1
|
Singleton DA, Ball C, Rennie C, Coxon C, Ganapathy K, Jones PH, Welchman D, Tulloch JSP. Backyard poultry cases in UK small animal practices: Demographics, health conditions and pharmaceutical prescriptions. Vet Rec 2021; 188:e71. [PMID: 33835557 PMCID: PMC8638672 DOI: 10.1002/vetr.71] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/12/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Backyard poultry ownership is of keen interest in the United Kingdom. However, despite this, little is known about veterinary care engagement and outcomes of visits in this group of species. METHODS This study described and characterised veterinary practice-visiting backyard poultry, utilising electronic health record data supplied by veterinary practices voluntarily participating in the Small Animal Veterinary Surveillance Network between 1st April 2014 and 31st March 2019. RESULTS In total, 4424 recorded poultry consultations originating from 197 veterinary practices (352 sites) were summarised. Chicken consultation (n = 3740) peak incidence was in early summer (April-June), relative to all recorded species. More chickens resided in rural (incident rate ratio = 2.5, confidence interval [CI] 2.3-2.6, p <0.001) or less deprived areas. Non-specific clinical signs were commonly recorded (17.6% of chicken consultations, CI 15.9-19.2), as were those indicative of advanced disease. This latter finding was reflected in prescribed management strategies, with euthanasia comprising 29.8% (CI 27.0-32.6) of consultations. Antimicrobials were commonly prescribed (33.0% of consultations, CI 29.8-36.2), 43.8% of which included antimicrobials considered 'highest priority critically important' by the World Health Organisation. CONCLUSION Our findings indicate a need to tailor antimicrobial prescription guidance to the backyard poultry setting. In addition, late presentation of disease, vague clinical descriptions in clinical narratives and high euthanasia rates show that disease identification, management and knowledge of poultry health and welfare among owners and veterinary surgeons can be improved.
Collapse
Affiliation(s)
- David A Singleton
- Infection, Veterinary and Ecological Sciences, University of Liverpool, Cheshire, UK
| | - Christopher Ball
- Infection, Veterinary and Ecological Sciences, University of Liverpool, Cheshire, UK
| | - Cameron Rennie
- Infection, Veterinary and Ecological Sciences, University of Liverpool, Cheshire, UK
| | - Charlotte Coxon
- International Disease Monitoring and Risk Assessment (EU Exit), Animal and Plant Health Agency, Addlestone, UK
| | - Kannan Ganapathy
- Infection, Veterinary and Ecological Sciences, University of Liverpool, Cheshire, UK
| | - Phil H Jones
- Surveillance Intelligence Unit, Animal and Plant Health Agency, Addlestone, UK
| | - David Welchman
- Surveillance Intelligence Unit, Animal and Plant Health Agency, Winchester, UK
| | - John S P Tulloch
- Infection, Veterinary and Ecological Sciences, University of Liverpool, Cheshire, UK
| |
Collapse
|
2
|
Ayala AJ, Yabsley MJ, Hernandez SM. A Review of Pathogen Transmission at the Backyard Chicken-Wild Bird Interface. Front Vet Sci 2020; 7:539925. [PMID: 33195512 PMCID: PMC7541960 DOI: 10.3389/fvets.2020.539925] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/13/2020] [Indexed: 01/31/2023] Open
Abstract
Habitat conversion and the expansion of domesticated, invasive species into native habitats are increasingly recognized as drivers of pathogen emergence at the agricultural-wildlife interface. Poultry agriculture is one of the largest subsets of this interface, and pathogen spillover events between backyard chickens and wild birds are becoming more commonly reported. Native wild bird species are under numerous anthropogenic pressures, but the risks of pathogen spillover from domestic chickens have been historically underappreciated as a threat to wild birds. Now that the backyard chicken industry is one of the fastest growing industries in the world, it is imperative that the principles of biosecurity, specifically bioexclusion and biocontainment, are legislated and implemented. We reviewed the literature on spillover events of pathogens historically associated with poultry into wild birds. We also reviewed the reasons for biosecurity failures in backyard flocks that lead to those spillover events and provide recommendations for current and future backyard flock owners.
Collapse
Affiliation(s)
- Andrea J. Ayala
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Michael J. Yabsley
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Athens, GA, United States
| | - Sonia M. Hernandez
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Athens, GA, United States
| |
Collapse
|
3
|
Di Pillo F, Jimenez-Bluhm P, Baumberger C, Marambio V, Galdames P, Monti G, Schultz-Cherry S, Hamilton-West C. Movement Restriction and Increased Surveillance as Efficient Measures to Control the Spread of Highly Pathogenic Avian Influenza in Backyard Productive Systems in Central Chile. Front Vet Sci 2020; 7:424. [PMID: 32793648 PMCID: PMC7393644 DOI: 10.3389/fvets.2020.00424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/12/2020] [Indexed: 11/13/2022] Open
Abstract
During the last 5 years there has been an alarming number of reports of highly pathogenic avian influenza worldwide. However, little is known about the status of this disease in South America. Chile has been the only country in South America where an HPAI outbreak was reported. This outbreak occurred in 2002 and was due to an H7N3 HPAI, where the most plausible hypothesis that explained the entrance of the disease to the country, had relation to migratory wild birds. Commercial poultry farms in Chile are highly integrated and have high biosecurity standards. Nevertheless, poultry backyard production systems lack biosecurity measures and are widely distributed. Since 2002 outbreak, avian influenza viruses have been identified in wild birds and different animal species kept in backyard productive systems (BPS) in Chile. The aim of this study was to simulate the possible natural history of HPAI after its introduction to BPS in central Chile and to simulate different intervention strategies. To do so, the North American Animal Disease Spread Model version 3.3 was used. The results showed that a median of 15,930 BPS would be affected if HPAI spread among BPS in central Chile, representing 97.8% of the current amount of BPS existing in study zone. Movement restrictions, pre-emptive destruction, passive surveillance, tracing of infected premises and combinations of the three, where the intervention strategies tested in the simulation model. From all the interventions simulated, movement restrictions together with increasing surveillance (through increasing passive surveillance and good tracing of infected premises) had the biggest effect, reducing the median number of infected BPS in 90.8%. However, more studies are needed to more accurately estimate local contact rates. These results can guide the official veterinary services to consider potential mechanisms to control or prevent an HPAI emergency situation.
Collapse
Affiliation(s)
- Francisca Di Pillo
- Nucleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Santiago, Chile
| | - Pedro Jimenez-Bluhm
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Cecilia Baumberger
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Víctor Marambio
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Pablo Galdames
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Gustavo Monti
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Christopher Hamilton-West
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Hillman AE, Smith RP, Batey N, Verheyen KL, Pittman M, Brown IH, Breed AC. Serological surveillance reveals patterns of exposure to H5 and H7 influenza A viruses in European poultry. Transbound Emerg Dis 2019; 67:592-603. [PMID: 31549792 DOI: 10.1111/tbed.13371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 11/29/2022]
Abstract
Influenza A viruses of H5 and H7 subtype in poultry can circulate subclinically and subsequently mutate from low to high pathogenicity with potentially devastating economic and welfare consequences. European Union Member States undertake surveillance of commercial and backyard poultry for early detection and control of subclinical H5 and H7 influenza A infection. This surveillance has moved towards a risk-based sampling approach in recent years; however, quantitative measures of relative risk associated with risk factors utilized in this approach are necessary for optimization. This study describes serosurveillance for H5 and H7 influenza A in domestic and commercial poultry undertaken in the European Union from 2004 to 2010, where a random sampling and thus representative approach to serosurveillance was undertaken. Using these representative data, this study measured relative risk of seropositivity across poultry categories and spatially across the EU. Data were analysed using multivariable logistic regression. Domestic waterfowl, game birds, fattening turkeys, ratites, backyard poultry and the 'other' poultry category holdings had relatively increased probability of H5 and/or H7 influenza A seropositivity, compared to laying-hen holdings. Amongst laying-hen holdings, free-range rearing was associated with increased probability of H7 seropositivity. Spatial analyses detected 'hotspots' for H5 influenza A seropositivity in western France and England, and H7 influenza A seropositivity in Italy and Belgium, which may be explained by the demographics and distribution of poultry categories. Findings suggest certain poultry category holdings are at increased risk of subclinical H5 and/or H7 influenza A circulation, and free-range rearing increases the likelihood of exposure to H7 influenza A. These findings may be used in further refining risk-based surveillance strategies and prioritizing management strategies in influenza A outbreaks.
Collapse
Affiliation(s)
| | | | - Nicole Batey
- Animal and Plant Health Agency, Weybridge, Addlestone, UK
| | | | - Maria Pittman
- European Commission, Directorate for Health and Food Safety, Brussels, Belgium
| | - Ian H Brown
- Animal and Plant Health Agency, Weybridge, Addlestone, UK
| | - Andrew C Breed
- Animal and Plant Health Agency, Weybridge, Addlestone, UK.,School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Derksen T, Lampron R, Hauck R, Pitesky M, Gallardo RA. Biosecurity Assessment and Seroprevalence of Respiratory Diseases in Backyard Poultry Flocks Located Close to and Far from Commercial Premises. Avian Dis 2019; 62:1-5. [PMID: 29620463 DOI: 10.1637/11672-050917-reg.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Raising backyard chickens is an ever-growing hobby in the United States. These flocks can be a substrate for respiratory disease amplification and transmission to commercial facilities. Five hundred fifty-four chickens from 41 backyard flocks were sampled in this study. ELISA kits were used to detect antibodies against avian influenza (AI), infectious laryngotracheitis (ILT), Newcastle disease (ND), infectious bronchitis (IB), Ornithobacterium rhinotracheale (ORT), Mycoplasma gallisepticum (MG), and Mycoplasma synoviae (MS). All visited flock owners answered a biosecurity questionnaire that assessed biosecurity measures. The questionnaire revealed that backyard poultry owners lack simple biosecurity measures such as use of dedicated shoes, their chicken sources are unreliable, and few of them benefit from veterinary oversight. Only one flock had a clear vaccination history against ND and IB. ORT, ND, IB, MS, MG, and ILT were the most seroprevalent in backyard poultry flocks with 97% (41/42), 77.5% (31/40), 75% (30/40), 73% (31/42), 69% (29/42), and 45% (19/42), respectively. The vaccinated flock was not considered in these calculations. When examining the distance between backyard flocks and the nearest commercial poultry facility, ND and MG were significantly more likely to be found in backyard flocks close to (<4 miles) whereas ORT was significantly more likely in backyard chickens located far from (>4 miles) commercial poultry. Birds purchased directly from National Poultry Improvement Plan hatcheries showed a reduced ND, MG, and MS antibody prevalence. Wearing dedicated shoes decreased MS antibody-positive birds. Finally, history of wild bird contact had a clear effect on an increased seroprevalence of NDV and MG. Serological results suggest that backyard poultry flocks have the potential to serve as a reservoir or amplifier for poultry respiratory diseases. The information generated in this project should direct extension efforts toward emphasizing the importance of small flock biosecurity and chick acquisition sources.
Collapse
Affiliation(s)
- T Derksen
- A Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VM3B, Davis, CA 95616
| | - R Lampron
- A Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VM3B, Davis, CA 95616
| | - R Hauck
- B Department of Pathobiology and Department of Poultry Science, Auburn University, 302J Poultry Science Building, 260 Lem Morrison Drive, Auburn, AL 36849
| | - M Pitesky
- C University of California, School of Veterinary Medicine, Cooperative Extension, 1089 Veterinary Medicine Drive VM3B, Davis, CA 95616
| | - R A Gallardo
- A Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VM3B, Davis, CA 95616
| |
Collapse
|
6
|
Brochu NM, Guerin MT, Varga C, Lillie BN, Brash ML, Susta L. A two-year prospective study of small poultry flocks in Ontario, Canada, part 1: prevalence of viral and bacterial pathogens. J Vet Diagn Invest 2019; 31:327-335. [PMID: 30973091 DOI: 10.1177/1040638719843577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In Ontario, within the past few years, there has been a marked increase in the number of non-commercial poultry flocks (referred to as "small flocks"). Small poultry flocks may act as a reservoir of avian and zoonotic pathogens, given the flocks' limited access to veterinary services, inadequate biosecurity practices, and increased risk of contact with wild birds. Despite these potential risks, there is a scarcity of data concerning the prevalence of poultry and zoonotic pathogens among these flocks. To assess the baseline prevalence of bacterial and viral infectious pathogens, prospective surveillance of small flock postmortem submissions to the Animal Health Laboratory was conducted over a 2-y period. With the owner's consent, a postmortem examination and pre-set tests for infectious agents were conducted. A total of 160 submissions, mainly chickens (84%), were received. Among bacterial pathogens, Brachyspira spp., Mycoplasma synoviae, Campylobacter spp., Mycoplasma gallisepticum, and Salmonella spp. were detected in 37%, 36%, 35%, 23%, and 3% of tested submissions, respectively. Among viral pathogens, infectious bronchitis virus, fowl adenovirus, infectious laryngotracheitis virus, avian reovirus, and infectious bursal disease virus were detected in 39%, 35%, 15%, 4%, and 1% of submissions, respectively. We detected non-virulent avian avulavirus 1 from two chickens in a single submission, and low-pathogenic H10N8 influenza A virus from a single turkey submission. Our study provides baseline prevalence of viral and bacterial pathogens circulating in Ontario small flocks and may help animal and human health professionals to educate small flock owners about disease prevention.
Collapse
Affiliation(s)
- Nancy M Brochu
- Departments of Pathobiology (Brochu, Lillie, Susta).,Population Medicine (Guerin), University of Guelph, Guelph, Ontario, Canada.,Ontario Veterinary College, and Animal Health Laboratory (Brash), University of Guelph, Guelph, Ontario, Canada.,Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, Canada (Varga)
| | - Michele T Guerin
- Departments of Pathobiology (Brochu, Lillie, Susta).,Population Medicine (Guerin), University of Guelph, Guelph, Ontario, Canada.,Ontario Veterinary College, and Animal Health Laboratory (Brash), University of Guelph, Guelph, Ontario, Canada.,Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, Canada (Varga)
| | - Csaba Varga
- Departments of Pathobiology (Brochu, Lillie, Susta).,Population Medicine (Guerin), University of Guelph, Guelph, Ontario, Canada.,Ontario Veterinary College, and Animal Health Laboratory (Brash), University of Guelph, Guelph, Ontario, Canada.,Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, Canada (Varga)
| | - Brandon N Lillie
- Departments of Pathobiology (Brochu, Lillie, Susta).,Population Medicine (Guerin), University of Guelph, Guelph, Ontario, Canada.,Ontario Veterinary College, and Animal Health Laboratory (Brash), University of Guelph, Guelph, Ontario, Canada.,Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, Canada (Varga)
| | - Marina L Brash
- Departments of Pathobiology (Brochu, Lillie, Susta).,Population Medicine (Guerin), University of Guelph, Guelph, Ontario, Canada.,Ontario Veterinary College, and Animal Health Laboratory (Brash), University of Guelph, Guelph, Ontario, Canada.,Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, Canada (Varga)
| | - Leonardo Susta
- Departments of Pathobiology (Brochu, Lillie, Susta).,Population Medicine (Guerin), University of Guelph, Guelph, Ontario, Canada.,Ontario Veterinary College, and Animal Health Laboratory (Brash), University of Guelph, Guelph, Ontario, Canada.,Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, Canada (Varga)
| |
Collapse
|
7
|
Di Pillo F, Anríquez G, Alarcón P, Jimenez-Bluhm P, Galdames P, Nieto V, Schultz-Cherry S, Hamilton-West C. Backyard poultry production in Chile: animal health management and contribution to food access in an upper middle-income country. Prev Vet Med 2019; 164:41-48. [PMID: 30771893 DOI: 10.1016/j.prevetmed.2019.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 01/09/2019] [Accepted: 01/18/2019] [Indexed: 11/16/2022]
Abstract
Backyard production systems (BPS) that involve poultry are a good way to improve food security and poverty alleviation. Few studies have been carried out to quantify the contribution of poultry production to these households and the constraints they might face if a priority animal disease enters these systems. This study aims to characterize the poultry-rearing BPS in central Chile and to identify socio-economic factors associated to households' consumption of poultry. Data was collected from 384 BPS through a face-to-face semi-structured questionnaire. Value chain framework associated with BPS poultry rearing and cash flow analysis of BPS was done to identify the inputs/outputs of the system and to know the profitability of the system. Multiple linear regression was performed to identify the BPS and household factors associated to poultry consumption. The results of this study suggest that BPS in central Chile have biosecurity deficiencies such as: lack of confinement, lack of veterinary assistance and incorrect handling of dead animals. Cash flow analysis indicated that 62% of the BPS had a positive balance from production. Distance to closest market and per capita income were factors associated to poultry value to farmers. Different factors were significant predictors of household poultry consumption. Positive predictors of consumption were identified as: (i) older owners, (ii) higher transportation price to closest market, (iii) larger flock size (iv) birds raised by women and (v) owning a car. On the contrary, (i) higher per capita income and (ii) bigger household size predicted a reduction in consumption. The results indicate the importance of BPS to low-income families and those living in remote areas while also highlighting the vulnerability of these systems to disease risks.
Collapse
Affiliation(s)
- Francisca Di Pillo
- Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Sede Providencia, Manuel Montt 948, Santiago, Chile; Doctoral Program in Agriculture, Forestry and Veterinary Sciences, University of Chile
| | - Gustavo Anríquez
- Department of Agricultural Economics, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Alarcón
- Department of Pathobiology and Population Medicine, Royal Veterinary College, University of London, UK
| | - Pedro Jimenez-Bluhm
- Epidemiology Unit, Department of Preventive Veterinary Medicine, Faculty of Veterinary Science, Universidad de Chile, Santiago, Chile
| | - Pablo Galdames
- Epidemiology Unit, Department of Preventive Veterinary Medicine, Faculty of Veterinary Science, Universidad de Chile, Santiago, Chile; Master Program in Veterinary and Animals Sciences, Faculty of Veterinary Sciences, University of Chile, Chile
| | - Vanesa Nieto
- Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Sede Providencia, Manuel Montt 948, Santiago, Chile
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, United States
| | - Christopher Hamilton-West
- Epidemiology Unit, Department of Preventive Veterinary Medicine, Faculty of Veterinary Science, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Zhu C, Hu C, Gui B, Chen Q, Zhang S, He G. Genetic characteristics of H9N2 avian influenza viruses isolated from free-range poultry in Eastern China, in 2014-2015. Poult Sci 2018; 97:3793-3800. [PMID: 30169762 DOI: 10.3382/ps/pey187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 04/18/2018] [Indexed: 01/11/2023] Open
Abstract
Circulating H7N9 influenza viruses in live poultry markets continue to pose a threat to human health. Free-range poultry, one of the sources for these markets, are common in China as well as in many developing countries. Because the H9N2 virus could be a source of internal genes for the H7N9 virus, we conducted surveillance in free-range poultry and live poultry markets to study the evolution of H7N9 and H9N2 viruses in Eastern China. We found 28 samples positive for the H9N2 virus (a rate of 3.2%), but no positive samples for the H7N9 virus. Six representative H9N2 isolates were sequenced and analyzed, and the results showed that these viruses shared high nucleotide identities (99.0 to 100%) and were in a same branch in the phylogenetic trees. All these 6 viruses are closely clustered with Zhejiang H9N2 chicken isolates, and belonged to genotype G57, along with some novel H7N9 strains and H9N2 strains circulating in humans in China. We hope that surveillance of AIVs in free-range poultry will be strengthened for further identification more genetic diversity.
Collapse
Affiliation(s)
- Caihui Zhu
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Chuanxia Hu
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Boxiang Gui
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Qin Chen
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Shuyi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Guimei He
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
9
|
Carnero AM, Kitayama K, Diaz DA, Garvich M, Angulo N, Cama VA, Gilman RH, Bayer AM. Risk for interspecies transmission of zoonotic pathogens during poultry processing and pork production in Peru: A qualitative study. Zoonoses Public Health 2018; 65:528-539. [PMID: 29602269 DOI: 10.1111/zph.12463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 12/14/2022]
Abstract
Interspecies transmission of pathogens is an unfrequent but naturally occurring event and human activities may favour opportunities not previously reported. Reassortment of zoonotic pathogens like influenza A virus can result from these activities. Recently, swine and birds have played a central role as "mixing vessels" for epidemic and pandemic events related to strains like H1N1 and H5N1. Unsafe practices in poultry markets and swine farms can lead to interspecies transmission, favouring the emergence of novel strains. Thus, understanding practices that lead to interspecies interactions is crucial. This qualitative study aimed to evaluate poultry processing practices in formal and informal markets and the use of leftovers by swine farmers in three Peruvian cities: Lima (capital), Tumbes (coastal) and Tarapoto (jungle). We conducted 80 direct observations at formal and informal markets and interviewed 15 swine farmers. Processors slaughter and pluck chickens and vendors and/or processors eviscerate chickens. Food safety and hygiene practices were suboptimal or absent, although some heterogeneity was observed between cities and chicken vendors versus processors. Both vendors (76%) and processors (100%) sold the chicken viscera leftovers to swine farmers, representing the main source of chicken viscera for swine farms (53%). Swine farmers fed the chicken viscera to their swine. Chicken viscera cooking times varied widely and were insufficient in some cases. Non-abattoired poultry leads to the sale of poultry leftovers to small-scale swine farms, resulting in indirect but frequent interspecies contacts that can lead to interspecies transmission of bacterial pathogens or the reassortment of influenza A viruses. These interactions are exacerbated by suboptimal safety and hygiene conditions. People involved in these activities constitute an at-risk population who could play a central role in preventing the transmission of pathogens between species. Educational interventions on hygiene and food safety practices will be important for reducing the risk of interspecies influenza transmission.
Collapse
Affiliation(s)
- A M Carnero
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - K Kitayama
- Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - D A Diaz
- Asociación Benéfica Proyectos en Informática, Salud, Medicina y Agricultura (AB PRISMA), Lima, Peru
| | - M Garvich
- Asociación Benéfica Proyectos en Informática, Salud, Medicina y Agricultura (AB PRISMA), Lima, Peru
| | - N Angulo
- Asociación Benéfica Proyectos en Informática, Salud, Medicina y Agricultura (AB PRISMA), Lima, Peru
| | - V A Cama
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - R H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A M Bayer
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Wang XX, Cheng W, Yu Z, Liu SL, Mao HY, Chen EF. Risk factors for avian influenza virus in backyard poultry flocks and environments in Zhejiang Province, China: a cross-sectional study. Infect Dis Poverty 2018; 7:65. [PMID: 29914558 PMCID: PMC6006748 DOI: 10.1186/s40249-018-0445-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/30/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Human infection of avian influenza virus (AIV) remains a great concern. Although live poultry markets are believed to be associated with human infections, ever more infections have been reported in rural areas with backyard poultry, especially in the fifth epidemic of H7N9. However, limited information is available on backyard poultry infection and surrounding environmental contamination. METHODS Two surveillance systems and a field survey were used to collect data and samples in Zhejiang Province. In total, 4538 samples were collected by surveillance systems and 3171 from the field survey between May 2015 and May 2017, while 352 backyard poultry owners were interviewed in May 2017 by questionnaire to investigate factors influencing the prevalence of avian influenza A virus and other AIV subtypes. RT-PCR was used to test the nucleic acids of viruses. ArcGIS 10.1 software was used to generate maps. Univariate and logistic regression analyses were conducted to identify risk factors for AIV infection. RESULTS Of the 428 poultry premises observed by the surveillance system, 53 (12.38%) were positive for influenza A virus. Of the 352 samples from poultry premises observed by field survey, 13 (3.39%) were positive for influenza A virus. The prevalence of AIV was unevenly distributed and the dominant subtype differed among cities. Eastern (Shaoxing and Ningbo) and southern (Wenzhou) cities exhibited a higher prevalence of AIV (16.33, 8.94, and 7.30% respectively). Contamination of AIV subtypes was most severe in January, especially in 2016 (23.26%, 70/301). The positive rate of subtype H5/H7/H9 was 2.53% (115/4538). Subtype H5 was the least prevalent, while subtypes H7 and H9 had similar positivity rates (1.50 and 1.32% respectively). Poultry flocks and environmental samples had a similar prevalence of AIV (4.46% vs 5.06%). The type of live birds was a risk factor and the sanitary condition of the setting was a protective factor against influenza A contamination. CONCLUSIONS AIV subtypes were prevalent in backyard poultry flocks and surrounding environments in Zhejiang Province. The types of live birds and sanitary conditions of the environment were associated with influenza A contamination. These findings shine a light on the characteristics of contamination of AIV subtypes and emphasize the importance of reducing AIV circulation in backyard poultry settings.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| | - Wei Cheng
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| | - Zhao Yu
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| | - She-Lan Liu
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| | - Hai-Yan Mao
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| | - En-Fu Chen
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| |
Collapse
|
11
|
Gustafson L, Jones R, Dufour-Zavala L, Jensen E, Malinak C, McCarter S, Opengart K, Quinn J, Slater T, Delgado A, Talbert M, Garber L, Remmenga M, Smeltzer M. Expert Elicitation Provides a Rapid Alternative to Formal Case-Control Study of an H7N9 Avian Influenza Outbreak in the United States. Avian Dis 2018; 62:201-209. [DOI: 10.1637/11801-011818-reg.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- L. Gustafson
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, 2150 Centre Avenue, Fort Collins, CO 80526
| | - R. Jones
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, 2150 Centre Avenue, Fort Collins, CO 80526
| | - L. Dufour-Zavala
- Georgia Poultry Laboratory Network, 3235 Abit Massey Way, Gainesville, GA 30507
| | - E. Jensen
- Aviagen North America, 920 Explorer Boulevard NW, Huntsville, AL 35806
| | - C. Malinak
- Peco Foods, Inc., 145 2nd Avenue NW, Gordo, AL 35466
| | - S. McCarter
- Tyson Foods, Inc., 649 Sherwood Road NE, Atlanta, GA 30324
| | - K. Opengart
- Global Sustainability & Animal Welfare, Keystone Foods, 6767 Old Madison Pike, Huntsville, AL 35806
| | - J. Quinn
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, District 1 Field Office for North Carolina–West Virginia, 920 Main Campus Drive, Suite 200, Raleigh, NC 27606
| | - T. Slater
- Hinton Mitchem Poultry Diagnostic Laboratory, Alabama Department of Agriculture and Industries, P.O. Box 409, Hanceville, AL 35077
| | - A. Delgado
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, 2150 Centre Avenue, Fort Collins, CO 80526
| | - M. Talbert
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, 2150 Centre Avenue, Fort Collins, CO 80526
| | - L. Garber
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, 2150 Centre Avenue, Fort Collins, CO 80526
| | - M. Remmenga
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, 2150 Centre Avenue, Fort Collins, CO 80526
| | - M. Smeltzer
- Georgia Poultry Laboratory Network, 3235 Abit Massay Way, Gainesville, GA 30507
| |
Collapse
|
12
|
Ramey AM, DeLiberto TJ, Berhane Y, Swayne DE, Stallknecht DE. Lessons learned from research and surveillance directed at highly pathogenic influenza A viruses in wild birds inhabiting North America. Virology 2018; 518:55-63. [PMID: 29453059 DOI: 10.1016/j.virol.2018.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 11/19/2022]
Abstract
Following detections of highly pathogenic (HP) influenza A viruses (IAVs) in wild birds inhabiting East Asia after the turn of the millennium, the intensity of sampling of wild birds for IAVs increased throughout much of North America. The objectives for many research and surveillance efforts were directed towards detecting Eurasian origin HP IAVs and understanding the potential of such viruses to be maintained and dispersed by wild birds. In this review, we highlight five important lessons learned from research and surveillance directed at HP IAVs in wild birds inhabiting North America: (1) Wild birds may disperse IAVs between North America and adjacent regions via migration, (2) HP IAVs can be introduced to wild birds in North America, (3) HP IAVs may cross the wild bird-poultry interface in North America, (4) The probability of encountering and detecting a specific virus may be low, and (5) Population immunity of wild birds may influence HP IAV outbreaks in North America. We review empirical support derived from research and surveillance efforts for each lesson learned and, furthermore, identify implications for future surveillance efforts, biosecurity, and population health. We conclude our review by identifying five additional areas in which we think future mechanistic research relative to IAVs in wild birds in North America are likely to lead to other important lessons learned in the years ahead.
Collapse
Affiliation(s)
- Andrew M Ramey
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA.
| | - Thomas J DeLiberto
- National Wildlife Disease Program, Wildlife Services, Animal and Plant Health Inspection Service, US Department of Agriculture, Fort Collins, CO 80521, USA
| | - Yohannes Berhane
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Manitoba, Canada R3E 3M4; Department of Animal Science, University of Manitoba, Winnipeg, Canada
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
13
|
Samanta I, Joardar SN, Das PK. Biosecurity Strategies for Backyard Poultry: A Controlled Way for Safe Food Production. FOOD CONTROL AND BIOSECURITY 2018. [PMCID: PMC7149579 DOI: 10.1016/b978-0-12-811445-2.00014-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Velkers FC, Blokhuis SJ, Veldhuis Kroeze EJB, Burt SA. The role of rodents in avian influenza outbreaks in poultry farms: a review. Vet Q 2017; 37:182-194. [DOI: 10.1080/01652176.2017.1325537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Francisca C. Velkers
- Department of Farm Animal Health – Epidemiology, Infectiology and Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Simon J. Blokhuis
- Department of Farm Animal Health – Epidemiology, Infectiology and Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Sara A. Burt
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Prosser DJ, Densmore CL, Hindman LJ, Iwanowicz DD, Ottinger CA, Iwanowicz LR, Driscoll CP, Nagel JL. Low Pathogenic Avian Influenza Viruses in Wild Migratory Waterfowl in a Region of High Poultry Production, Delmarva, Maryland. Avian Dis 2017; 61:128-134. [PMID: 28301229 DOI: 10.1637/11476-072616-resnote] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Migratory waterfowl are natural reservoirs for low pathogenic avian influenza viruses (AIVs) and may contribute to the long-distance dispersal of these pathogens as well as spillover into domestic bird populations. Surveillance for AIVs is critical to assessing risks for potential spread of these viruses among wild and domestic bird populations. The Delmarva Peninsula on the east coast of the United States is both a key convergence point for migratory Atlantic waterfowl populations and a region with high poultry production (>4,700 poultry meat facilities). Sampling of key migratory waterfowl species occurred at 20 locations throughout the Delmarva Peninsula in fall and winter of 2013-14. Samples were collected from 400 hunter-harvested or live-caught birds via cloacal and oropharyngeal swabs. Fourteen of the 400 (3.5%) birds sampled tested positive for the AIV matrix gene using real-time reverse transcriptase PCR, all from five dabbling duck species. Further characterization of the 14 viral isolates identified two hemagglutinin (H3 and H4) and four neuraminidase (N2, N6, N8, and N9) subtypes, which were consistent with isolates reported in the Influenza Research Database for this region. Three of 14 isolates contained multiple HA or NA subtypes. This study adds to the limited baseline information available for AIVs in migratory waterfowl populations on the Delmarva Peninsula, particularly prior to the highly pathogenic AIV A(H5N8) and A(H5N2) introductions to the United States in late 2014.
Collapse
Affiliation(s)
- Diann J Prosser
- A United States Geological Survey, Patuxent Wildlife Research Center, Beltsville Lab, c/o BARC East Building 308, 10300 Baltimore Avenue, Beltsville, Maryland 20705
| | - Christine L Densmore
- B United States Geological Survey, Leetown Science Center, Kearneysville, West Virginia 25430
| | - Larry J Hindman
- C Maryland Department of Natural Resources, Cambridge, Maryland 21613
| | - Deborah D Iwanowicz
- B United States Geological Survey, Leetown Science Center, Kearneysville, West Virginia 25430
| | - Chris A Ottinger
- B United States Geological Survey, Leetown Science Center, Kearneysville, West Virginia 25430
| | - Luke R Iwanowicz
- B United States Geological Survey, Leetown Science Center, Kearneysville, West Virginia 25430
| | - Cindy P Driscoll
- D Maryland Department of Natural Resources, Cooperative Oxford Laboratory, Oxford, Maryland 21654
| | - Jessica L Nagel
- A United States Geological Survey, Patuxent Wildlife Research Center, Beltsville Lab, c/o BARC East Building 308, 10300 Baltimore Avenue, Beltsville, Maryland 20705
| |
Collapse
|
16
|
O'Connor AM, Sargeant JM, Dohoo IR, Erb HN, Cevallos M, Egger M, Ersbøll AK, Martin SW, Nielsen LR, Pearl DL, Pfeiffer DU, Sanchez J, Torrence ME, Vigre H, Waldner C, Ward MP. Explanation and Elaboration Document for the
STROBE
‐Vet Statement: Strengthening the Reporting of Observational Studies in Epidemiology – Veterinary Extension. Zoonoses Public Health 2016; 63:662-698. [DOI: 10.1111/zph.12315] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Indexed: 01/10/2023]
Affiliation(s)
- A. M. O'Connor
- Department of Veterinary Diagnostic and Production Animal Medicine Iowa State University Ames IA USA
| | - J. M. Sargeant
- Centre for Public Health and Zoonoses University of Guelph Guelph ON Canada
- Department of Population Medicine Ontario Veterinary College Guelph ON Canada
| | - I. R. Dohoo
- Centre for Veterinary Epidemiological Research University of Prince Edward Island Charlottetown PEI Canada
| | - H. N. Erb
- Department of Population Medicine and Diagnostic Sciences Cornell University Ithaca NY USA
| | - M. Cevallos
- Institute of Social and Preventive Medicine University of Bern BernSwitzerland
| | - M. Egger
- Institute of Social and Preventive Medicine University of Bern BernSwitzerland
| | - A. K. Ersbøll
- National Institute of Public Health University of Southern Denmark Copenhagen Denmark
| | - S. W. Martin
- Department of Population Medicine Ontario Veterinary College Guelph ON Canada
| | - L. R. Nielsen
- Section for Animal Welfare and Disease Control University of Copenhagen Copenhagen Denmark
| | - D. L. Pearl
- Department of Population Medicine Ontario Veterinary College Guelph ON Canada
| | - D. U. Pfeiffer
- Department of Production and Population Health Royal Veterinary College London UK
| | - J. Sanchez
- Department of Health Management University of Prince Edward Island Charlottetown PEI Canada
| | - M. E. Torrence
- Food and Drug Administration Center for Food Safety and Applied Nutrition College Park MD USA
| | - H. Vigre
- National Food Institute Technical University of Denmark Lyngby Denmark
| | - C. Waldner
- Department of Large Animal Clinical Sciences Western College of Veterinary Medicine University of Saskatchewan Saskatoon SK Canada
| | - M. P. Ward
- Faculty of Veterinary Science The University of Sydney Sydney NSWAustralia
| |
Collapse
|
17
|
O'Connor AM, Sargeant JM, Dohoo IR, Erb HN, Cevallos M, Egger M, Ersbøll AK, Martin SW, Nielsen LR, Pearl DL, Pfeiffer DU, Sanchez J, Torrence ME, Vigre H, Waldner C, Ward MP. Explanation and Elaboration Document for the STROBE-Vet Statement: Strengthening the Reporting of Observational Studies in Epidemiology-Veterinary Extension. J Vet Intern Med 2016; 30:1896-1928. [PMID: 27859752 PMCID: PMC5115190 DOI: 10.1111/jvim.14592] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 06/24/2016] [Accepted: 08/29/2016] [Indexed: 01/15/2023] Open
Abstract
The STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement was first published in 2007 and again in 2014. The purpose of the original STROBE was to provide guidance for authors, reviewers, and editors to improve the comprehensiveness of reporting; however, STROBE has a unique focus on observational studies. Although much of the guidance provided by the original STROBE document is directly applicable, it was deemed useful to map those statements to veterinary concepts, provide veterinary examples, and highlight unique aspects of reporting in veterinary observational studies. Here, we present the examples and explanations for the checklist items included in the STROBE-Vet statement. Thus, this is a companion document to the STROBE-Vet statement methods and process document (JVIM_14575 "Methods and Processes of Developing the Strengthening the Reporting of Observational Studies in Epidemiology-Veterinary (STROBE-Vet) Statement" undergoing proofing), which describes the checklist and how it was developed.
Collapse
Affiliation(s)
- A M O'Connor
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - J M Sargeant
- Centre for Public Health and Zoonoses, University of Guelph, Guelph, ON, Canada.,Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
| | - I R Dohoo
- Centre for Veterinary Epidemiological Research, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - H N Erb
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY
| | - M Cevallos
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - M Egger
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - A K Ersbøll
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - S W Martin
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
| | - L R Nielsen
- Section for Animal Welfare and Disease Control, University of Copenhagen, Copenhagen, Denmark
| | - D L Pearl
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
| | - D U Pfeiffer
- Department of Production and Population Health, Royal Veterinary College, London, UK
| | - J Sanchez
- Department of Health Management, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - M E Torrence
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD
| | - H Vigre
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - C Waldner
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - M P Ward
- Faculty of Veterinary Science, The University of Sydney, Sydney, Australia
| |
Collapse
|
18
|
Chen LJ, Lin XD, Guo WP, Tian JH, Wang W, Ying XH, Wang MR, Yu B, Yang ZQ, Shi M, Holmes EC, Zhang YZ. Diversity and evolution of avian influenza viruses in live poultry markets, free-range poultry and wild wetland birds in China. J Gen Virol 2016; 97:844-854. [PMID: 26758561 DOI: 10.1099/jgv.0.000399] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The wide circulation of novel avian influenza viruses (AIVs) highlights the risk of pandemic influenza emergence in China. To investigate the prevalence and genetic diversity of AIVs in different ecological contexts, we surveyed AIVs in live poultry markets (LPMs), free-range poultry and the wetland habitats of wild birds in Zhejiang and Hubei provinces. Notably, LPMs contained the highest frequency of AIV infection, and the greatest number of subtypes (n = 9) and subtype co-infections (n = 14), as well as frequent reassortment, suggesting that they play an active role in fuelling AIV transmission. AIV-positive samples were also identified in wild birds in both provinces and free-range poultry in one sampling site close to a wetland region in Hubei. H9N2, H7N9 and H5N1 were the most commonly sampled subtypes in the LPMs from Zhejiang, whilst H5N6 and H9N2 were the dominant subtypes in the LPMs from Hubei. Phylogenetic analyses of the whole-genome sequences of 43 AIVs revealed that three reassortant H5 subtypes were circulating in LMPs in both geographical regions. Notably, the viruses sampled from the wetland regions and free-range poultry contained complex reassortants, for which the origins of some segments were unclear. Overall, our study highlights the extent of AIV genetic diversity in two highly populated parts of central and south-eastern China, particularly in LPMs, and emphasizes the need for continual surveillance.
Collapse
Affiliation(s)
- Liang-Jun Chen
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, 102206, Beijing, PRChina.,School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PRChina.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, PRChina
| | - Xian-Dan Lin
- Wenzhou Center for Disease Control and Prevention, Wenzhou, 325001, Zhejiang Province, PRChina
| | - Wen-Ping Guo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, 102206, Beijing, PRChina.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, PRChina
| | - Jun-Hua Tian
- Wenzhou Center for Disease Control and Prevention, Wuhan, 430015, Hubei Province, PRChina
| | - Wen Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, 102206, Beijing, PRChina.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, PRChina
| | - Xu-Hua Ying
- Yuhuan Center for Disease Control and Prevention, Yuhuan, 317600, Zhejiang Province, PRChina
| | - Miao-Ruo Wang
- Longquan Center for Disease Control and Prevention, Longquan, Zhejiang Province, PRChina
| | - Bin Yu
- Wenzhou Center for Disease Control and Prevention, Wuhan, 430015, Hubei Province, PRChina
| | - Zhan-Qiu Yang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PRChina
| | - Mang Shi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, 102206, Beijing, PRChina.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, 102206, Beijing, PRChina.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yong-Zhen Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, 102206, Beijing, PRChina.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, PRChina.,School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PRChina
| |
Collapse
|
19
|
Sero-surveillance and risk factors for avian influenza and Newcastle disease virus in backyard poultry in Oman. Prev Vet Med 2015; 122:145-53. [DOI: 10.1016/j.prevetmed.2015.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 09/08/2015] [Accepted: 09/20/2015] [Indexed: 11/21/2022]
|
20
|
Elkhoraibi C, Blatchford RA, Pitesky ME, Mench JA. Backyard chickens in the United States: a survey of flock owners. Poult Sci 2014; 93:2920-31. [PMID: 25193256 DOI: 10.3382/ps.2014-04154] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although it has become increasingly popular to keep backyard chickens in the United States, few studies have provided information about these flocks. An online survey of backyard chicken owners was conducted, advertised through Master Gardeners' websites, social platforms, and other sites. The survey had 56 questions about flock history, husbandry, health care, and owner attitudes and demographics. Surveys received (n = 1,487) came almost equally from urban, suburban, and rural areas. Most (71%) respondents owned fewer than 10 chickens and had kept chickens for less than 5 yr (70%). Major reasons for keeping chickens were as food for home use (95%), gardening partners (63%), pets (57%), or a combination of these. Rural respondents had larger flocks (P ≤ 0.001) and were more likely to keep chickens as a source of income or for show (P ≤ 0.001) than urban and suburban respondents. Owners thought that eggs/meat from their chickens were more nutritious (86%), safer to consume (84%), and tasted better (95%) than store-bought products, and also that the health and welfare of their chickens was better (95%) than on commercial farms. The majority (59%) indicated no flock health problems in the last 12 mo. However, there was a lack of awareness about some poultry health conditions. Many knew either little or nothing about exotic Newcastle or Marek's disease, and most (61%) did not vaccinate against Marek's. Respondents wanted to learn more about various flock management topics, especially how to detect (64%) and treat (66%) health problems. The Internet was the main source of information (87%) used by backyard flock owners, followed by books/magazines (62%) and feed stores (40%). Minimizing predation was the most cited challenge (49%), followed by providing adequate feed at low cost (28%), dealing with soil management (25%), and complying with zoning regulations (23%). The evidence obtained from this survey will help to determine what information and resources are needed to maintain good biosecurity and improve the health and welfare of backyard flocks.
Collapse
Affiliation(s)
- C Elkhoraibi
- Department of Animal Science and Center for Animal Welfare, University of California, Davis 95616
| | - R A Blatchford
- Department of Animal Science and Center for Animal Welfare, University of California, Davis 95616
| | - M E Pitesky
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis 95616
| | - J A Mench
- Department of Animal Science and Center for Animal Welfare, University of California, Davis 95616
| |
Collapse
|
21
|
Whitehead ML, Roberts V. Backyard poultry: legislation, zoonoses and disease prevention. J Small Anim Pract 2014; 55:487-96. [PMID: 25109514 DOI: 10.1111/jsap.12254] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 05/19/2014] [Accepted: 06/12/2014] [Indexed: 11/29/2022]
Abstract
In law, backyard poultry are "food-producing animals" and "farmed animals" and are subject to regulations regarding welfare, prescribing, banned procedures, disposal of carcases, feeding bans, notifiable diseases and disease surveillance in addition to those applying to most other pets. Many owners and some veterinary surgeons are unclear about the requirements of these regulations. Backyard poultry are also associated with some different zoonotic disease risks to mammalian pets. Because a high proportion of poultry morbidity and mortality relates to infectious diseases, the health of backyard poultry is amenable to improvement through basic husbandry, biosecurity, hygiene and preventive medicine measures that can be incorporated into a simple "flock-health plan". This article reviews these topics.
Collapse
Affiliation(s)
- M L Whitehead
- Chipping Norton Veterinary Hospital, Chipping Norton, Oxon OX7 5BN
| | | |
Collapse
|
22
|
Chang H, Dai F, Liu Z, Yuan F, Zhao S, Xiang X, Zou F, Zeng B, Fan Y, Duan G. Seroprevalence survey of avian influenza A (H5) in wild migratory birds in Yunnan Province, Southwestern China. Virol J 2014; 11:18. [PMID: 24490851 PMCID: PMC3912512 DOI: 10.1186/1743-422x-11-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Highly pathogenic avian influenza virus (HPAIV) is a highly contagious disease which is a zoonotic pathogen of significant economic and public health concern. The outbreaks caused by HPAIV H5N1 of Asian origin have caused animal and human disease and mortality in several countries of Southeast Asia, such as Bangladesh, Cambodia, China, India, Indonesia, Laos, Myanmar, Thailand and Viet Nam. For the first time since 1961, this HPAIV has also caused extensive mortality in wild birds and has sparked debate of the role wild birds have played in the spread of this virus. Other than confirmed mortality events, little is known of this virus in wild birds. There is no report on the seroprevalence of avian influenza H5 infection in wild migratory birds in Yunnan Province. In this study we examined live wild birds in Yunnan Province for H5 specific antibody to better understand the occurrence of this disease in free living birds. METHODS Sera from 440 wild birds were collected from in Kunming and Northern Ailaoshan of Yunnan Province, Southwestern China, and assayed for H5 antibodies using the hemagglutination inhibition (HI) assays. RESULTS The investigation revealed that the seroprevalence of avian influenza H5 was as following: Ciconiiformes 2.6%, Strigiformes 13.04%, Passeriformes 20%, Cuculiformes 21.74%, Gruiformes 0%, Columbiformes 0%, Charadriiformes 0% and Coraciiformes 0%. Statistical analyses showed that there was a significant difference of prevalence between the orders (P < 0.01). Specific avian influenza H5 antibodies were detected in 23 of 440 (5.23%) sera. Mean HI titer 23 positive sera against H5 were 5.4 log₂. CONCLUSIONS The results of the present survey indicated that the proportion of wild birds had previously infected AIV H5 at other times of the year. To our knowledge, this is the first seroprevalence report of avian influenza H5 infection in wild migratory birds in China' s southwestern Yunnan Province. The results of the present survey have significant public health concerns.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gang Duan
- College of Animal Science and Technology of Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| |
Collapse
|
23
|
Katale BZ, Mbugi EV, Karimuribo ED, Keyyu JD, Kendall S, Kibiki GS, Godfrey-Faussett P, Michel AL, Kazwala RR, van Helden P, Matee MI. Prevalence and risk factors for infection of bovine tuberculosis in indigenous cattle in the Serengeti ecosystem, Tanzania. BMC Vet Res 2013; 9:267. [PMID: 24377705 PMCID: PMC3881215 DOI: 10.1186/1746-6148-9-267] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 12/27/2013] [Indexed: 11/20/2022] Open
Abstract
Background Bovine tuberculosis (bTB) is a chronic debilitating disease and is a cause of morbidity and mortality in livestock, wildlife and humans. This study estimated the prevalence and risk factors associated with bovine tuberculosis transmission in indigenous cattle at the human-animal interface in the Serengeti ecosystem of Tanzania. Results A total of 1,103 indigenous cattle from 32 herds were investigated for the presence of bTB using the Single Intradermal Comparative Tuberculin Test. Epidemiological data on herd structure, management and grazing system were also collected. The apparent individual animal prevalence of tuberculin reactors was 2.4% (95% confidence interval (CI), 1.7 – 3.5%), whereas the true prevalence was 0.6% CI, 0.6 – 0.7% as indicated by a reaction to avian tuberculin purified protein derivatives (PPD) which is more than 4 mm greater than the reaction to avian tuberculin PPD. The results showed that 10.6% (117/1,103) showed non-specific reactions (atypical mycobacterium). The herd prevalence of 50% (16/32) was found. Tuberculin skin test results were found to be significantly associated with age, location, size of the household and animal tested. Of 108 respondents, 70 (64.8%) individuals had not heard about bovine tuberculosis at all. Thirty five percent (38/108) of respondents at least were aware of bTB. About 60% (23/38) of respondents who were aware of bTB had some knowledge on how bTB is spread. Eighty one percent (87/108) of respondents were not aware of the presence of bTB in wildlife. There is regular contact between cattle and wild animals due to sharing of grazing land and water sources, with 99% (107/108) of households grazing cattle in communal pastures. Conclusion The study has demonstrated a high reported interaction of livestock with wildlife and poor knowledge of most cattle owners concerning bTB and its transmission pathways among people, livestock and wildlife. Although the overall proportion of animals with bTB is relatively low, herd prevalence is 50% and prevalence within herds varied considerably. Thus there is a possibility of cross transmission of bTB at wildlife-livestock interface areas that necessitates use of genetic strain typing methods to characterize them accurately.
Collapse
Affiliation(s)
- Bugwesa Z Katale
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), P,O BOX 65001, Dar es Salaam, Tanzania.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ghaniei A, Allymehr M, Moradschendi A. Seroprevalence of avian influenza (H9N2) in broiler chickens in Northwest of Iran. Asian Pac J Trop Biomed 2013; 3:822-4. [PMID: 24075349 DOI: 10.1016/s2221-1691(13)60162-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/22/2013] [Accepted: 09/03/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To demonstrate seroprevalence of avian invluenza (H9N2) subtybe in broiler chickens in Northwest of Iran. MATERIALS A total of 310 blood samples were collected from 25 broiler flocks in slaughterhouses of West Azarbayjan, Iran. Serum samples were subjected to haemagglutination inhibition test. RESULTS The test showed 40.6% of positive serums. Mean antibody titer of avian influenza virus differed between geographical locations in this survey. CONCLUSIONS High prevalence of avian influenza virus antibodies in serum of birds emphasize that avian influenza has an important role in respiratory complexes in broiler chickens in this region, and probably throughout Iran. Biosecurity measures, monitoring and surveillance programs, and to some degree vaccination are effective tools to prevent introduction of H9N2 infection and its economic losses.
Collapse
Affiliation(s)
- Abolfazl Ghaniei
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Urmia, Iran.
| | | | | |
Collapse
|