1
|
Reynolds WT, Votava-Smith JK, Gabriel G, Lee VK, Rajagopalan V, Wu Y, Liu X, Yagi H, Slabicki R, Gibbs B, Tran NN, Weisert M, Cabral L, Subramanian S, Wallace J, del Castillo S, Baust T, Weinberg JG, Lorenzi Quigley L, Gaesser J, O’Neil SH, Schmithorst V, Panigrahy A, Ceschin R, Lo CW. Validation of a Paralimbic-Related Subcortical Brain Dysmaturation MRI Score in Infants with Congenital Heart Disease. J Clin Med 2024; 13:5772. [PMID: 39407833 PMCID: PMC11476423 DOI: 10.3390/jcm13195772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Brain magnetic resonance imaging (MRI) of infants with congenital heart disease (CHD) shows brain immaturity assessed via a cortical-based semi-quantitative score. Our primary aim was to develop an infant paralimbic-related subcortical-based semi-quantitative dysmaturation score, termed brain dysplasia score (BDS), to detect abnormalities in CHD infants compared to healthy controls and secondarily to predict clinical outcomes. We also validated our BDS in a preclinical mouse model of hypoplastic left heart syndrome. Methods: A paralimbic-related subcortical BDS, derived from structural MRIs of infants with CHD, was compared to healthy controls and correlated with clinical risk factors, regional cerebral volumes, feeding, and 18-month neurodevelopmental outcomes. The BDS was validated in a known CHD mouse model named Ohia with two disease-causing genes, Sap130 and Pchda9. To relate clinical findings, RNA-Seq was completed on Ohia animals. Findings: BDS showed high incidence of paralimbic-related subcortical abnormalities (including olfactory, cerebellar, and hippocampal abnormalities) in CHD infants (n = 215) compared to healthy controls (n = 92). BDS correlated with reduced cortical maturation, developmental delay, poor language and feeding outcomes, and increased length of stay. Ohia animals (n = 63) showed similar BDS findings, and RNA-Seq analysis showed altered neurodevelopmental and feeding pathways. Sap130 mutants correlated with a more severe BDS, whereas Pcdha9 correlated with a milder phenotype. Conclusions: Our BDS is sensitive to dysmaturational differences between CHD and healthy controls and predictive of poor outcomes. A similar spectrum of paralimbic and subcortical abnormalities exists between human and Ohia mutants, suggesting a common genetic mechanistic etiology.
Collapse
Affiliation(s)
- William T. Reynolds
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA
| | - Jodie K. Votava-Smith
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - George Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Vincent K. Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vidya Rajagopalan
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Hisato Yagi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ruby Slabicki
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Brian Gibbs
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Nhu N. Tran
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Molly Weisert
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Laura Cabral
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Subramanian Subramanian
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Pediatric Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Julia Wallace
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sylvia del Castillo
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Anesthesiology Critical Care Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Tracy Baust
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 51213, USA
| | - Jacqueline G. Weinberg
- Division of Cardiology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Lauren Lorenzi Quigley
- Cardiac Neurodevelopmental Care Program, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jenna Gaesser
- Division of Neurology and Child Development, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Sharon H. O’Neil
- Division of Neurology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Vanessa Schmithorst
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rafael Ceschin
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
2
|
Chen Y, Lu Y, Wang T, Wu J, Yu B. Changes in Gut Microbiota at 1-60 Days in 92 Preterm Infants in a Neonatal Intensive Care Unit Using 16S rRNA Gene Sequencing. Med Sci Monit 2023; 29:e941560. [PMID: 38018034 DOI: 10.12659/msm.941560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Neonatal gut diversity is influenced by birth conditions and probiotic/antibiotic use. The gut microbiota affects brain development, immunity, and risk of diseases. Preterm infants, especially in neonatal intensive care units (NICUs), have different gut flora from full-term infants, suggesting in utero microbial colonization. This study examined gut microbiota changes in 92 NICU preterm infants in China. MATERIAL AND METHODS We collected data on 92 preterm infants admitted to the NICU immediately after birth, and fecal samples were collected on days 1, 3, 7, 14, 21, 28, and 60. We analyzed changes in intestinal bacteria through 16S rRNA sequencing, predicted the change in gut microbiota function over time, and compared the effects of main feeding modality on the intestinal bacteria of preterm infants. RESULTS At the phylum level, the top 5 phyla in total accounted for 99.69% of the abundance, in decreasing order of abundance: Proteobacteria, Firmicutes, Actinobacteria, Tenericutes, and Bacteroidetes. At the genus level, the top 10 genera in terms of abundance accounted for a total of 90.90%, in decreasing order of abundance: Pseudomonas, Staphylococcus, Klebsiella, Escherichia-Shigella, unclassified Enterobacteriaceae, Staphylococcus, Clostridium-sensu-stricto-1, Streptococcus, Sphingomonas, and Ureaplasma. The abundance of Proteobacteria and Pseudomonas showed a decreasing trend at first, reached a minimum at day 14, and then an increasing trend, while the opposite trend was observed for Firmicutes. The metabolic function of the bacterial community changed greatly at different time points. The abundance of Proteobacteria at the phylum level and Streptococcus at the genus level in formula-fed infants were significantly higher than in breast-fed infants. CONCLUSIONS Between 1 and 60 days, the gut microbiome in preterm infants in the NICU changed with changes in feeding patterns, with the main gut bacteria being from the phyla, Proteobacteria, and Pseudomonas.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China (mainland)
| | - Yanbo Lu
- Ningbo Women's and Children's Hospital, Ningbo, Zhejiang, China (mainland)
| | - Ting Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China (mainland)
| | - Junhua Wu
- Ningbo Women's and Children's Hospital, Ningbo, Zhejiang, China (mainland)
| | - Beirong Yu
- Ningbo Women's and Children's Hospital, Ningbo, Zhejiang, China (mainland)
| |
Collapse
|
3
|
Zhao T, Alder NN, Starkweather AR, Chen MH, Matson AP, Xu W, Balsbaugh JL, Cong X. Associations of Mitochondrial Function, Stress, and Neurodevelopmental Outcomes in Early Life: A Systematic Review. Dev Neurosci 2022; 44:438-454. [PMID: 35995037 PMCID: PMC9928905 DOI: 10.1159/000526491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
Early life stress is commonly experienced by infants, especially preterm infants, and may impact their neurodevelopmental outcomes in their early and later lives. Mitochondrial function/dysfunction may play an important role underlying the linkage of prenatal and postnatal stress and neurodevelopmental outcomes in infants. This review aimed to provide insights on the relationship between early life stress and neurodevelopment and the mechanisms of mitochondrial function/dysfunction that contribute to the neuropathology of stress. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was used to develop this systematic review. PubMed, Scopus, PsycINFO, and Biosis databases were searched for primary research articles published between 2010 and 2021 that examined the relationships among mitochondrial function/dysfunction, infant stress, and neurodevelopment. Thirty studies were identified. There is evidence to support that mitochondrial function/dysfunction mediates the relationship between prenatal and postnatal stress and neurodevelopmental outcomes in infants. Maternal transgenerational transmission of mitochondrial bioenergetic patterns influenced prenatal stress induced neurodevelopmental outcomes and behavioral changes in infants. Multiple functionally relevant mitochondrial proteins, genes, and polymorphisms were associated with stress exposure. This is the first review of the role that mitochondrial function/dysfunction plays in the association between stress and neurodevelopmental outcomes in full-term and preterm infants. Although multiple limitations were found based on the lack of data on the influence of biological sex, and due to invasive sampling, and lack of longitudinal data, many genes and proteins associated with mitochondrial function/dysfunction were found to influence neurodevelopmental outcomes in the early life of infants.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Nursing, University of Connecticut, Storrs, Connecticut, USA,
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | | | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, Storrs, Connecticut, USA
| | - Adam P Matson
- Division of Neonatology, Connecticut Children's Medical Center, Hartford, Connecticut, USA
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Wanli Xu
- School of Nursing, University of Connecticut, Storrs, Connecticut, USA
| | - Jeremy L Balsbaugh
- Proteomics and Metabolomics Facility, University of Connecticut, Storrs, Connecticut, USA
| | - Xiaomei Cong
- School of Nursing, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
4
|
Illapani VSP, Edmondson DA, Cecil KM, Altaye M, Kumar M, Harpster K, Parikh NA. Magnetic resonance spectroscopy brain metabolites at term and 3-year neurodevelopmental outcomes in very preterm infants. Pediatr Res 2022; 92:299-306. [PMID: 33654289 PMCID: PMC8410891 DOI: 10.1038/s41390-021-01434-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Noninvasive advanced neuroimaging and neurochemical assessment can identify subtle abnormalities and predict neurodevelopmental impairments. Our objective was to quantify white matter metabolite levels and evaluate their relationship with neurodevelopmental outcomes at age 3 years. METHODS Our study evaluated a longitudinal prospective cohort of very premature infants (<32 weeks gestational age) with single-voxel proton magnetic resonance spectroscopy from the centrum semiovale performed at term-equivalent age and standardized cognitive, verbal, and motor assessments at 3 years corrected age. We separately examined metabolite ratios in the left and right centrum semiovale. We also conducted an exploratory interaction analysis for high/low socioeconomic status (SES) to evaluate the relationship between metabolites and neurodevelopmental outcomes, after adjusting for confounders. RESULTS We found significant relationships between choline/creatine levels in the left and right centrum semiovale and motor development scores. Exploratory interaction analyses revealed that, for infants with low SES, there was a negative association between choline/creatine in the left centrum semiovale and motor assessment scores at age 3 years. CONCLUSIONS Brain metabolites from the centrum semiovale at term-equivalent age were associated with motor outcomes for very preterm infants at 3 years corrected age. This effect may be most pronounced for infants with low SES. IMPACT Motor development at 3 years corrected age for very preterm infants is inversely associated with choline neurochemistry within the centrum semiovale on magnetic resonance spectroscopy at term-equivalent age, especially in infants with low socioeconomic status. No prior studies have studied metabolites in the centrum semiovale to predict neurodevelopmental outcomes at 3 years corrected age based on high/low socioeconomic status. For very preterm infants with lower socioeconomic status, higher choline-to-creatine ratio in central white matter is associated with worse neurodevelopmental outcomes.
Collapse
Affiliation(s)
| | - David A. Edmondson
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Kim M. Cecil
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH;,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Manoj Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, INDIA
| | - Karen Harpster
- Division of Occupational Therapy and Physical Therapy, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Nehal A. Parikh
- Division of Neonatology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH,Corresponding author’s contact information: Nehal A. Parikh, DO, MS, Professor of Pediatrics, Cincinnati Children’s Hospital, 3333 Burnet Ave, MLC 7009, Cincinnati, OH 45229, (513) 636-7584 (Business), (513) 803-0969 (Fax),
| |
Collapse
|
5
|
Parikh NA, Harpster K, He L, Illapani VSP, Khalid FC, Klebanoff MA, O'Shea TM, Altaye M. Novel diffuse white matter abnormality biomarker at term-equivalent age enhances prediction of long-term motor development in very preterm children. Sci Rep 2020; 10:15920. [PMID: 32985533 PMCID: PMC7523012 DOI: 10.1038/s41598-020-72632-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/31/2020] [Indexed: 01/09/2023] Open
Abstract
Our objective was to evaluate the independent prognostic value of a novel MRI biomarker-objectively diagnosed diffuse white matter abnormality volume (DWMA; diffuse excessive high signal intensity)-for prediction of motor outcomes in very preterm infants. We prospectively enrolled a geographically-based cohort of very preterm infants without severe brain injury and born before 32 weeks gestational age. Structural brain MRI was obtained at term-equivalent age and DWMA volume was objectively quantified using a published validated algorithm. These results were compared with visually classified DWMA. We used multivariable linear regression to assess the value of DWMA volume, independent of known predictors, to predict motor development as assessed using the Bayley Scales of Infant & Toddler Development, Third Edition at 3 years of age. The mean (SD) gestational age of the cohort was 28.3 (2.4) weeks. In multivariable analyses, controlling for gestational age, sex, and abnormality on structural MRI, DWMA volume was an independent prognostic biomarker of Bayley Motor scores ([Formula: see text]= -12.59 [95% CI -18.70, -6.48] R2 = 0.41). Conversely, visually classified DWMA was not predictive of motor development. In conclusion, objectively quantified DWMA is an independent prognostic biomarker of long-term motor development in very preterm infants and warrants further study.
Collapse
Affiliation(s)
- Nehal A Parikh
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | - Karen Harpster
- Division of Occupational Therapy and Physical Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lili He
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Fatima Chughtai Khalid
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, USA
| | - Mark A Klebanoff
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Departments of Pediatrics and Obstetrics and Gynecology, The Ohio State University, Columbus, OH, USA
| | - T Michael O'Shea
- Departments of Pediatrics, University of North Carolina At Chapel Hill, Chapel Hill, NC, USA
| | - Mekibib Altaye
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
6
|
Antecedents of Objectively Diagnosed Diffuse White Matter Abnormality in Very Preterm Infants. Pediatr Neurol 2020; 106:56-62. [PMID: 32139164 PMCID: PMC7500641 DOI: 10.1016/j.pediatrneurol.2020.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Diffuse white matter abnormality (diffuse excessive high signal intensity) is the most common finding on structural brain magnetic resonance imaging (MRI) at term-equivalent age in very preterm infants. Yet, there remains a large gap in our understanding of the etiology of diffuse white matter abnormality. Our objective was to evaluate perinatal and neonatal inflammation-associated antecedents of diffuse white matter abnormality on MRI. METHODS We prospectively enrolled 110 very preterm infants born at ≤31 weeks gestational age and collected data on multiple perinatal/neonatal exposures, especially inflammation initiating-illnesses. We performed structural MRI at term-equivalent age and quantified the volume of diffuse white matter abnormality objectively. Multivariable regression was used to identify clinical antecedents of diffuse white matter abnormality. RESULTS The mean (S.D.) birth gestational age of the final study sample of 98 very preterm infants was 28.3 (2.5) weeks. Multiple inflammation initiating-illnesses were associated with diffuse white matter abnormality in univariate analyses. In multivariable linear regression analyses controlling for gestational age, severe retinopathy of prematurity (P < 0.001) and bronchopulmonary dysplasia (P = 0.006) were independent risk factors, whereas maternal treatment with 17-hydroxyprogesterone (P < 0.001) was protective of later development of objectively quantified diffuse white matter abnormality. CONCLUSIONS We identified several perinatal and neonatal antecedent clinical factors associated with diffuse white matter abnormality. Although we found some support for inflammation as a common underlying mechanism, larger studies are needed to validate inflammation as a potential common pathway to the development of diffuse white matter abnormality in very preterm infants.
Collapse
|
7
|
Parikh NA, He L, Illapani VSP, Altaye M, Folger AT, Yeates KO. Objectively Diagnosed Diffuse White Matter Abnormality at Term Is an Independent Predictor of Cognitive and Language Outcomes in Infants Born Very Preterm. J Pediatr 2020; 220:56-63. [PMID: 32147220 PMCID: PMC7583652 DOI: 10.1016/j.jpeds.2020.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/07/2019] [Accepted: 01/14/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To externally validate the independent value of objectively diagnosed diffuse white matter abnormality (DWMA; also known as diffuse excessive high signal intensity) volume to predict neurodevelopmental outcomes in very preterm infants (≤31 weeks of gestational age). STUDY DESIGN A prospective, multicenter, regional population-based cohort study in 98 very preterm infants without severe brain injury on magnetic resonance imaging (MRI). DWMA volume was diagnosed objectively on structural MRI at term-equivalent age using our published algorithm. Multivariable linear regression was used to assess the value of DWMA volume to predict cognitive and language scores on the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) at 2 years corrected age. RESULTS Of the infants who returned for follow-up (n = 74), the mean (SD) gestational age was 28.2 (2.4) weeks, and 42 (56.8%) were boys. In bivariable analyses, DWMA volume was a significant predictor of Bayley-III cognitive and language scores. In multivariable analyses, controlling for known predictors of Bayley-III scores (ie, socioeconomic status, gestational age, sex, and global brain abnormality score), DWMA volume remained a significant predictor of cognitive (P < .001) and language (P = .04) scores at 2 years. When dichotomized, objectively diagnosed severe DWMA was a significant predictor of cognitive and language impairments, whereas visual qualitative diagnosis of DWMA was a poor predictor. CONCLUSIONS In this multicenter, prospective cohort study, we externally validated our previous findings that objectively diagnosed DWMA is an independent predictor of cognitive and language development in very preterm infants. We also demonstrated again that visually-diagnosed DWMA is not predictive of neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Nehal A. Parikh
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH,Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH,Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH,Corresponding author’s contact information: Nehal A. Parikh, DO, MS, Professor of Pediatrics, Cincinnati Children’s Hospital, 3333 Burnet Ave, MLC 7009, Cincinnati, OH 45229, (513) 636-7584 (Business), (513) 803-0969 (Fax),
| | - Lili He
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH,Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Venkata Sita Priyanka Illapani
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Mekibib Altaye
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH,Divison of Biostatistics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Alonzo T. Folger
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH,Divison of Biostatistics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Keith O. Yeates
- Department of Psychology, AlbertaChildren’s Hospital Research Institute and Hotchkiss Brain Institute, and University of Calgary, Alberta, Canada
| |
Collapse
|
8
|
Altered brain metabolism contributes to executive function deficits in school-aged children born very preterm. Pediatr Res 2020; 88:739-748. [PMID: 32590836 PMCID: PMC7577839 DOI: 10.1038/s41390-020-1024-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Executive function deficits in children born very preterm (VPT) have been linked to anatomical abnormalities in white matter and subcortical brain structures. This study aimed to investigate how altered brain metabolism contributes to these deficits in VPT children at school-age. METHODS Fifty-four VPT participants aged 8-13 years and 62 term-born peers were assessed with an executive function test battery. Brain metabolites were obtained in the frontal white matter and the basal ganglia/thalami, using proton magnetic resonance spectroscopy (MRS). N-acetylaspartate (NAA)/creatine (Cr), choline (Cho)/Cr, glutamate + glutamine (Glx)/Cr, and myo-Inositol (mI)/Cr were compared between groups and associations with executive functions were explored using linear regression. RESULTS In the frontal white matter, VPT showed lower Glx/Cr (mean difference: -5.91%, 95% CI [-10.50, -1.32]), higher Cho/Cr (7.39%, 95%-CI [2.68, 12.10]), and higher mI/Cr (5.41%, 95%-CI [0.18, 10.64]) while there were no differences in the basal ganglia/thalami. Lower executive functions were associated with lower frontal Glx/Cr ratios in both groups (β = 0.16, p = 0.05) and higher mI/Cr ratios in the VPT group only (interaction: β = -0.17, p = 0.02). CONCLUSION Long-term brain metabolite alterations in the frontal white matter may be related to executive function deficits in VPT children at school-age. IMPACT Very preterm birth is associated with long-term brain metabolite alterations in the frontal white matter. Such alterations may contribute to deficits in executive function abilities. Injury processes in the brain can persist for years after the initial insult. Our findings provide new insights beyond structural and functional imaging, which help to elucidate the processes involved in abnormal brain development following preterm birth. Ultimately, this may lead to earlier identification of children at risk for developing deficits and more effective interventions.
Collapse
|
9
|
Detection of occult abnormalities in the deep gray matter nuclei of neonates with punctate white matter lesions by magnetic resonance spectroscopy. Neuroradiology 2019; 61:1447-1456. [PMID: 31511919 DOI: 10.1007/s00234-019-02291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Punctate white matter lesions (PWML) are common in preterm neonates and have also been reported in the full term. While most studies focus on white matter abnormalities, gray matter (GM) alterations are generally ignored due to the lack of abnormalities on conventional MRI. This study aims to investigate whether magnetic resonance spectroscopy is a sensitive and practical method to detect occult alterations of deep GM nuclei in these neonates. METHODS Neonates with PWML and controls with no MRI abnormalities were retrospectively studied. Apparent diffusion coefficient values and metabolic ratios (Cho/Cr, NAA/Cho, and NAA/Cr) in the lenticular nucleus and the thalamus were compared between the PWML and control groups. RESULTS Forty-two neonates with PWML (grades I, II, and III contained 14, 21, and 7 subjects, respectively) and 50 controls were enrolled. Apparent diffusion coefficient values in the lenticular nucleus and the thalamus were not significantly different between the PWML and the control groups. The NAA/Cho ratio was significantly lower in the PWML group than in the control group in both regions, whereas a lower NAA/Cr ratio was only observed in the thalamus. Significantly lower ratios of NAA/Cho in both regions and NAA/Cr in the thalamus were detected in the grade II and III subgroup, whereas the thalamic NAA/Cho ratio was decreased in the grade I group compared with controls. CONCLUSIONS Magnetic resonance spectroscopy is a sensitive method for detecting the occult deep GM abnormalities for the study cohort of neonates with PWML when compared with subjects without PWML.
Collapse
|
10
|
Nguyen AL, Ding Y, Suffren S, Londono I, Luck D, Lodygensky GA. The brain's kryptonite: Overview of punctate white matter lesions in neonates. Int J Dev Neurosci 2019; 77:77-88. [DOI: 10.1016/j.ijdevneu.2019.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/28/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Annie L.A. Nguyen
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - Yang Ding
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - Sabrina Suffren
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - Irène Londono
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - David Luck
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - Gregory A. Lodygensky
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- Department of Pharmacology and PhysiologyUniversity of MontrealMontrealH3T 1J4Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| |
Collapse
|
11
|
Pregnolato S, Chakkarapani E, Isles AR, Luyt K. Glutamate Transport and Preterm Brain Injury. Front Physiol 2019; 10:417. [PMID: 31068830 PMCID: PMC6491644 DOI: 10.3389/fphys.2019.00417] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
Preterm birth complications are the leading cause of child death worldwide and a top global health priority. Among the survivors, the risk of life-long disabilities is high, including cerebral palsy and impairment of movement, cognition, and behavior. Understanding the molecular mechanisms of preterm brain injuries is at the core of future healthcare improvements. Glutamate excitotoxicity is a key mechanism in preterm brain injury, whereby the accumulation of extracellular glutamate damages the delicate immature oligodendrocytes and neurons, leading to the typical patterns of injury seen in the periventricular white matter. Glutamate excitotoxicity is thought to be induced by an interaction between environmental triggers of injury in the perinatal period, particularly cerebral hypoxia-ischemia and infection/inflammation, and developmental and genetic vulnerabilities. To avoid extracellular build-up of glutamate, the brain relies on rapid uptake by sodium-dependent glutamate transporters. Astrocytic excitatory amino acid transporter 2 (EAAT2) is responsible for up to 95% of glutamate clearance, and several lines of evidence suggest that it is essential for brain functioning. While in the adult EAAT2 is predominantly expressed by astrocytes, EAAT2 is transiently upregulated in the immature oligodendrocytes and selected neuronal populations during mid-late gestation, at the peak time for preterm brain injury. This developmental upregulation may interact with perinatal hypoxia-ischemia and infection/inflammation and contribute to the selective vulnerability of the immature oligodendrocytes and neurons in the preterm brain. Disruption of EAAT2 may involve not only altered expression but also impaired function with reversal of transport direction. Importantly, elevated EAAT2 levels have been found in the reactive astrocytes and macrophages of human infant post-mortem brains with severe white matter injury (cystic periventricular leukomalacia), potentially suggesting an adaptive mechanism against excitotoxicity. Interestingly, EAAT2 is suppressed in animal models of acute hypoxic-ischemic brain injury at term, pointing to an important and complex role in newborn brain injuries. Enhancement of EAAT2 expression and transport function is gathering attention as a potential therapeutic approach for a variety of adult disorders and awaits exploration in the context of the preterm brain injuries.
Collapse
Affiliation(s)
- Silvia Pregnolato
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elavazhagan Chakkarapani
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Karen Luyt
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Wang M, Liu H, Liu C, Li X, Jin C, Sun Q, Liu Z, Zheng J, Yang J. Prediction of adverse motor outcome for neonates with punctate white matter lesions by MRI images using radiomics strategy: protocol for a prospective cohort multicentre study. BMJ Open 2019; 9:e023157. [PMID: 30948562 PMCID: PMC6500102 DOI: 10.1136/bmjopen-2018-023157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Punctate white matter lesions (PWML) are prevalent white matter disease in preterm neonates, and may cause motor disorders and even cerebral palsy. However, precise individual-based diagnosis of lesions that result in an adverse motor outcome remains unclear, and an effective method is urgently needed to guide clinical diagnosis and treatment. Advanced radiomics for multiple modalities data can provide a possible look for biomarkers and determine prognosis quantitatively. The study aims to develop and validate a model for prediction of adverse motor outcomes at a corrected age (CA) of 24 months in neonates with PWML. METHODS AND ANALYSIS A prospective cohort multicentre study will be conducted in 11 Chinese hospitals. A total of 394 neonates with PWML confirmed by MRI will undergo a clinical assessment (modified Neonatal Behavioural Assessment Scale). At a CA of 18 months, the motor function will be assessed by Bayley Scales of Infant and Toddler Development-III (Bayley-III). Mild-to-severe motor impairments will be confirmed using the Bayley-III and Gross Motor Function Classification System at a CA of 24 months. During the data collection, the perinatal and clinical information will also be recorded. According to the radiomics strategy, the extracted imaging features and clinical information will be combined for exploratory analysis. After using multiple-modelling methodology, the accuracy, sensitivity and specificity will be computed. Internal and external validations will be used to evaluate the performance of the radiomics model. ETHICS AND DISSEMINATION This study has been approved by the institutional review board of The First Affiliated Hospital of Xi'an Jiaotong University (XJTU1AF2015LSK-172). All parents of eligible participants will be provided with a detailed explanation of the study and written consent will be obtained. The results of this study will be published in peer-reviewed journals and presented at local, national and international conferences. TRIAL REGISTRATION NUMBER NCT02637817; Pre-results.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Heng Liu
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Congcong Liu
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xianjun Li
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chao Jin
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qinli Sun
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Zhe Liu
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jie Zheng
- Clinical Research Centre, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jian Yang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
13
|
Gertsvolf N, Votava-Smith JK, Ceschin R, Del Castillo S, Lee V, Lai HA, Bluml S, Paquette L, Panigrahy A. Association between Subcortical Morphology and Cerebral White Matter Energy Metabolism in Neonates with Congenital Heart Disease. Sci Rep 2018; 8:14057. [PMID: 30232359 PMCID: PMC6145929 DOI: 10.1038/s41598-018-32288-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022] Open
Abstract
Complex congenital heart disease (CHD) is associated with neurodevelopmental impairment, the mechanism of which is unknown. Cerebral cortical dysmaturation in CHD is linked to white matter abnormalities, including developmental vulnerability of the subplate, in relation to oxygen delivery and metabolism deficits. In this study, we report associations between subcortical morphology and white matter metabolism in neonates with CHD using quantitative magnetic resonance imaging (MRI) and spectroscopy (MRS). Multi-modal brain imaging was performed in three groups of neonates close to term-equivalent age: (1) term CHD (n = 56); (2) preterm CHD (n = 37) and (3) preterm control group (n = 22). Thalamic volume and cerebellar transverse diameter were obtained in relation to cerebral metrics and white matter metabolism. Short echo single-voxel MRS of parietal and frontal white matter was used to quantitate metabolites related to brain maturation (n-acetyl aspartate [NAA], choline, myo-inositol), neurotransmitter (glutamate), and energy metabolism (glutamine, citrate, creatine and lactate). Multi-variate regression was performed to delineate associations between subcortical morphological measurements and white matter metabolism controlling for age and white matter injury. Reduced thalamic volume, most pronounced in the preterm control group, was associated with increased citrate levels in all three group in the parietal white matter. In contrast, reduced cerebellar volume, most pronounced in the preterm CHD group, was associated with reduced glutamine in parietal grey matter in both CHD groups. Single ventricle anatomy, aortic arch obstruction, and cyanotic lesion were predictive of the relationship between reduced subcortical morphometry and reduced GLX (particularly glutamine) in both CHD cohorts (frontal white matter and parietal grey matter). Subcortical morphological associations with brain metabolism were also distinct within each of the three groups, suggesting these relationships in the CHD groups were not directly related to prematurity or white matter injury alone. Taken together, these findings suggest that subplate vulnerability in CHD is likely relevant to understanding the mechanism of both cortical and subcortical dysmaturation in CHD infants. Future work is needed to link this potential pattern of encephalopathy of CHD (including the constellation of grey matter, white matter and brain metabolism deficits) to not only abnormal fetal substrate delivery and oxygen conformance, but also regional deficits in cerebral energy metabolism.
Collapse
Affiliation(s)
- Nina Gertsvolf
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jodie K Votava-Smith
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pediatrics, Division of Cardiology, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Rafael Ceschin
- Department of Pediatric Radiology, Children's Hospital of Pittsburgh of UPMC and University of Pittsburgh School of Medicine, Pittsburgh, USA
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Sylvia Del Castillo
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Anesthesiology, Critical Care Medicine Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Vince Lee
- Department of Pediatric Radiology, Children's Hospital of Pittsburgh of UPMC and University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Hollie A Lai
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Radiology, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Stefan Bluml
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Radiology, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Lisa Paquette
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Ashok Panigrahy
- Department of Pediatric Radiology, Children's Hospital of Pittsburgh of UPMC and University of Pittsburgh School of Medicine, Pittsburgh, USA.
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- Department of Radiology, Children's Hospital of Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Hyodo R, Sato Y, Ito M, Sugiyama Y, Ogawa C, Kawai H, Nakane T, Saito A, Hirakawa A, Kidokoro H, Natsume J, Hayakawa M. Magnetic resonance spectroscopy in preterm infants: association with neurodevelopmental outcomes. Arch Dis Child Fetal Neonatal Ed 2018; 103:F238-F244. [PMID: 28724545 DOI: 10.1136/archdischild-2016-311403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To compare magnetic resonance spectroscopy (MRS) metabolite ratios in preterm infants at term-equivalent age with those in term infants and to evaluate the association between MRS metabolites and neurodevelopmental outcomes at 18 months corrected age in preterm infants. DESIGN We studied infants born at a gestational age <37 weeks and weighing <1500 g during 2009-2013 using MRS at term-equivalent age. Infants with major brain abnormalities were excluded. The ratios of N-acetylaspartate (NAA) to creatine (Cre), NAA to choline-containing compounds (Cho) and Cho to Cre in the frontal white matter and thalamus were measured using multivoxel point-resolved proton spectroscopy sequence. Neurodevelopmental outcomes were assessed at 18 months corrected age. RESULTS Thirty-three preterm infants and 16 term infants were enrolled in this study. Preterm infants with normal development at 18 months showed significantly lower NAA/Cho ratios in the frontal white matter than term infants. There were no differences in the Cre/Cho ratios between preterm and term infants. At 18 months corrected age, 9 preterm infants with a mild developmental delay showed significantly lower NAA/Cho ratios in the thalamus than 24 preterm infants with normal development. CONCLUSIONS Preterm infants at term-equivalent age showed reduced MRS metabolites (NAA/Cho) compared with term infants. Decreased NAA/Cho ratios in the thalamus were associated with neurodevelopmental delay at 18 months corrected age in preterm infants.
Collapse
Affiliation(s)
- Reina Hyodo
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Miharu Ito
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yuichiro Sugiyama
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Chikako Ogawa
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisashi Kawai
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akiko Saito
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Akihiro Hirakawa
- Department of Biostatistics and Bioinformatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
15
|
Gasparovic C, Caprihan A, Yeo RA, Phillips J, Lowe JR, Campbell R, Ohls RK. The long-term effect of erythropoiesis stimulating agents given to preterm infants: a proton magnetic resonance spectroscopy study on neurometabolites in early childhood. Pediatr Radiol 2018; 48:374-382. [PMID: 29335880 PMCID: PMC5823776 DOI: 10.1007/s00247-017-4052-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/17/2017] [Accepted: 12/05/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Erythropoiesis stimulating agents (ESAs) are neuroprotective in cell and animal models of preterm birth. Prematurity has been shown to alter neurometabolite levels in children in studies using proton magnetic resonance spectroscopy (1H-MRS). OBJECTIVE We hypothesized that ESA treatment in premature infants would tend to normalize neurometabolites by 4-6 years of age. MATERIALS AND METHODS Children in a longitudinal study of neurodevelopment underwent MRI and 1H-MRS at approximately 4 years and 6 years of age. Prematurely born children (500-1,250 g birth weight) received ESAs (erythropoietin or darbepoetin) or placebo during their neonatal hospitalization, and these groups were compared to healthy term controls. 1H-MRS spectra were obtained from the anterior cingulate (gray matter) and frontal lobe white matter, assessing combined N-acetylaspartate and N-acetylaspartylglutamate (tNAA), myo-inositol, choline compounds (Cho), combined creatine and phosphocreatine, and combined glutamate and glutamine. RESULTS No significant (P≤0.5) group differences were observed for any metabolite level. Significant age-related increases in white-matter tNAA and Cho were observed, as well as a trend for increased gray-matter tNAA. CONCLUSION Neither prematurity nor neonatal ESA treatment was associated with differences in brain metabolite levels in the children of this study at a significance level of 0.05. These findings suggest that earlier differences that might have existed had normalized by 4-6 years of age or were too small to be statistically significant in the current sample.
Collapse
Affiliation(s)
| | | | - Ronald A. Yeo
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - John Phillips
- Mind Research Network, Albuquerque, NM,Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Jean R. Lowe
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, USA
| | - Richard Campbell
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Robin K. Ohls
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
16
|
Dang YX, Shi KN, Wang XM. Early Changes in Glutamate Metabolism and Perfusion in Basal Ganglia following Hypoxia-Ischemia in Neonatal Piglets: A Multi-Sequence 3.0T MR Study. Front Physiol 2017; 8:237. [PMID: 28487658 PMCID: PMC5404207 DOI: 10.3389/fphys.2017.00237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
The excitotoxicity of glutamate metabolism as well as hemodynamic disorders of the brain are both risk factors for neonatal hypoxic–ischemic brain damage (HIBD). In the present study, changes in glutamate metabolism in the basal ganglia were detected by proton magnetic resonance spectroscopy (1H-MRS) at 0–6, 8–12, 24–30, and 48–60 h after the induction of hypoxia-ischemia (HI) in newborn piglets. Meanwhile, correlation analysis was performed by combining the microcirculatory perfusion informations acquired by intravoxel incoherent motion (IVIM) scan to explore their possible interaction mechanism. The results suggested that Glu level in the basal ganglia underwent a “two-phase” change after HI; perfusion fraction f, an IVIM-derived perfusion parameter, was clearly decreased in the early stage after HI, then demonstrated a transient and slight recovery process, and thereafter continued to decrease. The changes in f and Glu level were in a significant negative correlation (r = −0.643, P = 0.001). Our study results revealed that Glu level is closely associated with the microcirculatory perfusion changes in the acute stage of HIBD.
Collapse
Affiliation(s)
- Yu-Xue Dang
- Department of Radiology, Shengjing Hospital of China Medical UniversityShenyang, China
| | - Kai-Ning Shi
- Department of Imaging Systems Clinical Science, Philips HealthcareBeijing, China
| | - Xiao-Ming Wang
- Department of Radiology, Shengjing Hospital of China Medical UniversityShenyang, China
| |
Collapse
|
17
|
The Impact of Venoarterial and Venovenous Extracorporeal Membrane Oxygenation on Cerebral Metabolism in the Newborn Brain. PLoS One 2016; 11:e0168578. [PMID: 28033354 PMCID: PMC5199081 DOI: 10.1371/journal.pone.0168578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 12/02/2016] [Indexed: 12/13/2022] Open
Abstract
Background Extracorporeal membrane oxygenation (ECMO) is an effective therapy for supporting infants with reversible cardiopulmonary failure. Still, survivors are at risk for long-term neurodevelopmental impairments, the cause of which is not fully understood. Objective To elucidate the effects of ECMO on the newborn brain. We hypothesized that the cerebral metabolic profile of neonates who received ECMO would differ from neonates who did not receive ECMO. To address this, we used magnetic resonance spectroscopy (1H-MRS) to investigate the effects of venoarterial and venovenous ECMO on cerebral metabolism. Methods 41 neonates treated with ECMO were contrasted to 38 age-matched neonates. Results All 1H-MRS data were acquired from standardized grey matter and white matter regions of interest using a short-echo (TE = 35 milliseconds), point-resolved spectroscopy sequence (PRESS) and quantitated using LCModel. Metabolite concentrations (mmol/kg) were compared across groups using multivariate analysis of covariance. Elevated creatine (p = 0.002) and choline (p = 0.005) concentrations were observed in the grey matter among neonates treated with ECMO relative to the reference group. Likewise, choline concentrations were elevated in the white matter (p = 0.003) while glutamate was reduced (p = 0.03). Contrasts between ECMO groups revealed lower osmolite concentrations (e.g. myoinositol) among the venovenous ECMO group. Conclusion Neonates who underwent ECMO were found to have an abnormal cerebral metabolic profile, with the pattern of abnormalities suggestive of an underlying inflammatory process. Additionally, neonates who underwent venovenous ECMO had low cerebral osmolite concentrations as seen in vasogenic edema.
Collapse
|
18
|
McKenna MC, Scafidi S, Robertson CL. Metabolic Alterations in Developing Brain After Injury: Knowns and Unknowns. Neurochem Res 2015; 40:2527-43. [PMID: 26148530 PMCID: PMC4961252 DOI: 10.1007/s11064-015-1600-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/10/2015] [Accepted: 05/02/2015] [Indexed: 12/21/2022]
Abstract
Brain development is a highly orchestrated complex process. The developing brain utilizes many substrates including glucose, ketone bodies, lactate, fatty acids and amino acids for energy, cell division and the biosynthesis of nucleotides, proteins and lipids. Metabolism is crucial to provide energy for all cellular processes required for brain development and function including ATP formation, synaptogenesis, synthesis, release and uptake of neurotransmitters, maintaining ionic gradients and redox status, and myelination. The rapidly growing population of infants and children with neurodevelopmental and cognitive impairments and life-long disability resulting from developmental brain injury is a significant public health concern. Brain injury in infants and children can have devastating effects because the injury is superimposed on the high metabolic demands of the developing brain. Acute injury in the pediatric brain can derail, halt or lead to dysregulation of the complex and highly regulated normal developmental processes. This paper provides a brief review of metabolism in developing brain and alterations found clinically and in animal models of developmental brain injury. The metabolic changes observed in three major categories of injury that can result in life-long cognitive and neurological disabilities, including neonatal hypoxia-ischemia, pediatric traumatic brain injury, and brain injury secondary to prematurity are reviewed.
Collapse
Affiliation(s)
- Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, 655 W. Baltimore St., Room 13-019, Baltimore, MD, 21201, USA.
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Courtney L Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
McKenna MC, Scafidi S, Robertson CL. Metabolic Alterations in Developing Brain After Injury: Knowns and Unknowns. Neurochem Res 2015. [PMID: 26148530 DOI: 10.1007/s11064‐015‐1600‐7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Brain development is a highly orchestrated complex process. The developing brain utilizes many substrates including glucose, ketone bodies, lactate, fatty acids and amino acids for energy, cell division and the biosynthesis of nucleotides, proteins and lipids. Metabolism is crucial to provide energy for all cellular processes required for brain development and function including ATP formation, synaptogenesis, synthesis, release and uptake of neurotransmitters, maintaining ionic gradients and redox status, and myelination. The rapidly growing population of infants and children with neurodevelopmental and cognitive impairments and life-long disability resulting from developmental brain injury is a significant public health concern. Brain injury in infants and children can have devastating effects because the injury is superimposed on the high metabolic demands of the developing brain. Acute injury in the pediatric brain can derail, halt or lead to dysregulation of the complex and highly regulated normal developmental processes. This paper provides a brief review of metabolism in developing brain and alterations found clinically and in animal models of developmental brain injury. The metabolic changes observed in three major categories of injury that can result in life-long cognitive and neurological disabilities, including neonatal hypoxia-ischemia, pediatric traumatic brain injury, and brain injury secondary to prematurity are reviewed.
Collapse
Affiliation(s)
- Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, 655 W. Baltimore St., Room 13-019, Baltimore, MD, 21201, USA.
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Courtney L Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Developmental synergy between thalamic structure and interhemispheric connectivity in the visual system of preterm infants. NEUROIMAGE-CLINICAL 2015; 8:462-72. [PMID: 26106571 PMCID: PMC4474422 DOI: 10.1016/j.nicl.2015.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 11/22/2022]
Abstract
Thalamic structural co-variation with cortical regions has been demonstrated in preterm infants, but its relationship to cortical function and severity of non-cystic white matter injury (non-cystic WMI) is unclear. The relationship between thalamic morphology and both cortical network synchronization and cortical structural connectivity has not been established. We tested the hypothesis that in preterm neonates, thalamic volume would correlate with primary cortical visual function and microstructural integrity of cortico-cortical visual association pathways. A total of 80 term-equivalent preterm and 44 term-born infants underwent high-resolution structural imaging coupled with visual functional magnetic resonance imaging or diffusion tensor imaging. There was a strong correlation between thalamic volume and primary visual cortical activation in preterms with non-cystic WMI (r = 0.81, p-value = 0.001). Thalamic volume also correlated strongly with interhemispheric cortico-cortical connectivity (splenium) in preterm neonates with a relatively higher severity of non-cystic WMI (p-value < 0.001). In contrast, there was lower correlation between thalamic volume and intrahemispheric cortico-cortical connectivity, including the inferior longitudinal fasciculus and inferior frontal orbital fasciculus. This study shows distinct temporal overlap in the disruption of thalamo-cortical and interhemispheric cortico-cortical connectivity in preterm infants suggesting developmental synergy between thalamic morphology and the emergence of cortical networks in the last trimester.
Collapse
|
21
|
Anderson PJ, Cheong JLY, Thompson DK. The predictive validity of neonatal MRI for neurodevelopmental outcome in very preterm children. Semin Perinatol 2015; 39:147-58. [PMID: 25724792 DOI: 10.1053/j.semperi.2015.01.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Very preterm children are at a high risk for neurodevelopmental impairments, but there is variability in the pattern and severity of outcome. Neonatal magnetic resonance imaging (MRI) enhances the capacity to detect brain injury and altered brain development and assists in the prediction of high-risk children who warrant surveillance and early intervention. This review describes the application of conventional and advanced MRI with very preterm neonates, specifically focusing on the relationship between neonatal MRI findings and later neurodevelopmental outcome. Research demonstrates that conventional MRI is strongly associated with neurodevelopmental outcome in childhood. Further studies are needed to examine the role of advanced MRI techniques in predicting outcome in very preterm children, but early research findings are promising. In conclusion, neonatal MRI is predictive of later neurodevelopment but is dependent on appropriately trained specialists and should be interpreted in conjunction with other clinical and social information.
Collapse
Affiliation(s)
- Peter J Anderson
- Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| | - Jeanie L Y Cheong
- Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Australia; Neonatal Services, Royal Women׳s Hospital, Melbourne, Australia; Department of Obstetrics & Gynaecology, University of Melbourne, Melbourne, Australia
| | - Deanne K Thompson
- Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
22
|
Wisnowski JL, Ceschin RC, Choi SY, Schmithorst VJ, Painter MJ, Nelson MD, Blüml S, Panigrahy A. Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury. Neuroradiology 2015; 57:515-25. [PMID: 25666231 DOI: 10.1007/s00234-015-1495-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Altered thalamocortical development is hypothesized to be a key substrate underlying neurodevelopmental disabilities in preterm infants. However, the pathogenesis of this abnormality is not well-understood. We combined magnetic resonance spectroscopy of the parietal white matter and morphometric analyses of the thalamus to investigate the association between white matter metabolism and thalamic volume and tested the hypothesis that thalamic volume would be associated with diminished N-acetyl-aspartate (NAA), a measure of neuronal/axonal maturation, independent of white matter injury. METHODS Data from 106 preterm infants (mean gestational age at birth: 31.0 weeks ± 4.3; range 23-36 weeks) who underwent MR examinations under clinical indications were included in this study. RESULTS Linear regression analyses demonstrated a significant association between parietal white matter NAA concentration and thalamic volume. This effect was above and beyond the effect of white matter injury and age at MRI and remained significant even when preterm infants with punctate white matter lesions (pWMLs) were excluded from the analysis. Furthermore, choline, and among the preterm infants without pWMLs, lactate concentrations were also associated with thalamic volume. Of note, the associations between NAA and choline concentration and thalamic volume remained significant even when the sample was restricted to neonates who were term-equivalent age or older. CONCLUSION These observations provide convergent evidence of a neuroimaging phenotype characterized by widespread abnormal thalamocortical development and suggest that the pathogenesis may involve impaired axonal maturation.
Collapse
Affiliation(s)
- Jessica L Wisnowski
- Department of Radiology, Children's Hospital Los Angeles, 4650 Sunset Blvd., MS #81, Los Angeles, CA, 90027, USA,
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bapat R, Narayana PA, Zhou Y, Parikh NA. Magnetic resonance spectroscopy at term-equivalent age in extremely preterm infants: association with cognitive and language development. Pediatr Neurol 2014; 51:53-9. [PMID: 24938140 PMCID: PMC5942892 DOI: 10.1016/j.pediatrneurol.2014.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/12/2014] [Accepted: 03/15/2014] [Indexed: 01/16/2023]
Abstract
BACKGROUND Proton magnetic resonance spectroscopy can be used to assess brain integrity and maturation with age. OBJECTIVE To compare regional cerebral magnetic resonance spectroscopy metabolite ratios in extremely low birth weight and healthy term control infants measured at term-equivalent age and to evaluate association between magnetic resonance spectroscopy metabolites and cognitive and language development at 18-22 months' corrected age. METHODS Single-voxel point-resolved spectroscopy sequence was performed in a prospective cohort of 43 infants. Magnetic resonance spectroscopy metabolite ratios of N-acetylaspartate to choline-containing compounds and N-acetylaspartate to myo-inositiol in the hippocampus, cortex, and subventricular zone were associated with Bayley mental, cognitive, and language scores at 18-22 months' corrected age. RESULTS The mean (±S.D.) gestation of the 31 extremely low birth weight population was 25 (±1.1) weeks and mean (±S.D.) birth weight was 749 (±133.9) g. Compared with healthy term control infants, extremely low birth weight infants exhibited consistently lower N-acetylaspartate-to-choline-containing compounds ratios in our three regions of interest, with differences reaching statistical significance for the subventricular zone and cortex regions. In multiple linear regression analyses, N-acetylaspartate-to-choline-containing compounds ratio in the subventricular zone, N-acetylaspartate-to-choline-containing compounds ratio in the cortex, and N-acetylaspartate-to-myo-inositiol ratio in the subventricular zone were significantly associated with Bayley mental scores at 18-22 months' corrected age. CONCLUSIONS Magnetic resonance spectroscopy metabolite abnormalities at term-equivalent age appear to be significantly associated with cognitive and language development in extremely low birth weight infants.
Collapse
Affiliation(s)
- Roopali Bapat
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center, Houston, Texas
| | - Yuxiang Zhou
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center, Houston, Texas
| | - Nehal A. Parikh
- Division of Neonatology, Department of Pediatrics, Nationwide Children’s Hospital and The Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio,Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital and The Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
24
|
Magnetic resonance spectroscopy markers of axons and astrogliosis in relation to specific features of white matter injury in preterm infants. Neuroradiology 2014; 56:771-9. [DOI: 10.1007/s00234-014-1380-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/08/2014] [Indexed: 01/13/2023]
|
25
|
Liu X, Zhong F, Tang XL, Lian FL, Zhou Q, Guo SM, Liu JF, Sun P, Hao X, Lu Y, Wang WM, Chen N, Zhang NX. Cordyceps sinensis protects against liver and heart injuries in a rat model of chronic kidney disease: a metabolomic analysis. Acta Pharmacol Sin 2014; 35:697-706. [PMID: 24632844 DOI: 10.1038/aps.2013.186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/06/2013] [Indexed: 12/17/2022] Open
Abstract
AIM To test the hypothesis that the traditional Chinese medicine Cordyceps sinensis could improve the metabolic function of extrarenal organs to achieve its anti-chronic kidney disease (CKD) effects. METHODS Male SD rats were divided into CKD rats (with 5/6-nephrectomy), CKD rats treated with Cordyceps sinensis (4 mg•kg-1•d-1, po), and sham-operated rats. After an 8-week treatment, metabolites were extracted from the hearts and livers of the rats, and then subjected to (1)H-NMR-based metabolomic analysis. RESULTS Oxidative stress, energy metabolism, amino acid and protein metabolism and choline metabolism were considered as links between CKD and extrarenal organ dysfunction. Within the experimental period of 8 weeks, the metabolic disorders in the liver were more pronounced than in the heart, suggesting that CKD-related extrarenal organ dysfunctions occurred sequentially rather than simultaneously. Oral administration of Cordyceps sinensis exerted statistically significant rescue effects on the liver and heart by reversely regulating levels of those metabolites that are typically perturbed in CKD. CONCLUSION Oral administration of Cordyceps sinensis significantly attenuates the liver and heart injuries in CKD rats. The (1)H NMR-based metabolomic approach has provided a systematic view for understanding of CKD and the drug treatment, which can also be used to elucidate the mechanisms of action of other traditional Chinese medicines.
Collapse
|
26
|
Blüml S, Wisnowski JL, Nelson MD, Paquette L, Panigrahy A. Metabolic maturation of white matter is altered in preterm infants. PLoS One 2014; 9:e85829. [PMID: 24465731 PMCID: PMC3899075 DOI: 10.1371/journal.pone.0085829] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/02/2013] [Indexed: 11/19/2022] Open
Abstract
Significant physiological switches occur at birth such as the transition from fetal parallel blood flow to a two-circuit serial system with increased arterial oxygenation of blood delivered to all organs including the brain. In addition, the extra-uterine environment exposes premature infants to a host of stimuli. These events could conceivably alter the trajectory of brain development in premature infants. We used in vivo magnetic resonance spectroscopy to measure absolute brain metabolite concentrations in term and premature-born infants without evidence of brain injury at equivalent post-conceptional age. Prematurity altered the developmental time courses of N-acetyl-aspartate, a marker for axonal and neuronal development, creatine, an energy metabolite, and choline, a membrane metabolite, in parietal white matter. Specifically, at term-equivalency, metabolic maturation in preterm infants preceded development in term infants, but then progressed at a slower pace and trajectories merged at ≈340–370 post-conceptional days. In parieto/occipital grey matter similar trends were noticed but statistical significance was not reached. The timing of white matter development and synchronization of white matter and grey matter maturation in premature-born infants is disturbed. This may contribute to the greater risk of long-term neurological problems of premature infants and to their higher risk for white matter injury.
Collapse
Affiliation(s)
- Stefan Blüml
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Rudi Schulte Research Institute, Santa Barbara, California, United States of America
- * E-mail:
| | - Jessica L. Wisnowski
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Dornsife Cognitive Neuroscience Imaging Center, USC, Los Angeles, California, United States of America
| | - Marvin D. Nelson
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Lisa Paquette
- Division of Neonatology, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Ashok Panigrahy
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
27
|
Khanna A, Walcott BP, Kahle KT. Limitations of Current GABA Agonists in Neonatal Seizures: Toward GABA Modulation Via the Targeting of Neuronal Cl(-) Transport. Front Neurol 2013; 4:78. [PMID: 23805124 PMCID: PMC3691543 DOI: 10.3389/fneur.2013.00078] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/09/2013] [Indexed: 01/18/2023] Open
Abstract
Neonatal intensive care has advanced rapidly in the last 40 years, with dramatic decreases in mortality and morbidity; however, for neonatal seizures, neither therapies nor outcomes have changed significantly. Basic and clinical studies indicate that seizures in neonates have long-term neurodevelopmental and psychiatric consequences, highlighting the need for novel pharmacotherapeutics. First-line treatments targeting GABAA receptors, like barbiturates and benzodiazepines, are limited in their efficacy and carry significant risks to the developing brain. Here, we review the use of current GABA agonist therapies for neonatal seizures and suggest other treatment strategies given recent developments in the understanding of disease pathogenesis. One promising avenue is the indirect manipulation of the GABAergic system, via the modulation of neuronal Cl− gradients, by targeting the cation-Cl− cotransporters (NKCC1 and KCC2) or their regulatory signaling molecules. This strategy might yield a novel class of more efficacious anti-epileptics with fewer side effects by specifically addressing disease pathophysiology. Moreover, this strategy may have ramifications for other adult seizure syndromes in which GABA receptor-mediated depolarizations play a pathogenic role, such as temporal lobe epilepsy.
Collapse
Affiliation(s)
- Arjun Khanna
- Division of Neurosurgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | | | | |
Collapse
|