarafdar S, Agarwal S, Tarafdar A, Sharma S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med Sci (Basel) 2021; 9:44. [PMID: 34207607 PMCID: PMC8293435 DOI: 10.3390/medsci9020044] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Putrescine, spermine, and spermidine are the important polyamines (PAs), found in all living organisms. PAs are formed by the decarboxylation of amino acids, and they facilitate cell growth and development via different cellular responses. PAs are the integrated part of the cellular and genetic metabolism and help in transcription, translation, signaling, and post-translational modifications. At the cellular level, PA concentration may influence the condition of various diseases in the body. For instance, a high PA level is detrimental to patients suffering from aging, cognitive impairment, and cancer. The levels of PAs decline with age in humans, which is associated with different health disorders. On the other hand, PAs reduce the risk of many cardiovascular diseases and increase longevity, when taken in an optimum quantity. Therefore, a controlled diet is an easy way to maintain the level of PAs in the body. Based on the nutritional intake of PAs, healthy cell functioning can be maintained. Moreover, several diseases can also be controlled to a higher extend via maintaining the metabolism of PAs. The present review discusses the types, important functions, and metabolism of PAs in humans. It also highlights the nutritional role of PAs in the prevention of various diseases.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Swarnava Tarafdar
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Science, Rishikesh 249203, Uttarakhand, India;
| | - Surbhi Agarwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India;
| | - Sunil Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
| |
Collapse
|
7
|
Soda K, Uemura T, Sanayama H, Igarashi K, Fukui T. Polyamine-Rich Diet Elevates Blood Spermine Levels and Inhibits Pro-Inflammatory Status: An Interventional Study. Med Sci (Basel) 2021; 9:medsci9020022. [PMID: 33805535 PMCID: PMC8103277 DOI: 10.3390/medsci9020022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
The Japanese diet and the Mediterranean diet are rich in polyamines (spermidine and spermine). Increased polyamine intake elevated blood spermine levels, inhibited aging-associated pro-inflammatory status (increases in lymphocyte function-associated antigen-1 (LFA-1) on immune cells), suppressed aberrant gene methylation and extended the lifespan of mice. To test the effects of increased polyamine intake by humans, 30 healthy male volunteers were asked to eat polyamine-rich and ready-to-eat traditional Japanese food (natto) for 12 months. Natto with high polyamine content was used. Another 27 male volunteers were asked not to change their dietary pattern as a control group. The volunteers’ age of intervention and control groups ranged from 40 to 69 years (median 48.9 ± 7.9). Two subjects in the control group subsequently dropped out of the study. The estimated increases in spermidine and spermine intakes were 96.63 ± 47.70 and 22.00 ± 9.56 µmol per day in the intervention group, while no changes were observed in the control group. The mean blood spermine level in the intervention group gradually rose to 1.12 ± 0.29 times the pre-intervention level after 12 months, and were significantly higher (p = 0.019) than those in the control group. Blood spermidine did not increase in either group. LFA-1 on monocytes decreased gradually in the intervention group, and there was an inverse association between changes in spermine concentrations relative to spermidine and changes in LFA-1 levels. Contingency table analysis revealed that the odds ratio to decrease LFA-1 by increased polyamine intake was 3.927 (95% CI 1.116–13.715) (p = 0.032) when the effect of acute inflammation was excluded. The results in the study were similar to those of our animal experiments. Since methylation changes of the entire genome are associated with aging-associated pathologies and our previous studies showed that spermine-induced LFA-1 suppression was associated with the inhibition of aberrant gene methylation, the results suggest that dietary polyamine contributes to human health and longevity.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City, Saitama 330-0834, Japan; (H.S.); (T.F.)
- Correspondence: ; Tel.: +81-48-647-2111
| | - Takeshi Uemura
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba 260-0856, Japan; (T.U.); (K.I.)
| | - Hidenori Sanayama
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City, Saitama 330-0834, Japan; (H.S.); (T.F.)
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba 260-0856, Japan; (T.U.); (K.I.)
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Taro Fukui
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City, Saitama 330-0834, Japan; (H.S.); (T.F.)
| |
Collapse
|
8
|
Correlation of polyamines, acrolein-conjugated lysine and polyamine metabolic enzyme levels with age in human liver. Heliyon 2020; 6:e05031. [PMID: 32995657 PMCID: PMC7512001 DOI: 10.1016/j.heliyon.2020.e05031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
The polyamines spermidine, spermine and putrescine are essential for normal cellular functions. The contents of polyamines in tissue decreased in aged mice compared to young mice. In this study, the polyamine contents and their metabolic byproduct acrolein-conjugated lysine (Nε-(3-formyl-3,4-dehydropiperidino)-lysine, FDP-Lys) in human liver tissue were measured and analyzed the correlation with age of the subjects. The putrescine and FDP-Lys levels were significantly increased with age. On the other hand, spermine level was decreased with age. Spermidine did not significantly correlate with age. The relative amount of spermine oxidase (SMOX) significantly correlated with the age of subjects whereas ornithine decarboxylase (ODC) and adenosylmethionine decarboxylase (AMD1) significantly reduced by the age. Our results suggested that an increase in oxidation and reduction in polyamine synthesis may cause the change of polyamine profile in the elderly.
Collapse
|
9
|
Control of Inflammation by Calorie Restriction Mimetics: On the Crossroad of Autophagy and Mitochondria. Cells 2019; 9:cells9010082. [PMID: 31905682 PMCID: PMC7017321 DOI: 10.3390/cells9010082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial metabolism and autophagy are two of the most metabolically active cellular processes, playing a crucial role in regulating organism longevity. In fact, both mitochondrial dysfunction or autophagy decline compromise cellular homeostasis and induce inflammation. Calorie restriction (CR) is the oldest strategy known to promote healthspan, and a plethora of CR mimetics have been used to emulate its beneficial effects. Herein, we discuss how CR and CR mimetics, by modulating mitochondrial metabolism or autophagic flux, prevent inflammatory processes, protect the intestinal barrier function, and dampen both inflammaging and neuroinflammation. We outline the effects of some compounds classically known as modulators of autophagy and mitochondrial function, such as NAD+ precursors, metformin, spermidine, rapamycin, and resveratrol, on the control of the inflammatory cascade and how these anti-inflammatory properties could be involved in their ability to increase resilience to age-associated diseases.
Collapse
|
10
|
Sánchez-Jiménez F, Medina MÁ, Villalobos-Rueda L, Urdiales JL. Polyamines in mammalian pathophysiology. Cell Mol Life Sci 2019; 76:3987-4008. [PMID: 31227845 PMCID: PMC11105599 DOI: 10.1007/s00018-019-03196-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
Polyamines (PAs) are essential organic polycations for cell viability along the whole phylogenetic scale. In mammals, they are involved in the most important physiological processes: cell proliferation and viability, nutrition, fertility, as well as nervous and immune systems. Consequently, altered polyamine metabolism is involved in a series of pathologies. Due to their pathophysiological importance, PA metabolism has evolved to be a very robust metabolic module, interconnected with the other essential metabolic modules for gene expression and cell proliferation/differentiation. Two different PA sources exist for animals: PA coming from diet and endogenous synthesis. In the first section of this work, the molecular characteristics of PAs are presented as determinant of their roles in living organisms. In a second section, the metabolic specificities of mammalian PA metabolism are reviewed, as well as some obscure aspects on it. This second section includes information on mammalian cell/tissue-dependent PA-related gene expression and information on crosstalk with the other mammalian metabolic modules. The third section presents a synthesis of the physiological processes described as modulated by PAs in humans and/or experimental animal models, the molecular bases of these regulatory mechanisms known so far, as well as the most important gaps of information, which explain why knowledge around the specific roles of PAs in human physiology is still considered a "mysterious" subject. In spite of its robustness, PA metabolism can be altered under different exogenous and/or endogenous circumstances so leading to the loss of homeostasis and, therefore, to the promotion of a pathology. The available information will be summarized in the fourth section of this review. The different sections of this review also point out the lesser-known aspects of the topic. Finally, future prospects to advance on these still obscure gaps of knowledge on the roles on PAs on human physiopathology are discussed.
Collapse
Affiliation(s)
- Francisca Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Lorena Villalobos-Rueda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
| | - José Luis Urdiales
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain.
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain.
| |
Collapse
|
11
|
Fukui T, Soda K, Takao K, Rikiyama T. Extracellular Spermine Activates DNA Methyltransferase 3A and 3B. Int J Mol Sci 2019; 20:E1254. [PMID: 30871110 PMCID: PMC6429523 DOI: 10.3390/ijms20051254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 01/10/2023] Open
Abstract
We first demonstrated that long-term increased polyamine (spermine, spermidine, putrescine) intake elevated blood spermine levels in mice and humans, and lifelong consumption of polyamine-rich chow inhibited aging-associated increase in aberrant DNA methylation, inhibited aging-associated pathological changes, and extend lifespan of mouse. Because gene methylation status is closely associated with aging-associated conditions and polyamine metabolism is closely associated with regulation of gene methylation, we investigated the effects of extracellular spermine supplementation on substrate concentrations and enzyme activities involved in gene methylation. Jurkat cells and human mammary epithelial cells were cultured with spermine and/or D,L-alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase. Spermine supplementation inhibited enzymatic activities of adenosylmethionine decarboxylase in both cells. The ratio of decarboxylated S-adenosylmethionine to S-adenosyl-L-methionine increased by DFMO and decreased by spermine. In Jurkat cells cultured with DFMO, the protein levels of DNA methyltransferases (DNMTs) 1, 3A and 3B were not changed, however the activity of the three enzymes markedly decreased. The protein levels of these enzymes were not changed by addition of spermine, DNMT 3A and especially 3B were activated. We show that changes in polyamine metabolism dramatically affect substrate concentrations and activities of enzymes involved in gene methylation.
Collapse
Affiliation(s)
- Taro Fukui
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-city, Saitama 330-8503, Japan.
| | - Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University, Saitama-city, Saitama 330-8503, Japan.
| | - Koichi Takao
- Laboratory of Cellular Physiology, Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan.
| | - Toshiki Rikiyama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-city, Saitama 330-8503, Japan.
| |
Collapse
|
12
|
Soda K. Polyamine Metabolism and Gene Methylation in Conjunction with One-Carbon Metabolism. Int J Mol Sci 2018; 19:E3106. [PMID: 30309036 PMCID: PMC6213949 DOI: 10.3390/ijms19103106] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Recent investigations have revealed that changes in DNA methylation status play an important role in aging-associated pathologies and lifespan. The methylation of DNA is regulated by DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) in the presence of S-adenosylmethionine (SAM), which serves as a methyl group donor. Increased availability of SAM enhances DNMT activity, while its metabolites, S-adenosyl-l-homocysteine (SAH) and decarboxylated S-adenosylmethionine (dcSAM), act to inhibit DNMT activity. SAH, which is converted from SAM by adding a methyl group to cytosine residues in DNA, is an intermediate precursor of homocysteine. dcSAM, converted from SAM by the enzymatic activity of adenosylmethionine decarboxylase, provides an aminopropyl group to synthesize the polyamines spermine and spermidine. Increased homocysteine levels are a significant risk factor for the development of a wide range of conditions, including cardiovascular diseases. However, successful homocysteine-lowering treatment by vitamins (B6, B12, and folate) failed to improve these conditions. Long-term increased polyamine intake elevated blood spermine levels and inhibited aging-associated pathologies in mice and humans. Spermine reversed changes (increased dcSAM, decreased DNMT activity, aberrant DNA methylation, and proinflammatory status) induced by the inhibition of ornithine decarboxylase. The relation between polyamine metabolism, one-carbon metabolism, DNA methylation, and the biological mechanism of spermine-induced lifespan extension is discussed.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma, Omiya, Saitama-city, Saitama Prefecture 330-8503, Japan.
| |
Collapse
|
13
|
Hachimura S, Totsuka M, Hosono A. Immunomodulation by food: impact on gut immunity and immune cell function. Biosci Biotechnol Biochem 2018; 82:584-599. [PMID: 29448897 DOI: 10.1080/09168451.2018.1433017] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have revealed that various food components affect the immune response. These components act on various immune cells, and their effects are mediated through the intestinal immune system and, in some cases, the intestinal microbiota. In this review, we describe the immunomodulating effects of various food components, including probiotics, prebiotics, polysaccharides, vitamins, minerals, fatty acids, peptides, amino acids and polyphenols. Some of these components enhance immune responses, leading to host defense against infection, whereas others inhibit immune responses, thus suppressing allergy and inflammation.
Collapse
Affiliation(s)
- Satoshi Hachimura
- a Research Center for Food Safety, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Japan
| | - Mamoru Totsuka
- b Department of Food Science and Technology, Faculty of Applied Life Science , Nippon Veterinary and Life Science University , Japan
| | - Akira Hosono
- c Department of Food Bioscience and Biotechnology, College of Bioresource Sciences , Nihon University , Japan
| |
Collapse
|
14
|
Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science 2018; 359:359/6374/eaan2788. [DOI: 10.1126/science.aan2788] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Matatiele P, Tikly M, Tarr G, Gulumian M. DNA methylation similarities in genes of black South Africans with systemic lupus erythematosus and systemic sclerosis. J Biomed Sci 2015; 22:34. [PMID: 25986394 PMCID: PMC4437745 DOI: 10.1186/s12929-015-0142-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/01/2015] [Indexed: 02/07/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) are systemic autoimmune connective tissue diseases that share overlapping clinico-pathological features. It is highly probable that there is an overlap in epigenetic landscapes of both diseases. This study aimed to identify similarities in DNA methylation changes in genes involved in SLE and SSc. Global DNA methylation and twelve genes selected on the basis of their involvement in inflammation, autoimmunity and/or fibrosis were analyzed using PCR arrays in three groups, each of 30 Black South Africans with SLE and SSc, plus 40 healthy control subjects. Results Global methylation in both diseases was significantly lower (<25 %) than in healthy subjects (>30 %, p = 0.0000001). In comparison to healthy controls, a similar gene-specific methylation pattern was observed in both SLE and SSc. Three genes, namely; PRF1, ITGAL and FOXP3 were consistently hypermethylated while CDKN2A and CD70 were hypomethylated in both diseases. The other genes (SOCS1, CTGF, THY1, CXCR4, MT1-G, FLI1, and DNMT1) were generally hypomethylated in SLE whereas they were neither hyper- nor hypo-methylated in SSc. Conclusions SSc and SLE patients have a higher global hypomethylation than healthy subjects with specific genes being hypomethylated and others hypermethylated. The majority of genes studied were hypomethylated in SLE compared to SSc. In addition to the commonly known hypomethylated genes in SLE and SSc, there are other hypomethylated genes (such as MT-1G and THY-1) that have not previously been investigated in SLE and SSc though are known to be hypermethylated in cancer.
Collapse
Affiliation(s)
- Puleng Matatiele
- Toxicology & Biochemistry Research Section, National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa.
| | - Mohamed Tikly
- Division of Rheumatology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Gareth Tarr
- Division of Rheumatology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Toxicology & Biochemistry Research Section, National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa. .,Division of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
16
|
Soda K. Biological Effects of Polyamines on the Prevention of Aging-associated Diseases and on Lifespan Extension. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University
| |
Collapse
|
17
|
Wang X, Stearns NA, Li X, Pisetsky DS. The effect of polyamines on the binding of anti-DNA antibodies from patients with SLE and normal human subjects. Clin Immunol 2014; 153:94-103. [PMID: 24732074 DOI: 10.1016/j.clim.2014.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 11/18/2022]
Abstract
Antibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus (SLE). To elucidate specificity further, the effect of polyamines on the binding of anti-DNA antibodies from patients with lupus was tested by ELISA to calf thymus (CT) DNA; we also assessed the binding of plasmas of patients and normal human subjects (NHS) to Micrococcus luteus (MC) DNA. As these studies showed, spermine can dose-dependently inhibit SLE anti-DNA binding to CT DNA and can promote dissociation of preformed immune complexes. With MC DNA as antigen, spermine failed to inhibit the NHS anti-DNA binding. Studies using plasmas adsorbed to a CT DNA cellulose affinity indicated that SLE plasmas are mixtures of anti-DNA that differ in inhibition by spermine and binding to conserved and non-conserved determinants. Together, these studies demonstrate that spermine can influence the binding of anti-DNA autoantibodies and may contribute to the antigenicity of DNA.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Rheumatology, Qilu Hospital, Shandong University, Jinan, China; Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC, USA
| | - Nancy A Stearns
- Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC, USA; Duke University Medical Center, Durham, NC, USA
| | - Xingfu Li
- Department of Rheumatology, Qilu Hospital, Shandong University, Jinan, China
| | - David S Pisetsky
- Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC, USA; Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
18
|
Soda K. Polyamines. J JPN SOC FOOD SCI 2014. [DOI: 10.3136/nskkk.61.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University
| |
Collapse
|
19
|
Soda K, Kano Y, Chiba F, Koizumi K, Miyaki Y. Increased polyamine intake inhibits age-associated alteration in global DNA methylation and 1,2-dimethylhydrazine-induced tumorigenesis. PLoS One 2013; 8:e64357. [PMID: 23696883 PMCID: PMC3655973 DOI: 10.1371/journal.pone.0064357] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 04/12/2013] [Indexed: 11/18/2022] Open
Abstract
Polyamines (spermine and spermidine) play many important roles in cellular function and are supplied from the intestinal lumen. We have shown that continuous high polyamine intake inhibits age-associated pathologies in mice. The mechanism by which polyamines elicit these effects was examined. Twenty-four week old Jc1:ICR male mice were fed one of three experimental chows containing different polyamine concentrations. Lifetime intake of high polyamine chow, which had a polyamine content approximately three times higher than regular chow, elevated polyamine concentrations in whole blood, suppressed age-associated increases in pro-inflammatory status, decreased age-associated pathological changes, inhibited age-associated global alteration in DNA methylation status and reduced the mortality in aged mice. Exogenous spermine augmented DNA methyltransferase activity in Jurkat and HT-29 cells and inhibited polyamine deficiency-induced global alteration in DNA methylation status in vitro. In addition, increased polyamine intake was associated with a decreased incidence of colon tumors in BALB/c mice after 1,2-demethylhydrazine administration; 12 mice (60%) in the low polyamine group developed tumors, compared with only 5 mice (25%) in the high polyamine group (Fisher's exact probability = 0.027, p = 0.025). However, increased polyamine intake accelerated the growth of established tumors; maximal tumor diameter in the Low and High groups was 3.85±0.90 mm and 5.50±1.93 mm, respectively (Mann-Whitney test, p = 0.039). Spermine seems to play important roles in inhibiting age-associated and polyamine-deficient induced abnormal gene methylation as well as pathological changes including tumorigenesis.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Department of Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University, Saitama-city, Saitama, Japan.
| | | | | | | | | |
Collapse
|