1
|
Neufeld B, Munyuza C, Reimer A, Capiña R, Lee ER, Becker M, Sandstrom P, Ji H, Cholette F. A validated in-house assay for HIV drug resistance mutation surveillance from dried blood spot specimens. J Virol Methods 2024; 327:114939. [PMID: 38604585 DOI: 10.1016/j.jviromet.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Despite increasing scale-up of antiretroviral therapy (ART) coverage, challenges related to adherence and HIV drug resistance (HIVDR) remain. The high cost of HIVDR surveillance is a persistent challenge with implementation in resource-constrained settings. Dried blood spot (DBS) specimens have been demonstrated to be a feasible alternative to plasma or serum for HIVDR genotyping and are more suitable for lower resource settings. There is a need for affordable HIVDR genotyping assays which can amplify HIV-1 sequences from DBS specimens, particularly those with low viral loads, at a low cost. Here, we present an in-house assay capable of reliably amplifying HIV-1 protease and partial reverse transcriptase genes from DBS specimens, which covers the complete World Health Organization 2009 list of drug resistance mutations under surveillance. DBS specimens were prepared using whole blood spiked with HIV-1 at concentrations of 10,000, 5000, 1000, and 500 copies/mL (n=30 for each concentration). Specimens were tested in triplicate. A two-step approach was used consisting of cDNA synthesis followed by nested PCR. The limit of detection of the assay was calculated to be approximately 5000 (95% CI: 3200-10,700) copies/mL for the protease gene and 3600 (95% CI: 2200-10,000) copies/mL for reverse transcriptase. The assay was observed to be most sensitive with higher viral load specimens (97.8% [95% CI: 92.2-99.7]) for both protease and reverse transcriptase at 10,000 copies/mL with performance decreasing with the use of specimens with lower viral loads (46.7% [36.1-57.5] and 60.0% [49.1-70.2] at 500 copies/mL for protease and reverse transcriptase, respectively). Ultimately, this assay presents a promising opportunity for use in resource-constrained settings. Future work should involve validation under field conditions including sub-optimal storage conditions and preparation of DBS with fingerprick blood in order to accurately reflect real-world collection scenarios.
Collapse
Affiliation(s)
- Bronwyn Neufeld
- National Sexually Transmitted and Blood-Borne Infections Laboratory, J.C. Wilt Infectious Diseases Research Centre at the National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada.
| | - Chantal Munyuza
- National Sexually Transmitted and Blood-Borne Infections Laboratory, J.C. Wilt Infectious Diseases Research Centre at the National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Alexandria Reimer
- National Sexually Transmitted and Blood-Borne Infections Laboratory, J.C. Wilt Infectious Diseases Research Centre at the National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Rupert Capiña
- National Sexually Transmitted and Blood-Borne Infections Laboratory, J.C. Wilt Infectious Diseases Research Centre at the National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Emma R Lee
- National Sexually Transmitted and Blood-Borne Infections Laboratory, J.C. Wilt Infectious Diseases Research Centre at the National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Marissa Becker
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Paul Sandstrom
- National Sexually Transmitted and Blood-Borne Infections Laboratory, J.C. Wilt Infectious Diseases Research Centre at the National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Hezhao Ji
- National Sexually Transmitted and Blood-Borne Infections Laboratory, J.C. Wilt Infectious Diseases Research Centre at the National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada; Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - François Cholette
- National Sexually Transmitted and Blood-Borne Infections Laboratory, J.C. Wilt Infectious Diseases Research Centre at the National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada; Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
2
|
Ji H, Sandstrom P. Overview of the Analytes Applied in Genotypic HIV Drug Resistance Testing. Pathogens 2022; 11:pathogens11070739. [PMID: 35889985 PMCID: PMC9321895 DOI: 10.3390/pathogens11070739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023] Open
Abstract
The close monitoring of HIV drug resistance using genotypic HIV drug resistance testing (HIVDRT) has become essential for effective HIV/AIDS management at both individual and population levels. Over the years, a broad spectrum of analytes or specimens have been applied or attempted in HIVDRT; however, the suitability and performance of these analytes in HIVDRT and the clinical relevance of the results from them may vary significantly. This article provides a focused overview of the performance, strengths, and weaknesses of various analytes while used in HIVDRT, which may inform the optimal analytes selection in different application contexts.
Collapse
Affiliation(s)
- Hezhao Ji
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada;
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +1-204-789-6521
| | - Paul Sandstrom
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada;
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
3
|
Omooja J, Bbosa N, Lule DB, Nannyonjo M, Lunkuse S, Nassolo F, Nabirye SE, Suubi HN, Kaleebu P, Ssemwanga D. HIV-1 drug resistance genotyping success rates and correlates of Dried-blood spots and plasma specimen genotyping failure in a resource-limited setting. BMC Infect Dis 2022; 22:474. [PMID: 35581555 PMCID: PMC9112432 DOI: 10.1186/s12879-022-07453-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND HIV-1 drug resistance genotyping is critical to the monitoring of antiretroviral treatment. Data on HIV-1 genotyping success rates of different laboratory specimen types from multiple sources is still scarce. METHODS In this cross-sectional study, we determined the laboratory genotyping success rates (GSR) and assessed the correlates of genotyping failure of 6837 unpaired dried blood spot (DBS) and plasma specimens. Specimens from multiple studies in a resource-constrained setting were analysed in our laboratory between 2016 and 2019. RESULTS We noted an overall GSR of 65.7% and specific overall GSR for DBS and plasma of 49.8% and 85.9% respectively. The correlates of genotyping failure were viral load (VL) < 10,000 copies/mL (aOR 0.3 95% CI: 0.24-0.38; p < 0.0001), lack of viral load testing prior to genotyping (OR 0.85 95% CI: 0.77-0.94; p = 0.002), use of DBS specimens (aOR 0.10 95% CI: 0.08-0.14; p < 0.0001) and specimens from routine clinical diagnosis (aOR 1.4 95% CI: 1.10-1.75; p = 0.005). CONCLUSIONS We report rapidly decreasing HIV-1 genotyping success rates between 2016 and 2019 with increased use of DBS specimens for genotyping and note decreasing median viral loads over the years. We recommend improvement in DBS handling, pre-genotyping viral load testing to screen samples to enhance genotyping success and the development of more sensitive assays with well-designed primers to genotype specimens with low or undetectable viral load, especially in this era where virological suppression rates are rising due to increased antiretroviral therapy roll-out.
Collapse
Affiliation(s)
- Jonah Omooja
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda.
| | - Nicholas Bbosa
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Dan Bugembe Lule
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Maria Nannyonjo
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Sandra Lunkuse
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Faridah Nassolo
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Stella Esther Nabirye
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Hamidah Namagembe Suubi
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Uganda Virus Research Institute, Entebbe, Uganda
- London School of Hygiene and Tropical Medicine, London, UK
| | - Deogratius Ssemwanga
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda.
- Uganda Virus Research Institute, Entebbe, Uganda.
- London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
4
|
Next-Generation Sequencing for HIV Drug Resistance Testing: Laboratory, Clinical, and Implementation Considerations. Viruses 2020; 12:v12060617. [PMID: 32516949 PMCID: PMC7354449 DOI: 10.3390/v12060617] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 01/01/2023] Open
Abstract
Higher accessibility and decreasing costs of next generation sequencing (NGS), availability of commercial kits, and development of dedicated analysis pipelines, have allowed an increasing number of laboratories to adopt this technology for HIV drug resistance (HIVDR) genotyping. Conventional HIVDR genotyping is traditionally carried out using population-based Sanger sequencing, which has a limited capacity for reliable detection of variants present at intra-host frequencies below a threshold of approximately 20%. NGS has the potential to improve sensitivity and quantitatively identify low-abundance variants, improving efficiency and lowering costs. However, some challenges exist for the standardization and quality assurance of NGS-based HIVDR genotyping. In this paper, we highlight considerations of these challenges as related to laboratory, clinical, and implementation of NGS for HIV drug resistance testing. Several sources of variation and bias occur in each step of the general NGS workflow, i.e., starting material, sample type, PCR amplification, library preparation method, instrument and sequencing chemistry-inherent errors, and data analysis options and limitations. Additionally, adoption of NGS-based HIVDR genotyping, especially for clinical care, poses pressing challenges, especially for resource-poor settings, including infrastructure and equipment requirements and cost, logistic and supply chains, instrument service availability, personnel training, validated laboratory protocols, and standardized analysis outputs. The establishment of external quality assessment programs may help to address some of these challenges and is needed to proceed with NGS-based HIVDR genotyping adoption.
Collapse
|
5
|
Ji H, Sandstrom P, Paredes R, Harrigan PR, Brumme CJ, Avila Rios S, Noguera-Julian M, Parkin N, Kantor R. Are We Ready for NGS HIV Drug Resistance Testing? The Second "Winnipeg Consensus" Symposium. Viruses 2020; 12:E586. [PMID: 32471096 PMCID: PMC7354487 DOI: 10.3390/v12060586] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
HIV drug resistance is a major global challenge to successful and sustainable antiretroviral therapy. Next-generation sequencing (NGS)-based HIV drug resistance (HIVDR) assays enable more sensitive and quantitative detection of drug-resistance-associated mutations (DRMs) and outperform Sanger sequencing approaches in detecting lower abundance resistance mutations. While NGS is likely to become the new standard for routine HIVDR testing, many technical and knowledge gaps remain to be resolved before its generalized adoption in regular clinical care, public health, and research. Recognizing this, we conceived and launched an international symposium series on NGS HIVDR, to bring together leading experts in the field to address these issues through in-depth discussions and brainstorming. Following the first symposium in 2018 (Winnipeg, MB Canada, 21-22 February, 2018), a second "Winnipeg Consensus" symposium was held in September 2019 in Winnipeg, Canada, and was focused on external quality assurance strategies for NGS HIVDR assays. In this paper, we summarize this second symposium's goals and highlights.
Collapse
Affiliation(s)
- Hezhao Ji
- National HIV and Retrovirology Laboratories at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada;
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Paul Sandstrom
- National HIV and Retrovirology Laboratories at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada;
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, s/n, 08916 Badalona, Catalonia, Spain; (R.P.); (M.N.-J.)
- Infectious Diseases Department, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain
| | - P. Richard Harrigan
- Division of AIDS, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada;
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Santiago Avila Rios
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City 14080, Mexico;
| | - Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, s/n, 08916 Badalona, Catalonia, Spain; (R.P.); (M.N.-J.)
- Chair in AIDS and Related Illnesses, Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic–Central University of Catalonia (UVic–UCC), Can Baumann, Ctra. de Roda, 70, 08500 Vic, Spain
| | - Neil Parkin
- Data First Consulting Inc., Sebastopol, CA 95472, USA;
| | - Rami Kantor
- Division of Infectious Diseases, Brown University Alpert Medical School, Providence, RI 02906, USA;
| |
Collapse
|
6
|
Nasir IA, Emeribe AU, Ojeamiren I, Aderinsayo Adekola H. Human Immunodeficiency Virus Resistance Testing Technologies and Their Applicability in Resource-Limited Settings of Africa. Infect Dis (Lond) 2017; 10:1178633717749597. [PMID: 29308013 PMCID: PMC5751912 DOI: 10.1177/1178633717749597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/26/2017] [Indexed: 01/03/2023] Open
Abstract
There has been tremendous breakthrough in the development of technologies and protocols for counselling, testing, and surveillance of resistant human immunodeficiency virus strains for efficient prognosis and clinical management aimed at improving the quality of life of infected persons. However, we have not arrived at a point where services rendered using these technologies can be made affordable and accessible to resource-limited settings. There are several technologies for monitoring antiretroviral resistance, each with unique merits and demerits. In this study, we review the strengths and limitations of prospective and affordable technologies with emphasis on those that could be used in resource-limited settings.
Collapse
Affiliation(s)
- Idris Abdullahi Nasir
- Department of Medical Microbiology and Parasitology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,Department of Medical Laboratory Services, University of Abuja Teaching Hospital, FCT Abuja, Nigeria.,Department of Medical Laboratory Science, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | | | - Iduda Ojeamiren
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Hafeez Aderinsayo Adekola
- Department of Medical Microbiology and Parasitology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
7
|
Singh D, Dhummakupt A, Siems L, Persaud D. Alternative Sample Types for HIV-1 Antiretroviral Drug Resistance Testing. J Infect Dis 2017; 216:S834-S837. [PMID: 29029130 DOI: 10.1093/infdis/jix386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Monitoring human immunodeficiency virus type 1 (HIV-1) drug resistance is critical for assessing ART effectiveness and treatment outcomes for HIV-1-infected individuals, including children, worldwide. Traditionally, testing for HIV-1 drug resistance has primarily been performed on plasma samples, and with commercially available, clinically validated assays that are costly and difficult to access. While plasma is the preferred sample for HIV-1 drug resistance genotyping, plasma analysis requires sophisticated laboratory equipment, personnel, space, and stringent storage conditions for maintenance of sample integrity and transport. With the limitations in feasibility and affordability of providing these ideal conditions for plasma genotyping in resource-constrained settings, the field has gained substantial experience with the dried blood spot (DBS) technique as an alternative. Moreover, DBS analysis can be used to comprehensively monitor the spread of the epidemic with applications to more-sensitive and quantitative technologies to assess HIV-1 globally.
Collapse
Affiliation(s)
- Dolly Singh
- Department of Pediatrics, Johns Hopkins University School of Medicine
| | - Adit Dhummakupt
- Department of Pediatrics, Johns Hopkins University School of Medicine
| | - Lilly Siems
- Department of Pediatrics, Johns Hopkins University School of Medicine
| | - Deborah Persaud
- Department of Pediatrics, Johns Hopkins University School of Medicine
| |
Collapse
|
8
|
Brumme CJ, Poon AFY. Promises and pitfalls of Illumina sequencing for HIV resistance genotyping. Virus Res 2016; 239:97-105. [PMID: 27993623 DOI: 10.1016/j.virusres.2016.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022]
Abstract
Genetic sequencing ("genotyping") plays a critical role in the modern clinical management of HIV infection. This virus evolves rapidly within patients because of its error-prone reverse transcriptase and short generation time. Consequently, HIV variants with mutations that confer resistance to one or more antiretroviral drugs can emerge during sub-optimal treatment. There are now multiple HIV drug resistance interpretation algorithms that take the region of the HIV genome encoding the major drug targets as inputs; expert use of these algorithms can significantly improve to clinical outcomes in HIV treatment. Next-generation sequencing has the potential to revolutionize HIV resistance genotyping by lowering the threshold that rare but clinically significant HIV variants can be detected reproducibly, and by conferring improved cost-effectiveness in high-throughput scenarios. In this review, we discuss the relative merits and challenges of deploying the Illumina MiSeq instrument for clinical HIV genotyping.
Collapse
Affiliation(s)
- Chanson J Brumme
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Art F Y Poon
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The review discusses new technologies for the sensitive detection of HIV drug resistance, with a focus on applications in antiretroviral treatment (ART)-naïve populations. RECENT FINDINGS Conventional sequencing is well established for detecting HIV drug resistance in routine care and guides optimal treatment selection in patients starting ART. Access to conventional sequencing is nearly universal in Western countries, but remains limited in Asia, Latin America, and Africa. Technological advances now allow detection of resistance with greatly improved sensitivity compared with conventional sequencing, variably increasing the yield of resistance testing in ART-naïve populations. There is strong cumulative evidence from retrospective studies that sensitive detection of resistant mutants in baseline plasma samples lacking resistance by conventional sequencing more than doubles the risk of virological failure after starting efavirenz-based or nevirapine-based ART. SUMMARY Sensitive resistance testing methods are mainly confined to research applications and in this context have provided great insight into the dynamics of drug resistance development, persistence, and transmission. Adoption in care settings is becoming increasingly possible, although important challenges remain. Platforms for diagnostic use must undergo technical improvements to ensure good performance and ease of use, and clinical validation is required to ensure utility.
Collapse
|
10
|
Ji H, Kozak RA, Biondi MJ, Pilon R, Vallee D, Liang BB, La D, Kim J, Van Domselaar G, Leonard L, Sandstrom P, Brooks J. Next generation sequencing of the hepatitis C virus NS5B gene reveals potential novel S282 drug resistance mutations. Virology 2015; 477:1-9. [PMID: 25600207 DOI: 10.1016/j.virol.2014.12.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/11/2014] [Accepted: 12/23/2014] [Indexed: 01/06/2023]
Abstract
Identifying HCV drug resistance mutations (DRMs) is increasingly important as new direct acting antiviral therapies (DAA) become available. Tagged pooled pyrosequencing (TPP) was originally developed as cost-effective approach for detecting low abundance HIV DRMs. Using 127 HCV-positive samples from a Canadian injection drug user cohort, we demonstrated the suitability and efficiency of TPP for evaluating DRMs in HCV NS5B gene. At a mutation identification threshold of 1%, no nucleoside inhibitor DRMs were detected among these DAA naïve subjects. Clinical NS5B resistance to non-nucleoside inhibitors and interferon/ribavirin was predicted to be low within this cohort. S282T mutation, the primary mutation selected by sofosbuvir in vitro, was not identified while S282G/C/R variants were detected in 9 subjects. Further characterization on these new S282 variants using in silico molecular modeling implied their potential association with resistance. Combining TPP with in silico analysis detects NS5B polymorphisms that may explain differences in treatment outcomes.
Collapse
Affiliation(s)
- Hezhao Ji
- National HIV & Retrovirology Laboratories, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada
| | - Robert A Kozak
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Mia J Biondi
- Arthur Labatt Family School of Nursing, Western University, London, Canada
| | - Richard Pilon
- National HIV & Retrovirology Laboratories, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada
| | - Dominic Vallee
- National HIV & Retrovirology Laboratories, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada
| | - Ben Binhua Liang
- Bioinformatics Core, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada
| | - David La
- Bioinformatics Core, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada
| | - John Kim
- National HIV & Retrovirology Laboratories, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada
| | - Gary Van Domselaar
- Bioinformatics Core, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada
| | - Lynne Leonard
- Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, Canada
| | - Paul Sandstrom
- National HIV & Retrovirology Laboratories, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada
| | - James Brooks
- National HIV & Retrovirology Laboratories, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Canada.
| |
Collapse
|
11
|
HIV diversity and drug resistance from plasma and non-plasma analytes in a large treatment programme in western Kenya. J Int AIDS Soc 2014; 17:19262. [PMID: 25413893 PMCID: PMC4238965 DOI: 10.7448/ias.17.1.19262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/23/2014] [Accepted: 10/10/2014] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Antiretroviral resistance leads to treatment failure and resistance transmission. Resistance data in western Kenya are limited. Collection of non-plasma analytes may provide additional resistance information. METHODS We assessed HIV diversity using the REGA tool, transmitted resistance by the WHO mutation list and acquired resistance upon first-line failure by the IAS-USA mutation list, at the Academic Model Providing Access to Healthcare (AMPATH), a major treatment programme in western Kenya. Plasma and four non-plasma analytes, dried blood-spots (DBS), dried plasma-spots (DPS), ViveST(TM)-plasma (STP) and ViveST-blood (STB), were compared to identify diversity and evaluate sequence concordance. RESULTS Among 122 patients, 62 were treatment-naïve and 60 treatment-experienced; 61% were female, median age 35 years, median CD4 182 cells/µL, median viral-load 4.6 log10 copies/mL. One hundred and ninety-six sequences were available for 107/122 (88%) patients, 58/62 (94%) treatment-naïve and 49/60 (82%) treated; 100/122 (82%) plasma, 37/78 (47%) attempted DBS, 16/45 (36%) attempted DPS, 14/44 (32%) attempted STP from fresh plasma and 23/34 (68%) from frozen plasma, and 5/42 (12%) attempted STB. Plasma and DBS genotyping success increased at higher VL and shorter shipment-to-genotyping time. Main subtypes were A (62%), D (15%) and C (6%). Transmitted resistance was found in 1.8% of plasma sequences, and 7% combining analytes. Plasma resistance mutations were identified in 91% of treated patients, 76% NRTI, 91% NNRTI; 76% dual-class; 60% with intermediate-high predicted resistance to future treatment options; with novel mutation co-occurrence patterns. Nearly 88% of plasma mutations were identified in DBS, 89% in DPS and 94% in STP. Of 23 discordant mutations, 92% in plasma and 60% in non-plasma analytes were mixtures. Mean whole-sequence discordance from frozen plasma reference was 1.1% for plasma-DBS, 1.2% plasma-DPS, 2.0% plasma-STP and 2.3% plasma-STB. Of 23 plasma-STP discordances, one mutation was identified in plasma and 22 in STP (p<0.05). Discordance was inversely significantly related to VL for DBS. CONCLUSIONS In a large treatment programme in western Kenya, we report high HIV-1 subtype diversity; low plasma transmitted resistance, increasing when multiple analytes were combined; and high-acquired resistance with unique mutation patterns. Resistance surveillance may be augmented by using non-plasma analytes for lower-cost genotyping in resource-limited settings.
Collapse
|
12
|
Quiñones-Mateu ME, Avila S, Reyes-Teran G, Martinez MA. Deep sequencing: becoming a critical tool in clinical virology. J Clin Virol 2014; 61:9-19. [PMID: 24998424 DOI: 10.1016/j.jcv.2014.06.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/12/2014] [Accepted: 06/14/2014] [Indexed: 02/07/2023]
Abstract
Population (Sanger) sequencing has been the standard method in basic and clinical DNA sequencing for almost 40 years; however, next-generation (deep) sequencing methodologies are now revolutionizing the field of genomics, and clinical virology is no exception. Deep sequencing is highly efficient, producing an enormous amount of information at low cost in a relatively short period of time. High-throughput sequencing techniques have enabled significant contributions to multiples areas in virology, including virus discovery and metagenomics (viromes), molecular epidemiology, pathogenesis, and studies of how viruses to escape the host immune system and antiviral pressures. In addition, new and more affordable deep sequencing-based assays are now being implemented in clinical laboratories. Here, we review the use of the current deep sequencing platforms in virology, focusing on three of the most studied viruses: human immunodeficiency virus (HIV), hepatitis C virus (HCV), and influenza virus.
Collapse
Affiliation(s)
- Miguel E Quiñones-Mateu
- University Hospital Translational Laboratory, University Hospitals Case Medical Center, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Santiago Avila
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; Centro de Investigaciones en Enfermedades Infecciosas, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; Centro de Investigaciones en Enfermedades Infecciosas, Mexico City, Mexico
| | - Miguel A Martinez
- Fundació irsicaixa, Universitat Autònoma de Barcelona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|