1
|
Moretti EH, Rodrigues AC, Marques BV, Totola LT, Ferreira CB, Brito CF, Matos CM, da Silva FA, Santos RAS, Lopes LB, Moreira TS, Akamine EH, Baccala LA, Fujita A, Steiner AA. Autoregulation of blood flow drives early hypotension in a rat model of systemic inflammation induced by bacterial lipopolysaccharide. PNAS NEXUS 2023; 2:pgad014. [PMID: 36874271 PMCID: PMC9982072 DOI: 10.1093/pnasnexus/pgad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Uncontrolled vasodilation is known to account for hypotension in the advanced stages of sepsis and other systemic inflammatory conditions, but the mechanisms of hypotension in earlier stages of such conditions are not clear. By monitoring hemodynamics with the highest temporal resolution in unanesthetized rats, in combination with ex-vivo assessment of vascular function, we found that early development of hypotension following injection of bacterial lipopolysaccharide is brought about by a fall in vascular resistance when arterioles are still fully responsive to vasoactive agents. This approach further uncovered that the early development of hypotension stabilized blood flow. We thus hypothesized that prioritization of the local mechanisms of blood flow regulation (tissue autoregulation) over the brain-driven mechanisms of pressure regulation (baroreflex) underscored the early development of hypotension in this model. Consistent with this hypothesis, an assessment of squared coherence and partial-directed coherence revealed that, at the onset of hypotension, the flow-pressure relationship was strengthened at frequencies (<0.2 Hz) known to be associated with autoregulation. The autoregulatory escape to phenylephrine-induced vasoconstriction, another proxy of autoregulation, was also strengthened in this phase. The competitive demand that drives prioritization of flow over pressure regulation could be edema-associated hypovolemia, as this became detectable at the onset of hypotension. Accordingly, blood transfusion aimed at preventing hypovolemia brought the autoregulation proxies back to normal and prevented the fall in vascular resistance. This novel hypothesis opens a new avenue of investigation into the mechanisms that can drive hypotension in systemic inflammation.
Collapse
Affiliation(s)
- Eduardo H Moretti
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 1730, Sao Paulo, SP 05508-000, Brazil
| | - Abner C Rodrigues
- Instituto Internacional de Neurociencias Edmond e Lily Safra, Instituto de Ensino e Pesquisa Alberto Santos Dumont, Macaiba, RN 59288-899, Brazil
| | - Bruno V Marques
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Leonardo T Totola
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Caroline B Ferreira
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil.,Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213-2548, USA
| | - Camila F Brito
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 1730, Sao Paulo, SP 05508-000, Brazil
| | - Caroline M Matos
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 1730, Sao Paulo, SP 05508-000, Brazil
| | - Filipe A da Silva
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologias, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Robson A S Santos
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologias, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Luciana B Lopes
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Thiago S Moreira
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Eliana H Akamine
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Luiz A Baccala
- Departamento de Engenharia de Telecomunicacoes e Controle, Escola Politecnica, Universidade de Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - André Fujita
- Departamento de Estatistica, Instituto de Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo, SP 05508-090, Brazil
| | - Alexandre A Steiner
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 1730, Sao Paulo, SP 05508-000, Brazil
| |
Collapse
|
2
|
Bioactive imidamide-based compounds targeted against nitric oxide synthase. Bioorg Chem 2022; 120:105637. [DOI: 10.1016/j.bioorg.2022.105637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 12/30/2022]
|
3
|
Roberts AM, Moulana NZ, Jagadapillai R, Cai L, Gozal E. Intravital assessment of precapillary pulmonary arterioles of type 1 diabetic mice shows oxidative damage and increased tone in response to NOS inhibition. J Appl Physiol (1985) 2021; 131:1552-1564. [PMID: 34590907 DOI: 10.1152/japplphysiol.00395.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022] Open
Abstract
Microvascular dilation, important for peripheral tissue glucose distribution, also modulates alveolar perfusion and is inhibited by loss of bioavailable nitric oxide (NO) in diabetes mellitus (DM). We hypothesized that DM-induced oxidative stress decreases bioavailable NO and pulmonary precapillary arteriolar diameter, causing endothelial injury. We examined subpleural pulmonary arterioles after acute NO synthase (NOS) inhibition with NG-nitro-l-arginine methyl ester (l-NAME) in streptozotocin (STZ)- and saline (CTRL)-treated C57BL/6J mice. Microvascular changes were assessed by intravital microscopy in the right lung of anesthetized mice with open chest and ventilated lungs. Arteriolar tone in pulmonary arterioles (27.2-48.7 µm diameter) increased in CTRL mice (18.0 ± 11% constriction, P = 0.034, n = 5) but decreased in STZ mice (13.6 ± 7.5% dilation, P = 0.009, n = 5) after l-NAME. Lung tissue dihydroethidium (DHE) fluorescence (superoxide), inducible NOS expression, and protein nitrosylation (3-nitrotyrosine) increased in STZ mice and correlated with increased glucose levels (103.8 ± 8.8 mg/dL). Fluorescently labeled fibrinogen administration and fibrinogen immunostaining showed fibrinogen adhesion, indicating endothelial injury in STZ mice. In CTRL mice, vasoconstriction to l-NAME was likely due to the loss of bioavailable NO. Vasodilation in STZ mice may be due to decreased formation of a vasoconstrictor or emergence of a vasodilator. These findings provide novel evidence that DM targets the pulmonary microcirculation and that decreased NO bioavailability and increased precapillary arteriolar tone could potentially lead to ventilation-perfusion abnormalities, exacerbating systemic DM complications.NEW & NOTEWORTHY Diabetes pulmonary and microvascular consequences are well recognized but have not been characterized. We assessed lung microvascular changes in a live anesthetized mouse model of type 1 diabetes, using a novel intravital microscopy technique. Our results show new evidence that a diabetes-induced decrease in lung nitric oxide bioavailability underlies oxidative damage, enhanced platelet activation, and endothelial injury causing pulmonary microvascular dysfunction and altered vasoreactivity. These findings could provide novel strategies to prevent or reverse diabetes systemic consequences.
Collapse
Affiliation(s)
- Andrew M Roberts
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky
| | - Nayeem Z Moulana
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Rekha Jagadapillai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky
| | - Evelyne Gozal
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
4
|
Mori T, Hotta Y, Nakamura D, Yahagi R, Kataoka T, Kimura K. Enhancement of the RhoA/Rho kinase pathway is associated with stress-related erectile dysfunction in a restraint water immersion stress model. Physiol Rep 2021; 9:e15064. [PMID: 34676688 PMCID: PMC8531601 DOI: 10.14814/phy2.15064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Stress is a risk factor for erectile dysfunction (ED); however, the pathology of stress-induced ED remains unclear. Accordingly, in this study, we investigated the mechanisms of stress-induced ED using a rat model. Ten-week-old male Wistar/ST rats were maintained in a cage filled with water to a height of 2 cm (stress group) or a normal cage (control group). We found that water immersion stress significantly enhanced the contractile response to noradrenaline in the corpus cavernosum (CC) (p < 0.05). Moreover, stress significantly decreased erectile function, as assessed by changes in intracavernous pressure (p < 0.01). In addition, Rho kinase-1 (ROCK-1) protein expression was significantly upregulated under stress conditions (p < 0.05), and phosphorylated myosin light chain (phospho-MLC) levels, contribute to smooth muscle contraction, were also upregulated (p < 0.01). Treatment with fasudil hydrochloride, a Rho kinase inhibitor, for 5 days significantly improved erectile function (p < 0.01) and normalized ROCK-1 and phospho-MLC levels (p < 0.01). Thus, the RhoA/Rho kinase pathway may be associated with stress-induced ED via contraction of CC. Stress also decreased the smooth muscle/collagen ratio of CC (p < 0.01), and fasudil treatment did not alleviate these effects (p = 0.50). These findings suggested that penile fibrosis gradually progressed under stress conditions and that fibrosis may be independent of the RhoA/Rho kinase pathway, implying that longer exposure to stress may promote ED. We conclude that stress-induced ED was caused by contraction of CC mediated by the RhoA/Rho kinase pathway.
Collapse
Affiliation(s)
- Taiki Mori
- Department of Hospital PharmacyGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Yuji Hotta
- Department of Hospital PharmacyGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Daigaku Nakamura
- Department of Hospital PharmacyGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Ryo Yahagi
- Department of Hospital PharmacyGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Tomoya Kataoka
- Department of Clinical PharmaceuticsGraduate School of Medical SciencesNagoya City UniversityNagoyaJapan
| | - Kazunori Kimura
- Department of Hospital PharmacyGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
- Department of Clinical PharmaceuticsGraduate School of Medical SciencesNagoya City UniversityNagoyaJapan
| |
Collapse
|
5
|
Rho-Proteins and Downstream Pathways as Potential Targets in Sepsis and Septic Shock: What Have We Learned from Basic Research. Cells 2021; 10:cells10081844. [PMID: 34440613 PMCID: PMC8391638 DOI: 10.3390/cells10081844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023] Open
Abstract
Sepsis and septic shock are associated with acute and sustained impairment in the function of the cardiovascular system, kidneys, lungs, liver, and brain, among others. Despite the significant advances in prevention and treatment, sepsis and septic shock sepsis remain global health problems with elevated mortality rates. Rho proteins can interact with a considerable number of targets, directly affecting cellular contractility, actin filament assembly and growing, cell motility and migration, cytoskeleton rearrangement, and actin polymerization, physiological functions that are intensively impaired during inflammatory conditions, such as the one that occurs in sepsis. In the last few decades, Rho proteins and their downstream pathways have been investigated in sepsis-associated experimental models. The most frequently used experimental design included the exposure to bacterial lipopolysaccharide (LPS), in both in vitro and in vivo approaches, but experiments using the cecal ligation and puncture (CLP) model of sepsis have also been performed. The findings described in this review indicate that Rho proteins, mainly RhoA and Rac1, are associated with the development of crucial sepsis-associated dysfunction in different systems and cells, including the endothelium, vessels, and heart. Notably, the data found in the literature suggest that either the inhibition or activation of Rho proteins and associated pathways might be desirable in sepsis and septic shock, accordingly with the cellular system evaluated. This review included the main findings, relevance, and limitations of the current knowledge connecting Rho proteins and sepsis-associated experimental models.
Collapse
|
6
|
Daci A, Da Dalt L, Alaj R, Shurdhiqi S, Neziri B, Ferizi R, Danilo Norata G, Krasniqi S. Rivaroxaban improves vascular response in LPS-induced acute inflammation in experimental models. PLoS One 2020; 15:e0240669. [PMID: 33301454 PMCID: PMC7728205 DOI: 10.1371/journal.pone.0240669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Rivaroxaban (RVX) was suggested to possess anti-inflammatory and vascular tone modulatory effects. The goal of this study was to investigate whether RVX impacts lipopolysaccharide (LPS)-induced acute vascular inflammatory response. Male rats were treated with 5 mg/kg RVX (oral gavage) followed by 10 mg/kg LPS i.p injection. Circulating levels of IL-6, MCP-1, VCAM-1, and ICAM-1 were measured in plasma 6 and 24 hours after LPS injection, while isolated aorta was used for gene expression analysis, immunohistochemistry, and vascular tone evaluation. RVX pre-treatment significantly reduced LPS mediated increase after 6h and 24h for IL-6 (4.4±2.2 and 2.8±1.7 fold), MCP-1 (1.4±1.5 and 1.3±1.4 fold) VCAM-1 (1.8±2.0 and 1.7±2.1 fold). A similar trend was observed in the aorta for iNOS (5.5±3.3 and 3.3±1.9 folds reduction, P<0.01 and P<0.001, respectively), VCAM-1 (1.3±1.2 and 1.4±1.3 fold reduction, P<0.05), and MCP-1 (3.9±2.2 and 1.9±1.6 fold reduction, P<0.01). Moreover, RVX pre-treatment, improved LPS-induced PE contractile dysfunction in aortic rings (Control vs LPS, Emax reduction = 35.4 and 31.19%, P<0.001; Control vs LPS+RVX, Emax reduction = 10.83 and 11.48%, P>0.05, respectively), resulting in 24.5% and 19.7% change in maximal constriction in LPS and LPS+RVX respectively. These data indicate that RVX pre-treatment attenuates LPS-induced acute vascular inflammation and contractile dysfunction.
Collapse
Affiliation(s)
- Armond Daci
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Lorenzo Da Dalt
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rame Alaj
- Cardiovascular Surgery Clinic, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Shpejtim Shurdhiqi
- Cardiovascular Surgery Clinic, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Burim Neziri
- Institute of Pathophysiology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Rrahman Ferizi
- Department of Premedical Courses-Biology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Giuseppe Danilo Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Centro SISA per lo Studio dell’Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
| | - Shaip Krasniqi
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- * E-mail:
| |
Collapse
|
7
|
Chiu WC, Chiang JY, Juang JM, Wu CK, Tsai CT, Tseng YZ, Su MJ, Chiang FT. Reduction of blood pressure elevation by losartan in spontaneously hypertensive rats through suppression of LARG expression in vascular smooth muscle cells. J Formos Med Assoc 2020; 119:164-172. [DOI: 10.1016/j.jfma.2019.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/22/2018] [Accepted: 03/21/2019] [Indexed: 10/27/2022] Open
|
8
|
Kang W, Cheng Y, Zhou F, Wang L, Zhong L, Li HT, Wang X, Dang S, Wang X. Neuregulin‑1 protects cardiac function in septic rats through multiple targets based on endothelial cells. Int J Mol Med 2019; 44:1255-1266. [PMID: 31432099 PMCID: PMC6713419 DOI: 10.3892/ijmm.2019.4309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/28/2019] [Indexed: 01/21/2023] Open
Abstract
The primary mechanism underlying sepsis-induced cardiac dysfunction is loss of endothelial barrier function. Neuregulin-1 (NRG-1) exerts its functions on multiple targets. The present study aimed to identify the protective effects of NRG-1 in myocardial cells, including endothelial, anti-inflammatory and anti-apoptotic effects. Subsequent to lipopolysaccharide (LPS)-induced sepsis, rats were administered with either a vehicle or recombinant human NRG-1 (rhNRG-1; 10 µg/kg/day) for one or two days. H9c2 cardio-myoblasts were subjected to LPS (10 µg/ml) treatment for 12 and 24 h with or without rhNRG-1 (1 µg/ml). Survival rates were recorded at 48 h following sepsis induction. The hemo-dynamic method was performed to evaluate cardiac function, and myocardial morphology was observed. Von Willebrand Factor levels were detected using an immunofluorescence assay. Serum levels of tumor necrosis factor α, interleukin-6, intercellular cell adhesion molecule-1 and vascular endothelial growth factor were detected using an enzyme-linked immuno-sorbent assay; the reductase method was performed to detect serum nitric oxide levels. Apoptosis rates were determined using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Ras homolog family member A (RhoA) and Rho-associated protein kinase 1 (ROCK1) protein levels were assessed using western blotting. Transmission electron microscopy was used to observe endothelial cells and myocardial ultrastructure changes. Results revealed that NRG-1-treated rats displayed less myocardial damage compared with sham rats. NRG-1 administration strengthened the barrier function of the vasculature, reduced the secretion of endothelial-associated biomarkers and exerted anti-inflammatory and anti-apoptotic effects. In addition, NRG-1 inhibited RhoA and ROCK1 signaling. The results revealed that NRG-1 improves cardiac function, increases the survival rate of septic rats and exerts protective effects via multiple targets throughout the body. The present results contribute to the development of a novel approach to reverse damage to myocardial and endothelial cells during sepsis.
Collapse
Affiliation(s)
- Wen Kang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Liang Zhong
- Department of Anesthesiology, Wuhan Medical and Healthcare Center for Women and Children, Wuhan, Hubei 430060, P.R. China
| | - Hai Tao Li
- Department of Cardiology, Hainan General Hospital, Haikou, Hainan 570100, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Song Dang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xin Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
9
|
Wilson JL, Warburton R, Taylor L, Toksoz D, Hill N, Polgar P. Unraveling endothelin-1 induced hypercontractility of human pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. PLoS One 2018; 13:e0195780. [PMID: 29649319 PMCID: PMC5897024 DOI: 10.1371/journal.pone.0195780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/29/2018] [Indexed: 01/05/2023] Open
Abstract
Contraction of human pulmonary artery smooth muscle cells (HPASMC) isolated from pulmonary arterial hypertensive (PAH) and normal (non-PAH) subject lungs was determined and measured with real-time electrical impedance. Treatment of HPASMC with vasoactive peptides, endothelin-1 (ET-1) and bradykinin (BK) but not angiotensin II, induced a temporal decrease in the electrical impedance profile mirroring constrictive morphological change of the cells which typically was more robust in PAH as opposed to non-PAH cells. Inhibition with LIMKi3 and a cofilin targeted motif mimicking cell permeable peptide (MMCPP) had no effect on ET-1 induced HPASMC contraction indicating a negligible role for these actin regulatory proteins. On the other hand, a MMCPP blocking the activity of caldesmon reduced ET-1 promoted contraction pointing to a regulatory role of this protein and its activation pathway in HPASMC contraction. Inhibition of this MEK/ERK/p90RSK pathway, which is an upstream regulator of caldesmon phosphorylation, reduced ET-1 induced cell contraction. While the regulation of ET-1 induced cell contraction was found to be similar in PAH and non-PAH cells, a key difference was the response to pharmacological inhibitors and to siRNA knockdown of Rho kinases (ROCK1/ROCK2). The PAH cells required much higher concentrations of inhibitors to abrogate ET-1 induced contractions and their contraction was not affected by siRNA against either ROCK1 or ROCK2. Lastly, blocking of L-type and T-type Ca2+ channels had no effect on ET-1 or BK induced contraction. However, inhibiting the activity of the sarcoplasmic reticulum Ca2+ ATPase blunted ET-1 and BK induced HPASMC contraction in both PAH and non-PAH derived HPASMC. In summary, our findings here together with previous communications illustrate similarities and differences in the regulation PAH and non-PAH smooth muscle cell contraction relating to calcium translocation, RhoA/ROCK signaling and the activity of caldesmon. These findings may provide useful tools in achieving the regulation of the vascular hypercontractility taking place in PAH.
Collapse
Affiliation(s)
- Jamie L. Wilson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| | - Rod Warburton
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Linda Taylor
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Deniz Toksoz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Nicholas Hill
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Peter Polgar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Xu Y, Ma X, Xiong Q, Hu X, Zhang X, Yuan Y, Bao Y. Association between serum osteocalcin level and blood pressure in a Chinese population. Blood Press 2017; 27:106-111. [PMID: 29172726 DOI: 10.1080/08037051.2017.1408005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yiting Xu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Qin Xiong
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Xiang Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Xueli Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Yeqing Yuan
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| |
Collapse
|
11
|
Wang XQ, Zhang YP, Zhang LM, Feng NN, Zhang MZ, Zhao ZG, Niu CY. Resveratrol enhances vascular reactivity in mice following lipopolysaccharide challenge via the RhoA-ROCK-MLCP pathway. Exp Ther Med 2017; 14:308-316. [PMID: 28672931 PMCID: PMC5488661 DOI: 10.3892/etm.2017.4486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/31/2017] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to identify whether sepsis-induced vascular hyporeactivity is associated with microcirculation disturbance and multiple organ injuries. The current study assessed the impact of resveratrol (Res) treatment on lipopolysaccharide (LPS) challenge mediated vascular hyporeactivity. Effects of Res treatment (30 mg/kg; i.m.) at 1 h following LPS stimulation (5 mg/kg; i.v.) on the survival time, mean arterial pressure (MAP), and maximal difference of MAP (ΔMAP) to norepinephrine (NE; 4.2 µg/kg) in mice were observed. The reactivity to gradient NE of isolated mesenteric arterioles and the association with the RhoA-RhoA kinase (ROCK)-myosin light chain phosphatase (MLCP) pathway were investigated by myography, and the signaling molecule protein levels were assessed using ELISA. Res treatment prolonged the survival time of mice subjected to LPS challenge, but did not prevent the LPS-induced hypotension and increase in ΔMAP. Res treatment and RhoA agonist U-46619 incubation prevented LPS-induced vascular hyporeactivity ex vivo, which were suppressed by incubation with ROCK inhibitor Y-27632. LPS-induced vascular hyporeactivity was not affected by the MLCP inhibitor okadaic acid incubation, but was further downregulated by the co-incubation of OA plus Y-27632. The inhibiting effect of Y-27632 on Res treatment was eradicated by incubation with U-46619. Furthermore, RhoA inhibitor C3 transferase did not significantly inhibit the enhancing role of Res treatment, which was further increased by U-46619 plus C3 transferase co-incubation. In addition, Res treatment eradicated the LPS-induced decreases in p-RhoA and p-Mypt1 levels and increases in MLCP levels. The results of the present study indicate that post-treatment of Res significantly ameliorates LPS-induced vascular hyporeactivity, which is associated with the activation of the RhoA-ROCK-MLCP pathway.
Collapse
Affiliation(s)
- Xu-Qing Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Yu-Ping Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Li-Min Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Niu-Niu Feng
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Ming-Zhu Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Chun-Yu Niu
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| |
Collapse
|
12
|
Lin CK, Bai MY, Hu TM, Wang YC, Chao TK, Weng SJ, Huang RL, Su PH, Lai HC. Preclinical evaluation of a nanoformulated antihelminthic, niclosamide, in ovarian cancer. Oncotarget 2016; 7:8993-9006. [PMID: 26848771 PMCID: PMC4891020 DOI: 10.18632/oncotarget.7113] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer treatment remains a challenge and targeting cancer stem cells presents a promising strategy. Niclosamide is an “old” antihelminthic drug that uncouples mitochondria of intestinal parasites. Although recent studies demonstrated that niclosamide could be a potential anticancer agent, its poor water solubility needs to be overcome before further preclinical and clinical investigations can be conducted. Therefore, we evaluated a novel nanosuspension of niclosamide (nano-NI) for its effect against ovarian cancer. Nano-NI effectively inhibited the growth of ovarian cancer cells in which it induced a metabolic shift to glycolysis at a concentration of less than 3 μM in vitro and suppressed tumor growth without obvious toxicity at an oral dose of 100 mg/kg in vivo. In a pharmacokinetic study after oral administration, nano-NI showed rapid absorption (reaching the maximum plasma concentration within 5 min) and improved the bioavailability (the estimated bioavailability for oral nano-NI was 25%). In conclusion, nano-NI has the potential to be a new treatment modality for ovarian cancer and, therefore, further clinical trials are warranted.
Collapse
Affiliation(s)
- Chi-Kang Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei, Taiwan
| | - Meng-Yi Bai
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Teh-Min Hu
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chi Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shao-Ju Weng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Rui-Lan Huang
- Department of Obstetrics and Gynecology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Hsuan Su
- Department of Obstetrics and Gynecology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Cheng Lai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Ding R, Zhao D, Li X, Liu B, Ma X. Rho-kinase inhibitor treatment prevents pulmonary inflammation and coagulation in lipopolysaccharide-induced lung injury. Thromb Res 2016; 150:59-64. [PMID: 28043040 DOI: 10.1016/j.thromres.2016.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022]
Abstract
INTRODUCTION In the pathogenesis of sepsis-induced acute lung injury (ALI), the crosstalk between inflammation and coagulation plays a pivotal role. The aim of this study was to investigate the role of Rho kinase (ROCK) inhibitor in alleviating pulmonary inflammation and coagulation in lipopolysaccharide (LPS)-induced acute lung injury (ALI) models. METHODS In the in vivo study, mice were randomized to four different groups: Control, Y-27632 (Y), LPS, and LPS+Y-27632 (LPS+Y). ALI was induced by intranasally administering LPS (10μg in 50μL PBS). Y-27632 (10mg/kg body weight,) was injected intraperitoneally at 18h and 1h before LPS challenge. Mice were euthanized at 3h or 8h post LPS challenge (N=8 per group). In the in vitro study, human pulmonary microvascular endothelial cells (HPMECs) were incubated with LPS alone (1μg/mL) or in combination with 10μM Y-27632 or 50μM BAY11-7082. Cells were pretreated with the inhibitors 30min before exposure to LPS. Three hours later, cells were isolated for subsequent analysis. RESULTS The myeloperoxidase (MPO) activity and fibrinogen deposits in the lung tissue significantly decreased and the lung damage in ALI mouse was attenuated. Pretreatment with Y-27632 markedly reduced the LPS-induced expression of interleukins 1β and 6, and the activation of nuclear factor (NF)-κB. Furthermore, ROCK inhibitor treatment antagonized the expression of tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 in lung tissue and HPMECs. CONCLUSIONS ROCK inhibition protects against the endotoxin-induced pulmonary inflammation and coagulation via NF-kappaB pathway modulation.
Collapse
Affiliation(s)
- Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China.
| | - Dongmei Zhao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China
| | - Xiaoxia Li
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China
| | - Baoyan Liu
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China
| | - Xiaochun Ma
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China.
| |
Collapse
|
14
|
Ding R, Han J, Zhao D, Hu Z, Ma X. Pretreatment with Rho-kinase inhibitor ameliorates lethal endotoxemia-induced liver injury by improving mitochondrial function. Int Immunopharmacol 2016; 40:125-130. [PMID: 27588912 DOI: 10.1016/j.intimp.2016.08.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/09/2016] [Accepted: 08/26/2016] [Indexed: 12/26/2022]
Abstract
Rho kinase (ROCK) inhibition has been reported to improve various inflammatory diseases including endotoxemia. Mitochondrial dysfunction might be the key to the pathophysiology of sepsis-induced organ failure. Therefore, this study aimed to explore whether ROCK inhibition protects against the liver injury by regulating mitochondrial function in endotoxemia model mice. The mice were randomly divided into four groups (N=6-8 per group): control, LPS, LPS+Y-27632 (LPS+Y), and LPS+Mito-TEMPO (LPS+M). For induction of endotoxin-induced acute liver injury, the mice were intraperitoneally administered lipopolysaccharide (LPS, 20mg/kg). The ROCK inhibitor Y-27632 (or mitochondrial antioxidant Mito-TEMPO) was intraperitoneally administered at 18 and 1h before injection of LPS. The mice were euthanized 8h after LPS administration. The liver and blood samples were taken and preserved for analysis. Results of this study showed that pretreatment with Y-27632 or Mito-TEMPO significantly attenuated the liver injury as compared to the LPS group. This was confirmed by decreased plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and by reduced hepatocellular apoptosis and histologic damage. Pretreatment with Y-27632 or Mito-TEMPO markedly reduced the LPS-induced inflammatory response and oxidative stress the in liver. Furthermore, it showed similar protective effects on the hepatic mitochondrial function, including an increased activity of complexes I and IV and mitochondrial superoxide dismutase (MnSOD), and an upregulated expression of mtDNA-encoded genes. Taken together, these data demonstrate that Mito-TEMPO can potently inhibit the endotoxin-induced mitochondrial and hepatic abnormalities and indicate that mitochondrial dysfunction might play a key role in the endotoxemia-induced acute liver injury. Moreover, our study shows that ROCK inhibition protects against the endotoxemia-induced liver injury by improving the mitochondrial function.
Collapse
Affiliation(s)
- Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China.
| | - Jiali Han
- Department of Otolaryngology, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China
| | - Dongmei Zhao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China
| | - Ziwei Hu
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China
| | - Xiaochun Ma
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China.
| |
Collapse
|
15
|
Forteza R, Figueroa Y, Mashukova A, Dulam V, Salas PJ. Conditional knockout of polarity complex (atypical) PKCι reveals an anti-inflammatory function mediated by NF-κB. Mol Biol Cell 2016; 27:2186-97. [PMID: 27226486 PMCID: PMC4945138 DOI: 10.1091/mbc.e16-02-0086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/20/2016] [Indexed: 01/27/2023] Open
Abstract
Atypical PKC, Par6, and Par3 constitute a conserved complex signaling cell asymmetry. In contrast to its role in other tissues, atypical PKC inhibits NF-κB activation in epithelia and may function in maintaining low levels of inflammation in addition to establishing apicobasal polarity. The conserved proteins of the polarity complex made up of atypical PKC (aPKC, isoforms ι and ζ), Par6, and Par3 determine asymmetry in several cell types, from Caenorhabditis elegans oocytes to vertebrate epithelia and neurons. We previously showed that aPKC is down-regulated in intestinal epithelia under inflammatory stimulation. Further, expression of constitutively active PKCι decreases NF-κB activity in an epithelial cell line, the opposite of the effect reported in other cells. Here we tested the hypothesis that aPKC has a dual function in epithelia, inhibiting the NF-κB pathway in addition to having a role in apicobasal polarity. We achieved full aPKC down-regulation in small intestine villi and colon surface epithelium using a conditional epithelium-specific knockout mouse. The results show that aPKC is dispensable for polarity after cell differentiation, except for known targets, including ROCK and ezrin, claudin-4 expression, and barrier permeability. The aPKC defect resulted in increased NF-κB activity, which could be rescued by IKK and ROCK inhibitors. It also increased expression of proinflammatory cytokines. In contrast, expression of anti-inflammatory IL-10 decreased. We conclude that epithelial aPKC acts upstream of multiple mechanisms that participate in the inflammatory response in the intestine, including, but not restricted to, NF-κB.
Collapse
Affiliation(s)
- Radia Forteza
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Yolanda Figueroa
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Anastasia Mashukova
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136 Department of Physiology, Nova Southeastern University, Ft. Lauderdale, FL 33314
| | - Vipin Dulam
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Pedro J Salas
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
16
|
Preau S, Delguste F, Yu Y, Remy-Jouet I, Richard V, Saulnier F, Boulanger E, Neviere R. Endotoxemia Engages the RhoA Kinase Pathway to Impair Cardiac Function By Altering Cytoskeleton, Mitochondrial Fission, and Autophagy. Antioxid Redox Signal 2016; 24:529-42. [PMID: 26602979 DOI: 10.1089/ars.2015.6421] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS The RhoA/ROCK pathway controls crucial biological processes involved in cardiovascular pathophysiology, such as cytoskeleton dynamics, vascular smooth muscle contraction, and inflammation. In this work, we tested whether Rho kinase inhibition would beneficially impact cardiac cytoskeleton organization, bioenergetics, and autophagy in experimental endotoxemia induced by lipopolysaccharides (LPSs) in mice. RESULTS Fasudil, a potent ROCK inhibitor, prevented LPS-induced cardiac inflammation, oxidative stress, cytoskeleton disarray, and mitochondrial injury. ROCK inhibition prevented phosphorylation of cofilin and dynamin-related protein-1, which promotes stabilization-polymerization of F-actin and mediates mitochondrial fission, respectively. Pyr1, which exclusively alters actin dynamics, prevented LPS-induced myocardial dysfunction, suggesting that beneficial impact of ROCK inhibition was not mainly related to pleiotropic effects of fasudil on cardiac inflammation and oxidative stress. Fasudil reduced mitochondrial fragmentation, stimulated initiation of autophagy, and elicited cardioprotection in LPS heart. Mdivi-1, a potent mitochondria fission inhibitor, converted cardioprotective autophagy to an inefficient form due to cargo loading failure in which autophagic vacuoles fail to trap cytosolic cargo, despite their formation at enhanced rates and lysosomal elimination. INNOVATION In experimental endotoxemia, cardioprotection by RhoA/ROCK inhibition may be related to changes in actin cytoskeleton reorganization and mitochondrial homeostasis. Improvement of LPS-induced mitochondrial dysfunction by fasudil was attributed to inhibition of ROCK-dependent Drp1 phosphorylation and activation of autophagic processes that can limit mitochondrial fragmentation and enhance degradation of damaged mitochondria, respectively. CONCLUSION Fasudil prevented LPS-induced heart oxidative stress, abnormal F-actin distribution, and oxidative phosphorylation, which concur to improve cardiac contractile and bioenergetic function. We suggest that fasudil may represent a valuable therapy for patients with sepsis.
Collapse
Affiliation(s)
- Sebastien Preau
- 1 Department of Physiology, School of Medicine , Lille, France .,2 INSERM U995/Team "Glycation: from inflammation to aging, " Lille University , France .,3 Critical Care Medicine , CHRU Lille, Lille, France
| | - Florian Delguste
- 1 Department of Physiology, School of Medicine , Lille, France .,2 INSERM U995/Team "Glycation: from inflammation to aging, " Lille University , France
| | - Yichi Yu
- 2 INSERM U995/Team "Glycation: from inflammation to aging, " Lille University , France .,4 School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Isabelle Remy-Jouet
- 5 INSERM U1096 Institute for Research and Innovation in Biomedicine, University of Rouen , France
| | - Vincent Richard
- 5 INSERM U1096 Institute for Research and Innovation in Biomedicine, University of Rouen , France
| | | | - Eric Boulanger
- 2 INSERM U995/Team "Glycation: from inflammation to aging, " Lille University , France
| | - Remi Neviere
- 1 Department of Physiology, School of Medicine , Lille, France .,2 INSERM U995/Team "Glycation: from inflammation to aging, " Lille University , France
| |
Collapse
|
17
|
Tseng TL, Chen MF, Liu CH, Pang CY, Hsu YH, Lee TJF. Induction of endothelium-dependent constriction of mesenteric arteries in endotoxemic hypotensive shock. Br J Pharmacol 2016; 173:1179-95. [PMID: 26694894 DOI: 10.1111/bph.13415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/06/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Effective management of hypotension refractory to vasoconstrictors in severe sepsis is limited. A new strategy to ameliorate endotoxemic hypotension by inducing endothelium-dependent constriction of large arteries was assessed. EXPERIMENTAL APPROACH Endotoxemia in rats was induced by injection of LPS (10 mg·kg(-1), i.v.). Haemodynamics were measured in vivo, reactivity of isolated mesenteric arteries by myography and expression of proteins and enzyme activities by immunohistochemistry, biochemistry and molecular biology. KEY RESULTS Six hours after LPS, the hypotension was promptly reversed following injection (i.v. or i.p.) of oroxylin-A (OroA) . In isolated LPS-treated but not normal mesenteric arteries, OroA (1-10 μM) induced endothelium-dependent, sustained constriction, blocked by endothelin-1 (ET-1) receptor antagonists. OroA further enhanced LPS-induced expression of endothelin-converting enzyme, ET-1 mRNA and proteins and ET-1 release, OroA also enhanced phosphorylation of Rho-associated protein kinase (ROCK) and reversed LPS-induced suppression of RhoA activities in smooth muscle of arteries with endothelium. Activated- phosphorylation of smooth muscle ROCK was blocked by ET-1-receptor antagonists and ROCK inhibitors. Moreover, OroA post-treatment suppressed, via inhibiting NF-κB activation, inducible NOS expression and circulating NO. CONCLUSIONS AND IMPLICATIONS Reversal of endotoxemic hypotensive by OroA was due to release of endothelial ET-1, upregulated by LPS, from mesenteric arteries, inducing prompt and sustained vasoconstriction via activation of vascular smooth muscle RhoA/ROCK-pathway. In late endotoxemia, OroA-induced vasoconstriction was partly due to decreased circulating NO. Activation of endothelium-dependent constriction in large resistance arteries and suppression of systemic inflammation offer new strategies for acute management of endotoxemic hypotensive shock.
Collapse
Affiliation(s)
- Tzu-Ling Tseng
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.,Institutes of Medical Sciences and Pharmacology & Toxicology, Hualien, Taiwan.,Department of Life Sciences, Tzu Chi Center of Vascular Medicine, College of Life Sciences, Hualien, Taiwan
| | - Mei-Fang Chen
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.,Department of Life Sciences, Tzu Chi Center of Vascular Medicine, College of Life Sciences, Hualien, Taiwan.,Tzu Chi College of Technology, Hualien, Taiwan
| | - Chin-Hung Liu
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.,Institutes of Medical Sciences and Pharmacology & Toxicology, Hualien, Taiwan.,Department of Life Sciences, Tzu Chi Center of Vascular Medicine, College of Life Sciences, Hualien, Taiwan
| | - Cheng-Yoong Pang
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.,Institutes of Medical Sciences and Pharmacology & Toxicology, Hualien, Taiwan
| | - Yung-Hsiang Hsu
- Institutes of Medical Sciences and Pharmacology & Toxicology, Hualien, Taiwan.,Department of Pathology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tony J F Lee
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.,Institutes of Medical Sciences and Pharmacology & Toxicology, Hualien, Taiwan.,Department of Life Sciences, Tzu Chi Center of Vascular Medicine, College of Life Sciences, Hualien, Taiwan.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
18
|
Shih CC, Hii HP, Tsao CM, Chen SJ, Ka SM, Liao MH, Wu CC. Therapeutic Effects of Procainamide on Endotoxin-Induced Rhabdomyolysis in Rats. PLoS One 2016; 11:e0150319. [PMID: 26918767 PMCID: PMC4769298 DOI: 10.1371/journal.pone.0150319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/11/2016] [Indexed: 12/18/2022] Open
Abstract
Overt systemic inflammatory response is a predisposing mechanism for infection-induced skeletal muscle damage and rhabdomyolysis. Aberrant DNA methylation plays a crucial role in the pathophysiology of excessive inflammatory response. The antiarrhythmic drug procainamide is a non-nucleoside inhibitor of DNA methyltransferase 1 (DNMT1) used to alleviate DNA hypermethylation. Therefore, we evaluated the effects of procainamide on the syndromes and complications of rhabdomyolysis rats induced by lipopolysaccharide (LPS). Rhabdomyolysis animal model was established by intravenous infusion of LPS (5 mg/kg) accompanied by procainamide therapy (50 mg/kg). During the experimental period, the changes of hemodynamics, muscle injury index, kidney function, blood gas, blood electrolytes, blood glucose, and plasma interleukin-6 (IL-6) levels were examined. Kidneys and lungs were exercised to analyze superoxide production, neutrophil infiltration, and DNMTs expression. The rats in this model showed similar clinical syndromes and complications of rhabdomyolysis including high levels of plasma creatine kinase, acute kidney injury, hyperkalemia, hypocalcemia, metabolic acidosis, hypotension, tachycardia, and hypoglycemia. The increases of lung DNMT1 expression and plasma IL-6 concentration were also observed in rhabdomyolysis animals induced by LPS. Treatment with procainamide not only inhibited the overexpression of DNMT1 but also diminished the overproduction of IL-6 in rhabdomyolysis rats. In addition, procainamide improved muscle damage, renal dysfunction, electrolytes disturbance, metabolic acidosis, hypotension, and hypoglycemia in the rats with rhabdomyolysis. Moreover, another DNMT inhibitor hydralazine mitigated hypoglycemia, muscle damage, and renal dysfunction in rhabdomyolysis rats. These findings reveal that therapeutic effects of procainamide could be based on the suppression of DNMT1 and pro-inflammatory cytokine in endotoxin-induced rhabdomyolysis.
Collapse
Affiliation(s)
- Chih-Chin Shih
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, R.O.C., Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei, R.O.C., Taiwan
| | - Hiong-Ping Hii
- Department of Surgery, Chi Mei Medical Center, Tainan, R.O.C., Taiwan
| | - Cheng-Ming Tsao
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, R.O.C., Taiwan
| | - Shiu-Jen Chen
- Department of Physiology, National Defense Medical Center, Taipei, R.O.C., Taiwan
- Departments of Nursing, Kang-Ning Junior College of Medical Care and Management, Taipei, R.O.C., Taiwan
- Departments of Health Management for Elderly Society, Kang-Ning Junior College of Medical Care and Management, Taipei, R.O.C., Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, R.O.C., Taiwan
| | - Mei-Hui Liao
- Department of Pharmacology, National Defense Medical Center, Taipei, R.O.C., Taiwan
| | - Chin-Chen Wu
- Department of Pharmacology, National Defense Medical Center, Taipei, R.O.C., Taiwan
| |
Collapse
|
19
|
Kajimura I, Akaike T, Minamisawa S. Lipopolysaccharide Delays Closure of the Rat Ductus Arteriosus by Induction of Inducible Nitric Oxide Synthase But Not Prostaglandin E 2. Circ J 2016; 80:703-11. [DOI: 10.1253/circj.cj-15-1053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ichige Kajimura
- Department of Cell Physiology, The Jikei University School of Medicine
| | - Toru Akaike
- Department of Cell Physiology, The Jikei University School of Medicine
| | - Susumu Minamisawa
- Department of Cell Physiology, The Jikei University School of Medicine
| |
Collapse
|
20
|
Newell-Litwa KA, Horwitz R, Lamers ML. Non-muscle myosin II in disease: mechanisms and therapeutic opportunities. Dis Model Mech 2015; 8:1495-515. [PMID: 26542704 PMCID: PMC4728321 DOI: 10.1242/dmm.022103] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The actin motor protein non-muscle myosin II (NMII) acts as a master regulator of cell morphology, with a role in several essential cellular processes, including cell migration and post-synaptic dendritic spine plasticity in neurons. NMII also generates forces that alter biochemical signaling, by driving changes in interactions between actin-associated proteins that can ultimately regulate gene transcription. In addition to its roles in normal cellular physiology, NMII has recently emerged as a critical regulator of diverse, genetically complex diseases, including neuronal disorders, cancers and vascular disease. In the context of these disorders, NMII regulatory pathways can be directly mutated or indirectly altered by disease-causing mutations. NMII regulatory pathway genes are also increasingly found in disease-associated copy-number variants, particularly in neuronal disorders such as autism and schizophrenia. Furthermore, manipulation of NMII-mediated contractility regulates stem cell pluripotency and differentiation, thus highlighting the key role of NMII-based pharmaceuticals in the clinical success of stem cell therapies. In this Review, we discuss the emerging role of NMII activity and its regulation by kinases and microRNAs in the pathogenesis and prognosis of a diverse range of diseases, including neuronal disorders, cancer and vascular disease. We also address promising clinical applications and limitations of NMII-based inhibitors in the treatment of these diseases and the development of stem-cell-based therapies.
Collapse
Affiliation(s)
- Karen A Newell-Litwa
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Rick Horwitz
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Marcelo L Lamers
- Department of Morphological Sciences, Institute of Basic Health Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-010, Brazil
| |
Collapse
|
21
|
Tan Y, Ko J, Liu X, Lu C, Li J, Xiao C, Li L, Niu X, Jiang M, He X, Zhao H, Zhang Z, Bian Z, Yang Z, Zhang G, Zhang W, Lu A. Serum metabolomics reveals betaine and phosphatidylcholine as potential biomarkers for the toxic responses of processed Aconitum carmichaelii Debx. MOLECULAR BIOSYSTEMS 2015; 10:2305-16. [PMID: 24949573 DOI: 10.1039/c4mb00072b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We recently reported that processed Aconitum carmichaelii Debx (Bai-Fu-Pian in Chinese, BFP) elicits differential toxic responses in rats under various health conditions. The present study aimed to determine the graded toxicity of BFP so as to derive a safe therapeutic rationale in clinical practice. Sensitive and reliable biomarkers of toxicity were also identified, with the corresponding metabolic pathways being unveiled. Thirty male Sprague-Dawley rats were divided into five groups (n = 6) and received oral administration of BFP extract (0.32, 0.64, 1.28 or 2.56 g kg(-1) per day) or an equal volume of drinking water (control) for 15 days. The metabolomic profiles of rat serum were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry (LC-Q-TOF-MS). Linear regression analysis and Ingenuity Pathway Analysis (IPA) were used to elucidate the differentiated altered metabolites and associated network relationships. Results from biochemical and histopathological examinations revealed that BFP could induce prominent toxicity in the heart, liver and kidneys at a dose of 2.56 g kg(-1) per day. Betaine up-regulation and phosphatidylcholine down-regulation were detected in the serum samples of drug-treated groups in a dose-dependent manner. In summary, betaine and phosphatidylcholine could be regarded as sensitive biomarkers for the toxic responses of BFP. Perturbations of RhoA signaling, choline metabolism and free radical scavenging were found to be partly responsible for the toxic effects of the herbal drug. Based on the metabolomics findings, we could establish a safe therapeutic range in the clinical use of BFP, with promising predictions of possible drug toxicity.
Collapse
Affiliation(s)
- Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tsao CM, Li KY, Chen SJ, Ka SM, Liaw WJ, Huang HC, Wu CC. Levosimendan attenuates multiple organ injury and improves survival in peritonitis-induced septic shock: studies in a rat model. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:652. [PMID: 25432865 PMCID: PMC4274679 DOI: 10.1186/s13054-014-0652-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/07/2014] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The aim of this study was to investigate the effects of levosimendan on rodent septic shock induced by cecal ligation and puncture (CLP). METHODS Three hours after peritonitis-induced sepsis, male Wistar rats were randomly assigned to receive an intravenous infusion of levosimendan (1.2 μg/kg/min for 10 min and then 0.3 μg/kg/min for 6 h) or an equivalent volume of saline and vehicle (5% dextrose) solution. RESULTS The levosimendan-treated CLP animals had significantly higher arterial pressure and lower biochemical indices of liver and kidney dysfunction compared to the CLP animals (P < 0.05). Plasma interleukin-1β, nitric oxide and organ superoxide levels in the levosimendan-treated CLP group were less than those in CLP rats treated with vehicle (P < 0.05). In addition, the inducible nitric oxide synthase (iNOS) in lung and caspase-3 expressions in spleen were significantly lower in the levosimendan-treated CLP group (P < 0.05). The administration of CLP rats with levosimendan was associated with significantly higher survival (61.9% vs. 40% at 18 h after CLP, P < 0.05). At postmortem examination, the histological changes and neutrophil filtration index in liver and lung were significantly attenuated in the levosimendan-treated CLP group (vs. CLP group, P < 0.05). CONCLUSIONS In this clinically relevant model of septic shock induced by fecal peritonitis, the administration of levosimendan had beneficial effects on haemodynamic variables, liver and kidney dysfunction, and metabolic acidosis. (1) Lower levels of interleukin-1β, nitric oxide and superoxide, (2) attenuation of iNOS and caspase-3 expressions, and (3) decreases of neutrophil infiltration by levosimendan in peritonitis-induced sepsis animals suggest that anti-inflammation and anti-apoptosis effects of levosimendan contribute to prolonged survival.
Collapse
Affiliation(s)
- Cheng-Ming Tsao
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan. .,Department of Anesthesiology, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan.
| | - Kai-Yi Li
- Department of Pharmacology, National Defence Medical Centre, Neihu PO Box 90048-504, Taipei, 114, Taiwan.
| | - Shiu-Jen Chen
- Department of Nursing, Kang-Ning Junior College of Medical Care and Management, Taipei, Taiwan. .,Department of Physiology, National Defence Medical Centre, Taipei, Taiwan.
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, National Defence Medical Centre, Taipei, Taiwan.
| | - Wen-Jinn Liaw
- Department of Anesthesiology, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan. .,Department of Pharmacology, National Defence Medical Centre, Neihu PO Box 90048-504, Taipei, 114, Taiwan. .,Department of Anesthesiology, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan.
| | - Hsieh-Chou Huang
- Department of Anesthesiology, Cheng-Hsin General Hospital, Taipei, Taiwan. .,Department of Anesthesiology and Pain Clinics, Cheng-Hsin Rehabilitation Medical Centre, 45, Cheng-Hsin St, Taipei, 112, Taiwan.
| | - Chin-Chen Wu
- Department of Pharmacology, National Defence Medical Centre, Neihu PO Box 90048-504, Taipei, 114, Taiwan. .,Department of Pharmacology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|