1
|
Wang C, Wang Z, Zi Y, Dan X, Xu J, Zhao J, Xu W, Wu Z, Liu W, Ma B. Compensatory upregulation of MT2A alleviates neurogenic intermittent claudication through inhibiting activated p38 MAPK-mediated neuronal apoptosis. Hum Cell 2024; 37:675-688. [PMID: 38546949 DOI: 10.1007/s13577-024-01043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/08/2024] [Indexed: 04/15/2024]
Abstract
Neurogenic intermittent claudication (NIC), a classic symptom of lumbar spinal stenosis (LSS), is associated with neuronal apoptosis. To explore the novel therapeutic target of NIC treatment, we constructed the rat model of NIC by cauda equina compression (CEC) method and collected dorsal root ganglion (DRG) tissues, a region responsible for sensory and motor function, for mRNA sequencing. Bioinformatic analysis of mRNA sequencing indicated that upregulated metallothionein 2A (MT2A), an apoptosis-regulating gene belonging to the metallothionein family, might participate in NIC progression. Activated p38 MAPK mediated motor dysfunction following LSS and it was also found in DRG tissues of rats with NIC. Therefore, we supposed that MT2A might affect NIC progression by regulating p38 MAPK pathway. Then the rat model of NIC was used to explore the exact role of MT2A. Rats at day 7 post-CEC exhibited poorer motor function and had two-fold MT2A expression in DRG tissues compared with rats with sham operation. Co-localization analysis showed that MT2A was highly expressed in neurons, but not in microglia or astrocytes. Subsequently, neurons isolated from DRG tissues of rats were exposed to hypoxia condition (3% O2, 92% N2, 5% CO2) to induce cell damage. Gain of MT2A function in neurons was performed by lentivirus-mediated overexpression. MT2A overexpression inhibited apoptosis by inactivating p38 MAPK in hypoxia-exposed neurons. Our findings indicated that high MT2A expression was related to NIC progression, and MT2A overexpression protected against NIC through inhibiting activated p38 MAPK-mediated neuronal apoptosis in DRG tissues.
Collapse
Affiliation(s)
- Chenggang Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhanchao Wang
- Department of Orthopedics, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Ying Zi
- Department of Orthopedics, Air Force Hospital of the Northern Theater of Chinese People's Liberation Army (PLA), Shenyang, Liaoning, China
| | - Xuejian Dan
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jiahui Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wei Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wei Liu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Bin Ma
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
2
|
Lysophosphatidic Acid Induced Apoptosis, DNA Damage, and Oxidative Stress in Spinal Cord Neurons by Upregulating LPA4/LPA6 Receptors. Mediators Inflamm 2022; 2022:1818758. [PMID: 36248188 PMCID: PMC9553454 DOI: 10.1155/2022/1818758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Lysophosphatidic acid (LPA) has disruptive effects on lumbar spinal stenosis (LSS). Recently, LPA has been reported to be involved in spinal cord neuronal injury and toxicity, promoting the pathogenesis of LSS. However, the exact effects of LPA on spinal cord neurons remain unknown. The purpose of this study is to investigate the effects of LPA (18 : 1) on spinal cord neuronal cytotoxicity, apoptosis, DNA damage, and oxidative stress. After clinical detection of LPA secretion, spinal cord neurons were treated with LPA (18 : 1); cell viability was analyzed by MTT assay, and LDH leakage was detected by LDH kit; cell apoptosis was detected by flow cytometry; ROS production was measured by DCFDA staining and MitoSOX Red Staining; the activation of the Gα12/Gα13 signaling pathway was detected by serum response factor response element (SRF-RE) luciferase reporter gene; the relationship among LPA, LPA4/6, and ROCK was examined by western blotting. In spinal cord neurons treated with LPA (18 : 1), cellular activity decreased and LDH release increased. The Rho kinase inhibitor (Y-27632) can attenuate LPA-induced apoptosis, DNA damage, and oxidative stress in spinal cord neurons. Moreover mechanistic investigation indicated that LPA (18 : 1) activates Gα12/13–Rho–ROCK2-induced apoptosis, DNA damage, and oxidative stress in spinal cord neurons by upregulating LPA4/LPA6 receptors. Further, the Rho kinase inhibitor Y-27632 attenuates the effects of LPA by downregulating LPA4/LPA6 receptors. Taken together, the possible mechanism by which LPA secretion in LSS patients aggravates patient injury was further elucidated using an LPA-induced spinal cord neuronal injury cell model in vitro.
Collapse
|
3
|
Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int J Mol Sci 2020; 21:ijms21207533. [PMID: 33066029 PMCID: PMC7589539 DOI: 10.3390/ijms21207533] [Citation(s) in RCA: 509] [Impact Index Per Article: 127.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) is a destructive neurological and pathological state that causes major motor, sensory and autonomic dysfunctions. Its pathophysiology comprises acute and chronic phases and incorporates a cascade of destructive events such as ischemia, oxidative stress, inflammatory events, apoptotic pathways and locomotor dysfunctions. Many therapeutic strategies have been proposed to overcome neurodegenerative events and reduce secondary neuronal damage. Efforts have also been devoted in developing neuroprotective and neuro-regenerative therapies that promote neuronal recovery and outcome. Although varying degrees of success have been achieved, curative accomplishment is still elusive probably due to the complex healing and protective mechanisms involved. Thus, current understanding in this area must be assessed to formulate appropriate treatment modalities to improve SCI recovery. This review aims to promote the understanding of SCI pathophysiology, interrelated or interlinked multimolecular interactions and various methods of neuronal recovery i.e., neuroprotective, immunomodulatory and neuro-regenerative pathways and relevant approaches.
Collapse
|
4
|
Compressive Pressure Versus Time in Cauda Equina Syndrome: A Systematic Review and Meta-Analysis of Experimental Studies. Spine (Phila Pa 1976) 2019; 44:1238-1247. [PMID: 30973513 PMCID: PMC6855389 DOI: 10.1097/brs.0000000000003045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Systematic review and meta-analysis. OBJECTIVE To examine the relationship between compressive pressure and its duration in cauda equina compression, and the effects of subsequent decompression, on neurophysiological function, and pathophysiology in animal studies. We further aim to investigate these relationships with systemic blood pressure to assess whether a vascular component in the underlying mechanism may contribute to the clinical heterogeneity of this disease. SUMMARY OF BACKGROUND DATA The complex relationship between preoperative factors and outcomes in cauda equina syndrome (CES) suggests heterogeneity within CES which may inform better understanding of pathophysiological process, their effect on neurological function, and prognosis. METHODS Systematic review identified 17 relevant studies including 422 animals and reporting electrophysiological measures (EP), histopathology, and blood flow. Modeling using meta-regression analyzed the relationship between compressive pressure, duration of compression, and electrophysiological function in both compression and decompression studies. RESULTS Modeling suggested that electrophysiological dysfunction in acute cauda equina compression has a sigmoidal response, with particularly deterioration when mean arterial blood pressure is exceeded and, additionally, sustained for approximately 1 hour. Accounting for pressure and duration may help risk-stratify patients pre-decompression. Outcomes after decompression appeared to be related more to the degree of compression, where exceeding systolic blood pressure tended to result in an irreversible lesion, rather than duration of compression. Prognosis was most strongly associated with residual pre-decompression function. CONCLUSION Compressive pressure influences effects and outcomes of cauda equina compression. We suggest the presence of two broad phenotypic groups within CES defined by the degree of ischaemia as a potential explanatory pathophysiological mechanism. LEVEL OF EVIDENCE 1.
Collapse
|
5
|
Kong QJ, Wang Y, Liu Y, Sun JC, Xu XM, Sun XF, Shi JG. Neuroprotective Effects of Valproic Acid in a Rat Model of Cauda Equina Injury. World Neurosurg 2017; 108:128-136. [PMID: 28867325 DOI: 10.1016/j.wneu.2017.08.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Histone deacetylase inhibitors, including valproic acid (VPA), are promising therapeutic interventions in neurological disorders and play an important role in synaptic activity and neuronal function. METHODS A total of 30 rats were randomly allocated to 3 groups: sham, control, and VPA. The rats in the VPA and control groups received laminectomy at the L4 level of the vertebrae and silicone gel implantation into the epidural spaces L5 and L6. Rats in the sham group only received laminectomy at the L4 level of vertebrae without any implantation. VPA (300 mg/kg in saline) was administered 2 hours before the surgery. After the surgery, the VPA group received further VPA injections at 300 mg/kg twice a day for 1 week. The same volume of saline was injected in the control group. Neurobehavioral tests using the Basso, Beattie, Bresnahan scale and the oblique board test were performed for 1 week starting at 2 hours before surgery up to day 7 after surgery. At day 7 after surgery, tissues from the compressed cauda equina (L5-L6) were subjected to hematoxylin and eosin, luxol fast blue, or immunofluorescence staining, whereas the terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick-end label assay staining was performed on the tissue from the dorsal root ganglions and the lumbar segment of the spinal cord proximal to the compressed cauda equina (L5-L6). RESULTS The behavioral results suggested a significant improvement in the lower limb motor function in the VPA group compared with controls (P < 0.05). Furthermore, histologic assessment revealed a significant reduction in nerve fibers showing Wallerian degeneration and demyelinating lesions in the VPA group, in addition to an increased myelination compared with the control group (P < 0.05). The terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick-end label assay staining revealed a significant decrease in the number of apoptotic neurons in the spinal cord anterior horn and dorsal root ganglions in the VPA group compared with controls (P < 0.05). CONCLUSIONS Our data demonstrated that VPA could alleviate cauda equina injury, reduce apoptotic cells, and improve motor recovery, suggesting a neuroprotective effect in acute cauda equina syndrome.
Collapse
Affiliation(s)
- Qing-Jie Kong
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Yuan Wang
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Yang Liu
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Jing-Chuan Sun
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Xi-Ming Xu
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Xiao-Fei Sun
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Jian-Gang Shi
- Department of Spine Surgery, the Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Wang HJ, Tyagi P, Chuang YC, Yoshimura N, Huang CC, Chancellor MB. Pharmacologic and Molecular Characterization of Underactive Bladder Induced by Lumbar Canal Stenosis. Urology 2015; 85:1284-90. [DOI: 10.1016/j.urology.2015.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 01/14/2023]
|
7
|
Chen X, Zhao Z, Chai Y, Luo L, Jiang R, Dong J, Zhang J. Stress-dose hydrocortisone reduces critical illness-related corticosteroid insufficiency associated with severe traumatic brain injury in rats. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R241. [PMID: 24131855 PMCID: PMC4057521 DOI: 10.1186/cc13067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/17/2013] [Indexed: 12/13/2022]
Abstract
Introduction The spectrum of critical illness-related corticosteroid insufficiency (CIRCI) in severe traumatic brain injury (TBI) is not fully defined and no effective treatments for TBI-induced CIRCI are available to date. Despite growing interest in the use of stress-dose hydrocortisone as a potential therapy for CIRCI, there remains a paucity of data regarding its benefits following severe TBI. This study was designed to investigate the effects of stress-dose hydrocortisone on CIRCI development and neurological outcomes in a rat model of severe traumatic brain injury. Methods Rats were subjected to lateral fluid percussion injury of 3.2-3.5 atmosphere. These rats were then treated with either a stress-dose hydrocortisone (HC, 3 mg/kg/d for 5 days, 1.5 mg/kg on day 6, and 0.75 mg on day 7), a low-dose methylprednisolone (MP, 1 mg/kg/d for 5 days, 0.5 mg/kg on day 6, and 0.25 mg on day 7) or control saline solution intraperitoneally daily for 7 days after injury. Results We investigated the effects of stress-dose HC on the mortality, CIRCI occurrence, and neurological deficits using an electrical stimulation test to assess corticosteroid response and modified neurological severity score (mNSS). We also studied pathological changes in the hypothalamus, especially in the paraventricular nuclei (PVN), after stress-dose HC or a low dose of MP was administered, including apoptosis detected by a TUNEL assay, blood–brain barrier (BBB) permeability assessed by brain water content and Evans Blue extravasation into the cerebral parenchyma, and BBB integrity evaluated by CD31 and claudin-5 expression. We made the following observations. First, 70% injured rats developed CIRCI, with a peak incidence on post-injury day 7. The TBI-associated CIRCI was closely correlated with an increased mortality and delayed neurological recovery. Second, post-injury administration of stress-dose HC, but not MP or saline increased corticosteroid response, prevented CIRCI, reduced mortality, and improved neurological function during the first 14 days post injury dosing. Thirdly, these beneficial effects were closely related to improved vascular function by the preservation of tight junctions in surviving endothelial cells, and reduced neural apoptosis in the PVN of hypothalamus. Conclusions Our findings indicate that post-injury administration of stress-dose HC, but not MP reduces CIRCI and improves neurological recovery. These improvements are associated with reducing the damage to the tight junction of vascular endothelial cells and blocking neuronal apoptosis in the PVN of the hypothalamus.
Collapse
|