1
|
CYBA encoding p22(phox), the cytochrome b558 alpha polypeptide: gene structure, expression, role and physiopathology. Gene 2016; 586:27-35. [PMID: 27048830 DOI: 10.1016/j.gene.2016.03.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/07/2016] [Accepted: 03/22/2016] [Indexed: 12/31/2022]
Abstract
P22(phox) is a ubiquitous protein encoded by the CYBA gene located on the long arm of chromosome 16 at position 24, containing six exons and spanning 8.5 kb. P22(phox) is a critical component of the superoxide-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs). It is associated with NOX2 to form cytochrome b558 expressed mainly in phagocytes and responsible for the killing of microorganisms when bacterial and fungal infections occur. CYBA mutations lead to one of the autosomal recessive forms of chronic granulomatous disease (AR22(0)CGD) clinically characterized by recurrent and severe infections in early childhood. However, p22(phox) is also the partner of NOX1, NOX3 and NOX4, but not NOX5, which are analogs of NOX2, the first identified member of the NOX family. P22(phox)-NOX complexes have emerged as one of the most relevant sources of reactive oxygen species (ROS) in tissues and cells, and are associated with several diseases such as cardiovascular and cerebrovascular diseases. The p22(phox)-deficient mouse strain nmf333 has made it possible to highlight the role of p22(phox) in the control of inner ear balance in association with NOX3. However, the relevance of p22(phox) for NOX3 function remains uncertain because AR22(0)CGD patients do not suffer from vestibular dysfunction. Finally, a large number of genetic variations of CYBA have been reported, among them the C242T polymorphism, which has been extensively studied in association with coronary artery and heart diseases, but conflicting results continue to be reported.
Collapse
|
2
|
Li T, Xi HF, Luo HM, Liu WX, Gao X, Liu DW, Yang L. Association of the NAD(P)H oxidase p22 phox gene C242T polymorphism with type 2 diabetes mellitus, diabetic nephropathy, and carotid atherosclerosis with type 2 diabetes mellitus: A meta-analysis. Meta Gene 2015; 6:1-8. [PMID: 26380814 PMCID: PMC4556815 DOI: 10.1016/j.mgene.2015.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/23/2015] [Accepted: 07/29/2015] [Indexed: 11/16/2022] Open
Abstract
Background Several epidemiological studies have evaluated the association between the NAD(P)H oxidase p22 phox gene C242T polymorphism and the risk of type 2 diabetes mellitus (T2DM), diabetic nephropathy (DN), and carotid atherosclerosis with T2DM (CA), but the results are inconclusive. This meta-analysis was therefore designed to clarify these controversies. Methods Systematic searches were performed using electronic databases such as MEDLINE, PubMed, EMBASE, and China National Knowledge Infrastructure, as well as through manual searching of the references of identified articles. A total of 11 publications were eligible for this meta-analysis after running a search on the NAD(P)H oxidase p22 phox gene C242T polymorphism, including 7 with outcomes for T2DM, 7 with outcomes for DN, and 3 with outcomes for CA. The pooled odds ratio (OR) with a 95% confidence interval (CI) was calculated using a fixed effects model (FEM) or a random effects model (REM). Publication bias was tested by Begg's funnel plot analysis. Sensitivity analysis was also performed. Results The results showed a significant association between the NAD(P)H oxidase p22 phox gene C242T polymorphism and T2DM risk in the allelic model (REM: OR = 1.23, 95% CI = 1.06–1.43), additive model (FEM: OR = 1.61, 95% CI = 1.14–2.26), and recessive model (FEM: OR = 1.50, 95% CI = 1.10–2.05). A significant association was also observed for DN in the allelic model (REM: OR = 1.25, 95% CI = 1.06–1.47), additive model (FEM: OR = 1.61, 95% CI = 1.08–2.38), and dominant model (REM: OR = 1.26, 95% CI = 1.03–1.54). However, no association was observed for CA. Similar results were obtained in subgroup analysis based on ethnicity. Conclusions Results of this meta-analysis suggest that the NAD(P)H oxidase p22 phox gene 242T allele might be associated with an increased risk of T2DM and DN, but not CA. There are significant association between P22 phox gene C242T polymorphism with T2DM DN risk but no significant association with CA.
Collapse
Affiliation(s)
- Tao Li
- Department of Epidemiology and Statistic, Hebei Medical University, Shijiazhuang 050017, China
| | - Hai-Feng Xi
- Hebei Provincial Health and Family Planning Commission, Shijiazhuang, China
| | - Hong-Min Luo
- Department of Nephrology Third Hospital, Hebei Medical University, Shijiazhuang, China
| | - Wen-Xuan Liu
- Department of Epidemiology and Statistic, Hebei Medical University, Shijiazhuang 050017, China
| | - Xia Gao
- Department of Epidemiology and Statistic, Hebei Medical University, Shijiazhuang 050017, China
| | - Dian-Wu Liu
- Department of Epidemiology and Statistic, Hebei Medical University, Shijiazhuang 050017, China
| | - Lei Yang
- Department of Epidemiology and Statistic, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
3
|
Wu JS, Tsai HD, Cheung WM, Hsu CY, Lin TN. PPAR-γ Ameliorates Neuronal Apoptosis and Ischemic Brain Injury via Suppressing NF-κB-Driven p22phox Transcription. Mol Neurobiol 2015; 53:3626-3645. [PMID: 26108185 DOI: 10.1007/s12035-015-9294-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/08/2015] [Indexed: 12/14/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR-γ), a stress-induced transcription factor, protects neurons against ischemic stroke insult by reducing oxidative stress. NADPH oxidase (NOX) activation, a major driving force in ROS generation in the setting of reoxygenation/reperfusion, constitutes an important pathogenetic mechanism of ischemic brain damage. In the present study, both transient in vitro oxygen-glucose deprivation and in vivo middle cerebral artery (MCA) occlusion-reperfusion experimental paradigms of ischemic neuronal death were used to investigate the interaction between PPAR-γ and NOX. With pharmacological (PPAR-γ antagonist GW9662), loss-of-function (PPAR-γ siRNA), and gain-of-function (Ad-PPAR-γ) approaches, we first demonstrated that 15-deoxy-∆(12,14)-PGJ2 (15d-PGJ2), via selectively attenuating p22phox expression, inhibited NOX activation and the subsequent ROS generation and neuronal death in a PPAR-γ-dependent manner. Secondly, results of promoter analyses and subcellular localization studies further revealed that PPAR-γ, via inhibiting hypoxia-induced NF-κB nuclear translocation, indirectly suppressed NF-κB-driven p22phox transcription. Noteworthily, postischemic p22phox siRNA treatment not only reduced infarct volumes but also improved functional outcome. In summary, we report a novel transrepression mechanism involving PPAR-γ downregulation of p22phox expression to suppress the subsequent NOX activation, ischemic neuronal death, and brain infarct. Identification of a PPAR-γ → NF-κB → p22phox neuroprotective signaling cascade opens a new avenue for protecting the brain against ischemic insult.
Collapse
Affiliation(s)
- Jui-Sheng Wu
- Institute of Biomedical Sciences, Academia Sinica, Rm 404, Taipei, 11529, Taiwan, Republic of China
| | - Hsin-Da Tsai
- Institute of Biomedical Sciences, Academia Sinica, Rm 404, Taipei, 11529, Taiwan, Republic of China
| | - Wai-Mui Cheung
- Institute of Biomedical Sciences, Academia Sinica, Rm 404, Taipei, 11529, Taiwan, Republic of China
| | - Chung Y Hsu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Teng-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Rm 404, Taipei, 11529, Taiwan, Republic of China. .,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan. .,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
4
|
Ghisleni MM, Biolchi V, Jordon BC, Rempel C, Genro JP, Pozzobon A. Association study of C936T polymorphism of the VEGF gene and the C242T polymorphism of the p22phox gene with diabetes mellitus type 2 and distal diabetic polyneuropathy. Mol Med Rep 2015; 12:4626-1633. [PMID: 26130419 DOI: 10.3892/mmr.2015.3988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 06/05/2015] [Indexed: 11/06/2022] Open
Abstract
Even with long‑term glycemic control, diabetes mellitus type 2 (DM2) remains the predominant cause of diabetic neuropathy. Single nucleotide polymorphism (SNP) C936T of the vascular endothelial growth factor (VEGF) gene and the SNP C242T of the p22phox (CYBA) gene have been investigated in relation to DM2 and its complications. The aim of the present study was to investigate the association between these two SNPs and DM2, and also between the SNPs and the signs and symptoms of diabetic distal polyneuropathy. The DM2 group consisted of 98 individuals and the control group consisted of 104 individuals. The results demonstrated that there was no association between the different genotypes or alleles and increased risk of the disease (P>0.05). With SNP C242T, a significant association with body mass index between the CTxTT genotypes (P=0.043) was identified; and the greatest body mass indexes were among individuals with the TT genotype. An association between the degree of neuropathic symptoms and genotypic/allelic distribution of these polymorphisms was not observed. In conclusion, the investigated polymorphisms are not correlated with the risk of developing DM2.
Collapse
Affiliation(s)
- Melissa Mottin Ghisleni
- Department of Biological and Health Sciences, Postgraduate Program in Biotechnology, Univates University Center, Rio Grande do Sul, Lajeado 95900‑000, Brazil
| | - Vanderlei Biolchi
- Department of Biological and Health Sciences, Postgraduate Program in Biotechnology, Univates University Center, Rio Grande do Sul, Lajeado 95900‑000, Brazil
| | - Bruna Cristina Jordon
- Department of Biological and Health Sciences, Postgraduate Program in Biotechnology, Univates University Center, Rio Grande do Sul, Lajeado 95900‑000, Brazil
| | - Claudete Rempel
- Department of Biological and Health Sciences, Postgraduate Program in Biotechnology, Univates University Center, Rio Grande do Sul, Lajeado 95900‑000, Brazil
| | - Júlia Pasqualini Genro
- Department of Biological and Health Sciences, Postgraduate Program in Biotechnology, Univates University Center, Rio Grande do Sul, Lajeado 95900‑000, Brazil
| | - Adriane Pozzobon
- Department of Biological and Health Sciences, Postgraduate Program in Biotechnology, Univates University Center, Rio Grande do Sul, Lajeado 95900‑000, Brazil
| |
Collapse
|
5
|
Titov BV, Matveeva NA, Martynov MY, Favorova OO. Ischemic stroke as a complex polygenic disease. Mol Biol 2015. [DOI: 10.1134/s0026893315020120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Zhang Z, Su G, Guo J, Li J, Wu H, Wang M, Xie X. Pooled genetic analysis reveals an association of snps of only a few genes with risk predisposition to ischemic stroke in a Chinese population. IUBMB Life 2015; 67:170-4. [PMID: 25855559 DOI: 10.1002/iub.1359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/09/2015] [Accepted: 01/20/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Zhenchang Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University; Lanzhou China
- Department of Neurology; School Hospital of Lanzhou University; Lanzhou China
| | - Gang Su
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University; Lanzhou China
| | - Jia Guo
- Department of Neurology; School Hospital of Lanzhou University; Lanzhou China
| | - Jiong Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University; Lanzhou China
| | - Hua Wu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University; Lanzhou China
| | - Manxia Wang
- Department of Neurology; School Hospital of Lanzhou University; Lanzhou China
| | - Xiaodong Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University; Lanzhou China
| |
Collapse
|
7
|
Li P, Qiu T, Qin C. NADPH oxidase p22phox C242T polymorphism and ischemic cerebrovascular disease: an updated meta-analysis. Med Sci Monit 2015; 21:231-8. [PMID: 25619262 PMCID: PMC4307689 DOI: 10.12659/msm.892253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background A growing number of studies on the associations between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase p22phox C242T polymorphism and risk of ischemic cerebrovascular disease have recently been published, but the results remain inconsistent. Material/Methods We performed an updated meta-analysis to evaluate this association. Eight case-control studies were included, involving 2045 cases and 2102 controls. Heterogeneity was assessed by the Q test and the I2 statistic. Begg and Egger’s tests were conducted to evaluate publication bias. Odds ratio (OR) was tested to identify the associations. Results Significant associations between p22phox gene C242T polymorphism and ischemic cerebrovascular disease (ICVD) risk were observed in the allelic genetic model (OR=1.33, 95% confidence interval [CI] 1.00–1.77, p=0.048). No statistical significant association was found in the dominant model (OR=0.74, 95% CI 0.54–1.02, p=0.064) and recessive model (OR=1.40, 95% CI 0.89–2.19, p=0.146). Subgroup analysis showed an association in European populations for recessive model (OR=2.13, 95% CI 1.06–4.26, p=0.034) and no significant evidence of association in Asian populations was found (dominant model: OR=0.64, 95% CI 0.41–1.00, p=0.05; recessive model: OR=0.98, 95% CI 0.53–1.81, p=0.948; allelic model: OR=1.51, 95% CI 0.98–2.32, p=0.061). Conclusions p22phox gene C242T polymorphism was associated with ICVD risk in the allelic genetic model, as well as in European populations for recessive model. No evidence showed association between p22phox gene C242T polymorphism and ICVD risk in the dominant model and recessive model. Furthermore, no association existed in Asian populations for any of the 3 genetic models and European populations in the dominant model and allelic model.
Collapse
Affiliation(s)
- Pingping Li
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Tangmeng Qiu
- Department of Neurology, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Chao Qin
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
8
|
Bushueva OY, Stetskaya TA, Polonikov AV, Ivanov VP. The relationship between polymorphism 640A>G of the CYBA gene with the risk of ischemic stroke in the population of the Central Russia. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:38. [DOI: 10.17116/jnevro20151159238-41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
9
|
Portilla EC, Muñoz W, Sierra CH. Genes y variantes polimórficas asociadas a la enfermedad cardiovascular. REVISTA COLOMBIANA DE CARDIOLOGÍA 2014. [DOI: 10.1016/j.rccar.2014.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
10
|
Mandegary A, Rahmanian-Koshkaki S, Mohammadifar MA, Pourgholi L, Mehdipour M, Etminan A, Ebadzadeh MR, Fazeli F, Azmandian J. Investigation of association between donors' and recipients' NADPH oxidase p22(phox) C242T polymorphism and acute rejection, delayed graft function and blood pressure in renal allograft recipients. Transpl Immunol 2014; 32:46-50. [PMID: 25173715 DOI: 10.1016/j.trim.2014.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Production of reactive oxygen species (ROS) and thereby induction of oxidative stress seem to be one of the major mediators of inflammatory adverse outcomes after renal transplantation. p22(phox) is a polymorphic subunit of NAD(P)H-oxidase that is critical for activation and stabilization of the enzyme. This enzyme is involved in the production of superoxide that triggers inflammatory injuries to the kidney. So in this study, the association between donors and recipients' C242T polymorphism of p22(phox) and acute rejection (AR), delayed graft function (DGF), creatinine clearance (CrCl), and blood pressure in renal-allograft recipients was studied. METHODS One hundred ninety six donor-recipient pairs were studied. The C242T polymorphism of p22(phox) was determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). According to p22 genotype, the subjects were divided in wild-type (CC) and T allele carriers (CT+TT). Transplantation outcomes were determined using acute rejection and delayed graft function criteria. The mean arterial pressure was also measured monthly after transplantation. RESULTS There was a significant association between the recipients' p22(phox) polymorphism and DGF occurrence (OR=2.5, CI: 1.2-4.9, p=0.0009). No significant association was detected between donors' p22(phox) polymorphism and AR and DGF events. CrCl during the six months follow-up after transplantation was lower in the patients who received allograft from donors carrying 242T allele (B=-12.8, CI: -22.9-12.8 (-22.9 to -2.6)). Changes in the blood pressure were not different among the patients having different genotypes of p22(phox). CONCLUSION These results suggest that the recipients' p22(phox) C242T polymorphism may be a major risk factor for DGF in renal transplantation. Moreover, the donors' 242T allele seems to affect the rate of CrCl in the renal allograft recipients.
Collapse
Affiliation(s)
- Ali Mandegary
- Pharmaceutics Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Physiology Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Rahmanian-Koshkaki
- Department of Nephrology, Urology and Renal Transplantation, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad-Amir Mohammadifar
- Department of Nephrology, Urology and Renal Transplantation, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Leila Pourgholi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Department of Molecular Pathology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdipour
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Etminan
- Department of Nephrology, Urology and Renal Transplantation, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad-Reza Ebadzadeh
- Department of Nephrology, Urology and Renal Transplantation, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Faramarz Fazeli
- Department of Nephrology, Urology and Renal Transplantation, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Jalal Azmandian
- Physiology Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran; Department of Nephrology, Urology and Renal Transplantation, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
11
|
Zheng J, Li G, Chen S, Bihl J, Buck J, Zhu Y, Xia H, Lazartigues E, Chen Y, Olson JE. Activation of the ACE2/Ang-(1-7)/Mas pathway reduces oxygen-glucose deprivation-induced tissue swelling, ROS production, and cell death in mouse brain with angiotensin II overproduction. Neuroscience 2014; 273:39-51. [PMID: 24814023 DOI: 10.1016/j.neuroscience.2014.04.060] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 04/14/2014] [Accepted: 04/29/2014] [Indexed: 12/16/2022]
Abstract
We previously demonstrated that mice which overexpress human renin and angiotensinogen (R+A+) show enhanced cerebral damage in both in vivo and in vitro experimental ischemia models. Angiotensin-converting enzyme 2 (ACE2) counteracts the effects of angiotensin (Ang-II) by transforming it into Ang-(1-7), thus reducing the ligand for the AT1 receptor and increasing stimulation of the Mas receptor. Triple transgenic mice, SARA, which specifically overexpress ACE2 in neurons of R+A+ mice were used to study the role of ACE2 in ischemic stroke using oxygen and glucose deprivation (OGD) of brain slices as an in vitro model. We examined tissue swelling, the production of reactive oxygen species (ROS), and cell death in the cerebral cortex (CX) and the hippocampal CA1 region during OGD. Expression levels of NADPH oxidase (Nox) isoforms, Nox2 and Nox4 were measured using western blots. Results show that SARA mice and R+A+ mice treated with the Mas receptor agonist Ang-(1-7) had less swelling, cell death, and ROS production in CX and CA1 areas compared to those in R+A+ animals. Treatment of slices from SARA mice with the Mas antagonist A779 eliminated this protection. Finally, western blots revealed less Nox2 and Nox4 expression in SARA mice compared with R+A+ mice both before and after OGD. We suggest that reduced brain swelling and cell death observed in SARA animals exposed to OGD result from diminished ROS production coupled with lower expression of Nox isoforms. Thus, the ACE2/Ang-(1-7)/Mas receptor pathway plays a protective role in brain ischemic damage by counteracting the detrimental effects of Ang-II-induced ROS production.
Collapse
Affiliation(s)
- J Zheng
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States; Department of Neurology, Second Affiliated Hospital, Harbin Medical University, China
| | - G Li
- Department of Emergency Medicine, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States
| | - S Chen
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States
| | - J Bihl
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States
| | - J Buck
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States
| | - Y Zhu
- Department of Neurology, Second Affiliated Hospital, Harbin Medical University, China
| | - H Xia
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - E Lazartigues
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Y Chen
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States.
| | - J E Olson
- Department of Emergency Medicine, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Boonshoft School of Medicine, Dayton, OH, United States.
| |
Collapse
|
12
|
Sun Q, Yin Y, Zhu Z, Yan Z. Association of the C242T polymorphism in the NAD(P)H oxidase P22 phox gene with type 2 diabetes mellitus risk: a meta-analysis. Curr Med Res Opin 2014; 30:415-22. [PMID: 24156725 DOI: 10.1185/03007995.2013.858620] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES A number of epidemiological studies have explored the association between NAD(P)H oxidase P22 phox gene C242T (rs4673) polymorphism and susceptibility to type 2 diabetes mellitus (T2DM), but the results are still debatable. Therefore, we conducted a meta-analysis to assess the potential association between the NAD(P)H oxidase P22 phox gene C242T polymorphism and T2DM risk. METHODS Electronic literature searches of the PubMed, Embase, Web of Science, CBMdisc, CNKI and Google Scholar were performed up to June 15, 2013. Additionally, hand searching of the references of identified articles was performed. Data analyses were carried out by Stata 11.0. RESULTS Seven studies were included in the final meta-analysis, covering a total of 1661 T2DM cases and 1265 controls. The results showed evidence for significant association between the NAD(P)H oxidase P22 phox gene C242T polymorphism and T2DM risk (for T/T vs. T/C: OR=1.61, 95% CI=1.14-2.26, p=0.007; for T/T vs. T/C+C/C: OR=1.50, 95% CI=1.10-2.05, p=0.009). In the subgroup analysis, there was also evidence for significant association between the NAD(P)H oxidase P22 phox gene C242T polymorphism and T2DM risk, either for Asians (T/T vs. T/C+C/C: OR=1.74, 95% CI=1.15-2.64, p=0.009) or for non-Asians (for T allele vs C allele: OR=1.30, 95% CI=1.04-1.61, p=0.02). CONCLUSIONS The present meta-analysis indicates that the NAD(P)H oxidase P22 phox gene 242 T allele might be associated with an increased T2DM risk.
Collapse
Affiliation(s)
- Qianqian Sun
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Institute for Surgery Research, Third Military Medical University, Chongqing Institute of Hypertension , Chongqing , China
| | | | | | | |
Collapse
|
13
|
Wu JS, Tsai HD, Huang CY, Chen JJ, Lin TN. 15-Deoxy-∆12,14-PGJ 2, by activating peroxisome proliferator-activated receptor-gamma, suppresses p22phox transcription to protect brain endothelial cells against hypoxia-induced apoptosis. Mol Neurobiol 2013; 50:221-38. [PMID: 24352801 DOI: 10.1007/s12035-013-8600-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
15-Deoxy-∆(12,14)-PGJ(2) (15d-PGJ(2)) and thiazolidinedione attenuate reactive oxygen species (ROS) production via a peroxisome proliferator-activated receptor-gamma (PPAR-γ)-dependent pathway. Nonetheless, how PPAR-γ mediates ROS production to ameliorate ischemic brain injury is not clear. Recent studies indicated that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is the major source of ROS in the vascular system. In the present study, we used an in vitro oxygen-glucose deprivation and reoxygenation (hypoxia reoxygenation [HR]) paradigm to study whether PPAR-γ interacts with NADPH oxidase, thereby regulating ROS formation in cerebral endothelial cells (CECs). With pharmacological (PPAR-γ antagonist GW9662), loss-of-function (PPAR-γ siRNA), and gain-of-function (Ad-PPAR-γ) approaches, we first demonstrated that 15d-PGJ(2) protected HR-treated CECs against ROS-induced apoptosis in a PPAR-γ-dependent manner. Results of promoter and subcellular localization analyses further revealed that 15d-PGJ(2), by activating PPAR-γ, blocked HR-induced NF-κB nuclear translocation, which led to inhibited transcription of the NADPH oxidase subunit p22phox. In summary, we report a novel transrepression mechanism whereby PPAR-γ downregulates hypoxia-activated p22phox transcription and the subsequent NADPH oxidase activation, ROS formation, and CEC apoptosis.
Collapse
Affiliation(s)
- Jui-Sheng Wu
- Institute of Biomedical Sciences, Academia Sinica, Rm 404, Taipei, 11529, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
14
|
Influence of the C242T polymorphism of the p22-phox gene (CYBA) on the interaction between urinary sodium excretion and blood pressure in an urban Brazilian population. PLoS One 2013; 8:e81054. [PMID: 24339896 PMCID: PMC3855219 DOI: 10.1371/journal.pone.0081054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/08/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Reactive oxygen species are implicated in the physiopathogenesis of salt-induced hypertension and the C242T polymorphism of the p22-phox gene has been associated with higher superoxide production. This study investigated the impact of this polymorphism on the relationship between urinary sodium excretion (USE) and blood pressure levels in an urban Brazilian population. METHODS We cross-sectionally evaluated 1,298 subjects from the city of Vitoria-ES, located in the Southeast region of Brazil, by clinical history, physical examination, anthropometry, analysis of laboratory parameters, USE measurement and p22-phox C242T polymorphism genotyping. RESULTS No significant differences in studied parameters were detected between the studied genotype groups (CC vs. CT+TT). Systolic blood pressure exhibited significant correlation with USE only in T allele carriers (r = 0.166; p<0.001), while diastolic blood pressure and hypertension status correlated with USE in both genotypes albeit more weakly in subjects with CC genotype (r = 0.098; p = 0.021 and r = 0.105; p = 0.013, respectively) than in T carriers (r = 0.236; p<0.001 and r = 0.213; p<0.001, respectively). Regression analyses adjusted for confounding factors showed that USE remained independently associated with systolic (p<0.001) and diastolic blood pressure (p<0.001) and hypertension status (p = 0.004) only in T allele carriers. Finally, higher diastolic and systolic blood pressure levels were detected in T allele carriers than in CC genotype individuals in the highest tertile of USE. CONCLUSIONS The p22-phox 242T allele is associated with higher blood pressure levels among subjects with higher USE in an urban Brazilian population.
Collapse
|