1
|
Feng D, Yan C, Yuan L, Jia Y, Sun Y, Zhang J. Genome-wide identification of crustacyanin and function analysis of one isoform high-expression in carapace from Neocaridina denticulata sinensis. Int J Biol Macromol 2024; 278:135070. [PMID: 39187096 DOI: 10.1016/j.ijbiomac.2024.135070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Lipocalin proteins transport hydrophobic molecules, including apolipoprotein D, retinol-binding protein, and crustacyanin (CRCN). CRCN can combine with astaxanthin to cause a bathochromic shift in the emission spectrum of astaxanthin from red to blue. Therefore, CRCN influences the colors and patterns of crustaceans, which are important for various biological functions such as camouflage, reproduction, and communication. For aquatic organisms, body color is economically important and can be indicative of habitat water quality. In this study, thirteen CRCN genes (NdCRCNs) were first discovered in Neocaridina denticulata sinensis, contradicting prior findings of a few isoform genes in a species. The expression pattern of NdCRCNs in tissues showed that the expression of one CRCN isoform gene, named NdCRCN-30, was the highest in the carapace. In situ hybridization (ISH) analysis revealed that NdCRCN-30 was predominantly distributed in the outer epidermis of shrimp. Interference of NdCRCN-30 could cause a change in the color of the carapace. RNA-seq was performed after knockdown with the NdCRCN-30, and differential gene enrichment analysis revealed that this gene is primarily associated with antioxidant function, pigmentation, and molting. Overall, our results will provide new insights into the biological function of the CRCN and genetic breeding for changing body color in economic crustaceans.
Collapse
Affiliation(s)
- Dandan Feng
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Congcong Yan
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Longbin Yuan
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, China
| | - Yuewen Jia
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yuying Sun
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, China.
| | - Jiquan Zhang
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Liu J, Lu Q, Wei Y, Zhang X, Lin L, Li Q. Insights into the mechanism of color formation of the freshwater prawn (Macrobrachium rosenbergii) revealed by de novo assembly transcriptome analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101237. [PMID: 38729032 DOI: 10.1016/j.cbd.2024.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Body color is an important visual indicator of crustacean quality and plays a major role in consumer acceptability, perceived quality, and the market price of crustaceans. The freshwater prawn (Macrobrachium rosenbergii) has two distinct phenotypic variations, characterized by dark blue and light yellow body colors. However, the underlying mechanisms regulating the body color of M. rosenbergii remain unclear. In this study, the composition of shell color parameters and pigment cells of raw and cooked dark blue and light yellow M. rosenbergii was investigated and the mechanisms associated with body color were elucidated by transcriptome analysis. The results showed significant differences in the raw shells of the dark blue and light yellow M. rosenbergii (L: 26.20 ± 0.53 vs. 29.25 ± 0.45; a: -0.88 ± 0.19 vs. 0.35 ± 0.18; b: 1.73 ± 0.20 vs. 3.46 ± 0.37; dE: 70.33 ± 0.53 vs. 67.34 ± 0.45, respectively, p = 0.000) as well as the cooked shells (L: 58.14 ± 0.81 vs. 55.78 ± 0.55; a: 19.30 ± 0.56 vs. 16.42 ± 0.40; b: 23.60 ± 0.66 vs. 20.30 ± 0.40, respectively, p < 0.05). Transcriptome differential gene analysis obtained 39.02 Gb of raw data and 158,026 unigenes. Comprehensive searches of the SwissProt, Nr, KEGG, Pfam, and KOG databases resulted in successful annotations of 23,902 (33 %), 40,436 (25.59 %), 32,015 (20.26 %), 26,139 (16.54 %), and 22,155 (14.02 %) proteins, respectively. By KEGG pathway analysis, numerous differentially expressed genes were related to pigmentation-related pathways (MAPK signaling pathway, Wnt signaling pathway, melanin production, tyrosine metabolism, and cell-cell communication process). Candidate DEGs that may be involved in body color included apolipoprotein D, crustacyanin, cytochrome P450, and tyrosinase, as verified by quantitative real-time PCR. The results of this study provide useful references to further elucidate the molecular mechanisms of color formation of M. rosenbergii and other crustaceans.
Collapse
Affiliation(s)
- Junhui Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Qifeng Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Yong Wei
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Xingqian Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China.
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China.
| |
Collapse
|
3
|
Watkins K, Hastie M, Ha M, Hepworth G, Warner R. Machine Vision Requires Fewer Repeat Measurements than Colorimeters for Precise Seafood Colour Measurement. Foods 2024; 13:1110. [PMID: 38611414 PMCID: PMC11011751 DOI: 10.3390/foods13071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The colour of seafood flesh is often not homogenous, hence measurement of colour requires repeat measurements to obtain a representative average. The aim of this study was to determine the optimal number of repeat colour measurements required for three different devices [machine vision (digital image using camera, and computer processing); Nix Pro; Minolta CR400 colorimeter] when measuring three species of seafood (Atlantic salmon, Salmo salar, n = 8; rockling, Genypterus tigerinus, n = 8; banana prawns, Penaeus merguiensis, n = 105) for raw and cooked samples. Two methods of analysis for number of repeat measurements required were compared. Method 1 was based on minimising the standard error of the mean and Method 2 was based on minimising the difference in colour over repeat measurements. Across species, using Method 1, machine vision required an average of four repeat measurements, whereas Nix Pro and Minolta required 13 and 12, respectively. For Method 2, machine vision required an average of one repeat measurement compared to nine for Nix Pro and Minolta. Machine vision required fewer repeat measurements due to its lower residual variance: 0.51 compared to 3.2 and 2.5 for Nix Pro and Minolta, respectively. In conclusion, machine vision requires fewer repeat measurements than colorimeters to precisely measure the colour of salmon, prawns, and rockling.
Collapse
Affiliation(s)
- Kieren Watkins
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (K.W.); (M.H.); (M.H.)
| | - Melindee Hastie
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (K.W.); (M.H.); (M.H.)
| | - Minh Ha
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (K.W.); (M.H.); (M.H.)
| | - Graham Hepworth
- Statistical Consulting Centre, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Robyn Warner
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (K.W.); (M.H.); (M.H.)
| |
Collapse
|
4
|
Zhang K, Li N, Wang Z, Feng D, Liu X, Zhou D, Li D. Recent advances in the color of aquatic products: Evaluation methods, discoloration mechanism, and protection technologies. Food Chem 2024; 434:137495. [PMID: 37741243 DOI: 10.1016/j.foodchem.2023.137495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Color plays a pivotal role in guiding and assessing the industrial production of aquatic products due to the swift sensory perception of information through vision. This review provides a comprehensive overview of the following four aspects: (a) mechanisms governing natural color formation in aquatic products, (b) factors and mechanisms contributing to the discoloration of aquatic products, (c) cutting-edge methods for color analysis and detection, and (d) current valuable techniques for preserving color quality. The natural color of aquatic products is derived from skin chromatophores, endogenous pigment proteins, and astaxanthin. Discoloration of aquatic products can occur due to lipid oxidation, as well as enzymatic and non-enzymatic browning. Furthermore, this review examines frontier color protective technologies, encompassing physical methods like ultra-high pressure, irradiation, and low-temperature plasma, as well as chemical methods involving natural preservatives. The findings of this study offer significant insights into the development of high-quality aquatic products.
Collapse
Affiliation(s)
- Kexin Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Na Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Zonghan Wang
- College of Biological System Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Dingding Feng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiaoyang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, Dalian, 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian, 116034, China
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, Dalian, 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian, 116034, China.
| | - Deyang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, Dalian, 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian, 116034, China.
| |
Collapse
|
5
|
Zhang D, Liu Y, Jiang X, Jiang H, Chen X, Wu X. Comparative proteomics elucidates the potential mechanism of heritable carapace color of three strains Chinese mitten crab Eriocheir sinensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101119. [PMID: 37625236 DOI: 10.1016/j.cbd.2023.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
The carapace coloration is important for the environmental adaptation and reproductive behaviors of crustaceans. We selected red, green and white three carapace color strains of Chinese mitten crab (Eriocheir sinensis) strains. These three carapace colors have stable heritability, but the mechanism for their coloration remains unclear.Through histological observations, we have found significant differences in the composition of pigment cells and pigments within the inner membrane of the three color strains, which may be one of the reasons for the color variation. The levels of various carotenoids in both the shell and inner membrane tissues of red and green strains were significantly higher than those of the white strain, while there was no significant difference between the red and green strains. Proteomics studies have identified 2, 034 and 947 different proteins in the shell and inner membrane, respectively. In the shell, there were 18, 13 and 43 differential proteins between red and white strains, green and white strains and green and red strains, respectively. In the inner membrane, there were 44, 24 and 16 differential proteins between red and white strains, green and white strains and green and red strains, respectively. It is clear that the deposited quantity of carotenoids affects the shell formation of three color strains. Some members of the hemocyanin family showed significant variation among different strains. The study yielded two crustacyanin proteins, which were extracted from both the shell and membrane. Of the two proteins, only Crustacyanin-A1 expression showed a difference between the red and green shells strains. In conclusion, these results indicated that the carapace color formation of E. sinensis may be accomplished through pigment binding proteins (PBPs) and pigment cells, which enhance the understanding of color formation mechanism for crustacean.
Collapse
Affiliation(s)
- Dongdong Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yufei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaodong Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hewei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaowu Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Xugan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
6
|
Lin S, Zhang L, Wang G, Huang S, Wang Y. Searching and identifying pigmentation genes from Neocaridina denticulate sinensis via comparison of transcriptome in different color strains. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100977. [PMID: 35247793 DOI: 10.1016/j.cbd.2022.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Aquaria species are characterized by their amazing colors and patterns. Research on the breeding molecular genetics of ornamental shrimps is surprisingly limited. We conducted a transcriptome analysis to investigate the expression of encoding genes in the integument of the strains Neocaridina denticulate sinensis. After assembled and filtered, 19,992 unigenes were annotated by aligning with public functional databases (NR, Swiss-Prot, KEGG, COG). 14,915 unigenes with significantly different expressions were found by comparing three strains integument transcriptomes. Ribosomal protein genes, ABC transporter families, calmodulin, carotenoid proteins and crustacyanin may play roles in the cytological process of pigment migration and chromatophore maintenance. Numerous color genes associated with multiple pathways including melanin, ommochrome and pteridines pathways were identified. The expression patterns of 25 candidate genes were analysis by qPCR in red, yellow, transparent and glass strains. The qPCR results in red, yellow and transparent were consistent with the level of RPKM values in the transcriptomes. The above results will advance our knowledge of integument color varieties in N. denticulate sinensis and help the genetic selection of crustaceans with consumer-favored colors. Furthermore, it also provides some candidate pigmentation genes to investigate the correlation between coloration and sympatric speciation in crustaceans.
Collapse
Affiliation(s)
- Shi Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Lili Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Shiyu Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
7
|
De novo assembly transcriptome analysis reveals the genes associated with body color formation in the freshwater ornamental shrimps Neocaridina denticulate sinensis. Gene 2022; 806:145929. [PMID: 34461150 DOI: 10.1016/j.gene.2021.145929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
The body color of Neocaridina denticulate sinensis is a compelling phenotypic trait, in which a cascade of carotenoid metabolic processes plays an important role. The study was conducted to compare the transcriptome of cephalothoraxes among three pigmentation phenotypes (red, blue, and chocolate) of N. denticulate sinensis. The purpose of this study was to explore the candidate genes associated with different colors of N. denticulate sinensis. Nine cDNA libraries in three groups were constructed from the cephalothoraxes of shrimps. After assembly, 75022 unigenes were obtained in total with an average length of 1026 bp and N50 length of 1876 bp. There were 45977, 25284, 23605, 21913 unigenes annotated in the Nr, Swissprot, KOG, and KEGG databases, respectively. Differential expression analysis revealed that there were 829, 554, and 3194 differentially expressed genes (DEGs) in RD vs BL, RD vs CH, and BL vs CH, respectively. These DEGs may play roles in the absorption, transport, and metabolism of carotenoids. We also emphasized that electron transfer across the inner mitochondrial membrane (IMM) was a key process in pigment metabolism. In addition, a total of 6328 simple sequence repeats (SSRs) were also detected in N. denticulate sinensis. The results laid a solid foundation for further research on the molecular mechanism of integument pigmentation in the crustacean and contributed to developing more attractive aquatic animals.
Collapse
|
8
|
Slonimskiy YB, Egorkin NA, Friedrich T, Maksimov EG, Sluchanko NN. Microalgal protein AstaP is a potent carotenoid solubilizer and delivery module with a broad carotenoid binding repertoire. FEBS J 2021; 289:999-1022. [PMID: 34582628 DOI: 10.1111/febs.16215] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Carotenoids are lipophilic substances with many biological functions, from coloration to photoprotection. Being potent antioxidants, carotenoids have multiple biomedical applications, including the treatment of neurodegenerative disorders and retina degeneration. Nevertheless, the delivery of carotenoids is substantially limited by their poor solubility in the aqueous phase. Natural water-soluble carotenoproteins can facilitate this task, necessitating studies on their ability to uptake and deliver carotenoids. One such promising carotenoprotein, AstaP (astaxanthin-binding protein), was recently identified in eukaryotic microalgae, but its structure and functional properties remained largely uncharacterized. By using a correctly folded recombinant protein, here we show that AstaP is an efficient carotenoid solubilizer that can stably bind not only astaxanthin but also zeaxanthin, canthaxanthin, and, to a lesser extent, β-carotene, that is, carotenoids especially valuable to human health. AstaP accepts carotenoids provided as acetone solutions or embedded in membranes, forming carotenoid-protein complexes with an apparent stoichiometry of 1:1. We successfully produced AstaP holoproteins in specific carotenoid-producing strains of Escherichia coli, proving it is amenable to cost-efficient biotechnology processes. Regardless of the carotenoid type, AstaP remains monomeric in both apo- and holoform, while its rather minimalistic mass (~ 20 kDa) makes it an especially attractive antioxidant delivery module. In vitro, AstaP transfers different carotenoids to liposomes and to unrelated proteins from cyanobacteria, which can modulate their photoactivity and/or oligomerization. These findings expand the toolkit of the characterized carotenoid binding proteins and outline the perspective of the use of AstaP as a unique monomeric antioxidant nanocarrier with an extensive carotenoid binding repertoire.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technical University of Berlin, Berlin, Germany
| | - Eugene G Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
9
|
Molecular characterization and functional analysis of scavenger receptor class B from black tiger shrimp (Penaeus monodon). ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
10
|
Transcriptome Analysis Provides Insights into the Mechanism of Astaxanthin Enrichment in a Mutant of the Ridgetail White Prawn Exopalaemon carinicauda. Genes (Basel) 2021; 12:genes12050618. [PMID: 33919403 PMCID: PMC8143343 DOI: 10.3390/genes12050618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
A mutant of the ridgetail white prawn, which exhibited rare orange-red body color with a higher level of free astaxanthin (ASTX) concentration than that in the wild-type prawn, was obtained in our lab. In order to understand the underlying mechanism for the existence of a high level of free astaxanthin, transcriptome analysis was performed to identify the differentially expressed genes (DEGs) between the mutant and wild-type prawns. A total of 78,224 unigenes were obtained, and 1863 were identified as DEGs, in which 902 unigenes showed higher expression levels, while 961 unigenes presented lower expression levels in the mutant in comparison with the wild-type prawns. Based on Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis, as well as further investigation of annotated DEGs, we found that the biological processes related to astaxanthin binding, transport, and metabolism presented significant differences between the mutant and the wild-type prawns. Some genes related to these processes, including crustacyanin, apolipoprotein D (ApoD), cathepsin, and cuticle proteins, were identified as DEGs between the two types of prawns. These data may provide important information for us to understand the molecular mechanism of the existence of a high level of free astaxanthin in the prawn.
Collapse
|
11
|
Zhu P, Wang H, Zeng Q. Comparative transcriptome reveals the response of oriental river prawn (Macrobrachium nipponense) to sulfide toxicity at molecular level. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105700. [PMID: 33285378 DOI: 10.1016/j.aquatox.2020.105700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Aquatic environmental pollutants have various impacts on aquaculture. Specifically, sulfide has been established as being toxic to aquatic animals including the oriental river prawn Macrobrachium nipponense. In response, the hepatopancreas has been broadly studied, as it plays a pivotal role in arthropod nutrient digestion and absorption, energy supply, and organ development as well as in crustacean immunity. However, the underlying molecular mechanisms of hepatopancreas's response to sulfide toxicity are still poorly understand. Herein, we used Nova-seq 6000 platform to conduct a comparative transcriptome analysis of gene expression profiles in the hepatopancreas of M. nipponense, while it was under the influence of a semi-lethal sulfide concentration (3.20 mg/L at 48 h). A total of 139 million raw reads were obtained, in which 67,602 transcripts were clustered into 37,041 unigenes for further analysis. After constant sulfide exposure for 48 h, 235 differentially expressed genes, i.e., DEGs (151 up-regulated and 84 down-regulated) were identified in the sulfide treatment group (TGHP) compared with the control group (CGHP). We used GO and KEGG databases to annotate all the DEGs into 1180 functions and 123 pathways, respectively. The metabolic pathways included proximal tubule bicarbonate reclamation, sulfur metabolism, glycolysis and gluconeogenesis, and the TCA cycle; while immune-related pathways contained Ras, Rap1, focal adhesion and platelet activation. Additionally, apoptosis-involved pathways e.g., lysosome, also exhibited remarkable alteration in the presence of sulfide stress. Notably, responses to external stimuli and detoxification genes- such as GSKIP, CRT2, APOD, TRET1, CYP4C3 and HR39- were significantly altered by the sulfide stress, indicating that significant toxicity was transferred through energy metabolism, growth, osmoregulatory processes and immunity. Finally, we demonstrated that in the present of sulfide stress, M. nipponense altered the expression of detoxification- and extracellular stimulation-related genes, and displayed positive resistance via tight junction activation and lysosome pathways. The results of these novel experiments shed light on the hepatopancreas's molecular response to sulfide stress resistance and the corresponding adaptation mechanism; and enable us to identify several potential biomarkers for further studies.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| | - Hui Wang
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| | - Qifan Zeng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
12
|
Huang CW, Chu PY, Wu YF, Chan WR, Wang YH. Identification of Functional SSR Markers in Freshwater Ornamental Shrimps Neocaridina denticulata Using Transcriptome Sequencing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:772-785. [PMID: 32529453 DOI: 10.1007/s10126-020-09979-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
The amazing colors and patterns are fascinating characteristics in all of the aquarium species. However, genetic and breeding molecular investigations of ornamental shrimps are rather limited. Here, we present the first transcriptomic analysis and application of microsatellites based on the chromatophore-encoded genes of Neocaridina denticulata to assist freshwater ornamental shrimp germplasm enhancement and its extensive applications. A total of 65,402 unigenes were annotated, and 4706 differentially expressed genes were screened and identified between super red shrimp and chocolate shrimp strains. Several gene ratios were examined to put in perspective possible genetic markers for the different strains of normal pigmentation development, including flotillin-2-like, keratin, the G protein-coupled receptor Mth2-like, annexin A7, and unconventional myosin-IXb-like. Five simple sequence repeat markers were effective for colored shrimps and were used to develop a marker-assisted selection platform for systematic breeding management program to maintain genetic diversity of the species. These markers could also be used to assist the identification of pure strains and increase the genetic stability of ornamental shrimp color phenotypes. Consequently, our results of microsatellite marker development are valuable for assisting shrimp genetic and selection breeding studies on freshwater ornamental shrimp and related crystal shrimp species.
Collapse
Affiliation(s)
- Chang-Wen Huang
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City, 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| | - Pei-Yun Chu
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City, 20224, Taiwan
| | - Yu-Fang Wu
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City, 20224, Taiwan
| | - Wei-Ren Chan
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City, 20224, Taiwan
| | - Yeh-Hao Wang
- Larmax International Co., Ltd. No.9, Yuanxi 2nd Rd., Changzhi, Pingtung, Taiwan
| |
Collapse
|
13
|
Drozdova P, Saranchina A, Morgunova M, Kizenko A, Lubyaga Y, Baduev B, Timofeyev M. The level of putative carotenoid-binding proteins determines the body color in two species of endemic Lake Baikal amphipods. PeerJ 2020; 8:e9387. [PMID: 32596057 PMCID: PMC7307558 DOI: 10.7717/peerj.9387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
Color is an essential clue for intra- and interspecies communication, playing a role in selection and speciation. Coloration can be based on nanostructures and pigments; carotenoids and carotenoproteins are among the most widespread pigments in animals. Over 350 species and subspecies of amphipods (Crustacea: Amphipoda) endemic to Lake Baikal exhibit an impressive variability of colors and coloration patterns, including intraspecific color morphs. However, the mechanisms forming this diversity are underexplored, as while the carotenoid composition of several transparent, green, and red species was investigated, there have been no reports on the corresponding carotenoid-binding proteins. In this work, we analyze the coloration of two brightly colored Baikal amphipods characterized by intraspecific color variability, Eulimnogammarus cyaneus and E. vittatus. We showed that the color of either species is defined by the level of putative carotenoid-binding proteins similar to the pheromone/odorant-binding protein family, as the concentration of these putative crustacyanin analogs was higher in blue or teal-colored animals than in the orange- or yellow-colored ones. At the same time, the color did not depend on the total carotenoid content, as it was similar between animals of contrasting color morphs. By exploring the diversity of these sequences within a larger phylogeny of invertebrate crustacyanins, we show that amphipods lack orthologs of the well-studied crustacyanins A and C, even though they possess some crustacyanin-like sequences. The analysis of expression levels in E. cyaneus showed that the transcripts encoding crustacyanin analogs had much higher expression than the crustacyanin-like sequences, suggesting that the former indeed contribute to the color of these brightly colored animals. The crustacyanin analogs seem to act in a similar way to the well-studied crustacyanins in body color formation, but the details of their action are still to be revealed.
Collapse
Affiliation(s)
- Polina Drozdova
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | | | | | - Alena Kizenko
- Institute of Cytology RAS, St. Petersburg, Russia.,Bioinformatics Institute, St. Petersburg, Russia
| | - Yulia Lubyaga
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Boris Baduev
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| |
Collapse
|
14
|
Zhao Y, Zhu X, Han Z, Zhang Y, Dong T, Li Y, Dong J, Wei H, Li X. Comparative analysis of transcriptomes from different coloration of Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2020; 98:515-521. [PMID: 32001357 DOI: 10.1016/j.fsi.2020.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Chinese mitten crab Eriocheir sinensis is probably the most important freshwater cultured crab in China. A tiny minority of brownish-orange individuals have been discovered in the long period of artificial breeding history of E. sinensiss. Those mutants are usually accompanied with slow growth rate, low molting frequency and poor survival rate, which may be the results of growth defects and immunodeficiency. To better understand the relationship between body color determination and the immune system as well as the related genes expression in E. sinensiss, we performed the whole-body transcriptome analysis in different color of first stage zoea (ZI) larvae using next-generation sequencing (NGS) technology. We randomly assembled 175.40 and 177.52million clean reads from the wild and mutant ZIs, respectively. Finally, we identified 7153 differentially expressed genes (DEGs) (p < 0.05), with 5194 up-regulated and 1959 down-regulated. A total of 13 KEGG pathways related to immune system were detected among 248 pathways. Except the first whole-body RNA sequencing of color-specific transcriptomes for E. sinensis, this study will offer a better understanding of the underlying molecular mechanisms of interaction between color determination and the immune system.
Collapse
Affiliation(s)
- Yingying Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xiaochen Zhu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhibin Han
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yazhao Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tengfei Dong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingdong Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Dong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hua Wei
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaodong Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Panjin Guanghe Crab Industry Co.Ltd., Panjin, 124000, China.
| |
Collapse
|
15
|
Pan C, Chen S, Hao S, Yang X. Effect of low-temperature preservation on quality changes in Pacific white shrimp, Litopenaeus vannamei: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6121-6128. [PMID: 31260117 DOI: 10.1002/jsfa.9905] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
Shrimp has been widely accepted as an excellent resource for white meat due to its high-protein and low-fat content, especially low cholesterol. However, shrimps are highly perishable during preservation and retailing procedures due to the activities of enzymatic proteolysis, lipid oxidation, and microbial degradation. With increasing knowledge of and demands for safety, nutrition, and freshness of shrimp products, energy efficient, quality, maintained, and sustainable preservation technologies are needed. Low-temperature preservation, a practical processing method for improving the shelf life of food products, is widely used in the aquatic industry. This review focuses on the effects of low-temperature preservation on the quality changes in Litopenaeus vannamei. It considers physicochemical properties, sensory evaluation, melanosis assessment, and microbiological analysis. The perspectives of non-protein-based techniques on quality analysis of shrimps during preservation are also discussed. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuang Pan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Shuxian Hao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
16
|
Guppy JL, Jones DB, Jerry DR, Wade NM, Raadsma HW, Huerlimann R, Zenger KR. The State of " Omics" Research for Farmed Penaeids: Advances in Research and Impediments to Industry Utilization. Front Genet 2018; 9:282. [PMID: 30123237 PMCID: PMC6085479 DOI: 10.3389/fgene.2018.00282] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Elucidating the underlying genetic drivers of production traits in agricultural and aquaculture species is critical to efforts to maximize farming efficiency. "Omics" based methods (i.e., transcriptomics, genomics, proteomics, and metabolomics) are increasingly being applied to gain unprecedented insight into the biology of many aquaculture species. While the culture of penaeid shrimp has increased markedly, the industry continues to be impeded in many regards by disease, reproductive dysfunction, and a poor understanding of production traits. Extensive effort has been, and continues to be, applied to develop critical genomic resources for many commercially important penaeids. However, the industry application of these genomic resources, and the translation of the knowledge derived from "omics" studies has not yet been completely realized. Integration between the multiple "omics" resources now available (i.e., genome assemblies, transcriptomes, linkage maps, optical maps, and proteomes) will prove critical to unlocking the full utility of these otherwise independently developed and isolated resources. Furthermore, emerging "omics" based techniques are now available to address longstanding issues with completing keystone genome assemblies (e.g., through long-read sequencing), and can provide cost-effective industrial scale genotyping tools (e.g., through low density SNP chips and genotype-by-sequencing) to undertake advanced selective breeding programs (i.e., genomic selection) and powerful genome-wide association studies. In particular, this review highlights the status, utility and suggested path forward for continued development, and improved use of "omics" resources in penaeid aquaculture.
Collapse
Affiliation(s)
- Jarrod L. Guppy
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - David B. Jones
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Dean R. Jerry
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Nicholas M. Wade
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- Aquaculture Program, CSIRO Agriculture & Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Herman W. Raadsma
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Roger Huerlimann
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Kyall R. Zenger
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
17
|
Zhang C, Su F, Li S, Yu Y, Xiang J, Liu J, Li F. Isolation and identification of the main carotenoid pigment from a new variety of the ridgetail white prawn Exopalaemon carinicauda. Food Chem 2018; 269:450-454. [PMID: 30100459 DOI: 10.1016/j.foodchem.2018.06.143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 12/29/2022]
Abstract
The ridgetail white prawn (Exopalaemon carinicauda) is an important economic species in China. In order to know the molecular basis and evaluate the potential nutrition value of a new variety of this species with orange-red color, the main carotenoid pigments were extracted and identified through high performance liquid chromatography. It showed that higher concentration of free astaxanthin existed in the new variety which might cause the color variation. The concentration of total astaxanthin in muscle and waste of the new variety was 3.3 and 1.9 fold higher than that in natural prawn under the same culture condition (P < 0.05). The predominant geometric and optical isomers of astaxanthin in muscle of the new variety were identified as all-trans and 3S,3'S astaxanthin. This is the first report of astaxanthin-enriched E. carinicauda, which also provides an alternative source of natural astaxanthin and the possibility for improving the nutrition value in this species.
Collapse
Affiliation(s)
- Chengsong Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fang Su
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianguo Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
18
|
Budd AM, Hinton TM, Tonks M, Cheers S, Wade NM. Rapid expansion of pigmentation genes in penaeid shrimp with absolute preservation of function. ACTA ACUST UNITED AC 2017; 220:4109-4118. [PMID: 28851818 DOI: 10.1242/jeb.164988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022]
Abstract
Crustaceans form their distinct patterns and colours through the interaction of the carotenoid astaxanthin with a protein called crustacyanin (CRCN). Presently, the expression of just two CRCN genes is thought to provide the protein subunits that combine to form the crustacyanin complex and associated carotenoid colour change from red to blue. This study aimed to explore the genetic complexity underlying the production of pigmentation and camouflage in penaeid shrimp. We isolated 35 new CRCN genes from 12 species, and their sequence analysis indicated that this gene family has undergone significant expansion and diversification in this lineage. Despite this duplication and sequence divergence, the structure of the CRCN proteins and their functional role in shrimp colour production has been strictly conserved. Using CRCN isoforms from Penaeus monodon as an example, we showed that isoforms were differentially expressed, and that subtle phenotypes were produced by the specific downregulation of individual isoforms. These findings demonstrate that our knowledge of the molecular basis of pigmentation in shrimp was overly simplistic, and suggests that multiple copies of the CRCN genes within species may be advantageous for colour production. This result is of interest for the origin and evolution of pigmentation in crustaceans, and the mechanisms by which gene function is maintained, diversified or sub-functionalized.
Collapse
Affiliation(s)
- Alyssa M Budd
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, St Lucia, Queensland 4067, Australia
| | - Tracey M Hinton
- CSIRO Health and Biosecurity, Australian Animal Health Laboratories, Geelong, Victoria 3220, Australia
| | - Mark Tonks
- CSIRO Oceans and Atmosphere, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia
| | - Sue Cheers
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, St Lucia, Queensland 4067, Australia
| | - Nicholas M Wade
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, St Lucia, Queensland 4067, Australia .,ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
19
|
van Aerle R, Santos EM. Advances in the application of high-throughput sequencing in invertebrate virology. J Invertebr Pathol 2017; 147:145-156. [PMID: 28249815 DOI: 10.1016/j.jip.2017.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
Over the last decade, advances in high-throughput sequencing technologies have revolutionised biological research, making it possible for DNA/RNA sequencing of any organism of interest to be undertaken. Sequencing approaches are now routinely used in the detection and characterisation of (novel) viruses, investigation of host-pathogen interactions, and effective development of disease treatment strategies. For the sequencing and identification of viruses of interest, metagenomics approaches using infected host tissue are frequently used, as it is not always possible to culture and isolate these pathogens. High-throughput sequencing can also be used to investigate host-pathogen interactions by investigating (temporal) transcriptomic responses of both the host and virus, potentially leading to the discovery of novel opportunities for treatment and drug targets. In addition, viruses in environmental samples (e.g. water or soil samples) can be identified using eDNA/metagenomics approaches. The promise that recent developments in sequencing brings to the field of invertebrate virology are not devoid of technical challenges, including the need for better laboratory and bioinformatics strategies to sequence and assemble virus genomes within complex tissue or environmental samples, and the difficulties associated with the annotation of the large number of novel viruses being discovered.
Collapse
Affiliation(s)
- R van Aerle
- Centre for Environment, Fisheries, and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK.
| | - E M Santos
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
20
|
Nguyen NH, Quinn J, Powell D, Elizur A, Thoa NP, Nocillado J, Lamont R, Remilton C, Knibb W. Heritability for body colour and its genetic association with morphometric traits in Banana shrimp (Fenneropenaeus merguiensis). BMC Genet 2014; 15:132. [PMID: 25476506 PMCID: PMC4261751 DOI: 10.1186/s12863-014-0132-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/19/2014] [Indexed: 11/30/2022] Open
Abstract
Background Banana shrimp Fenneropenaeus merguiensis has emerged as an important aquacultured shrimp species in South East Asia and Australia. However, the quantitative genetic basis of economically important traits in this species are currently not available, while for body colour, cooked or uncooked, there are no genetic parameter estimates for any shrimp or indeed any decapod crustacean. In this study, we report for banana shrimp genetic parameters for morphometric traits and, the first time for any shrimp, parameter estimates for body colour. Ten highly polymorphic microsatellite markers were developed from genomic sequences and used to construct a pedigree for 2000 offspring from approximately 60 female and 60 male parents that were sampled from a single routine commercial production pond. Results Restricted maximum likelihood method applied to a single trait mixed model was used to estimate heritabilities, while correlations were estimated using the multi-trait approach. The estimates of heritability for morphometric traits were moderate to high (h2 = 0.14 – 0.50). Body colour of uncooked shrimp showed a heritable additive genetic component (h2 = 0.03 – 0.55), and those estimates obtained for cooked shrimp were significantly different from zero. Genetic correlations among morphometric traits were all positive and very high (close to unity, rg = 0.85 – 0.99). The genetic correlations of body traits (weight, length and width) were positive with both colour after cooking (0.74 – 0.84) and body colour measured on live shrimp (0.59 to 0.70). The positive genetic correlations between the cooked body colour and uncooked body colour (0.64 ± 0.20) suggests these two traits can be simultaneously improved in practical selective breeding programs. This first ever report of genetic parameters for cooked or uncooked colour in crustacean indicates there is potential for genetic improvement of both growth and body colour through selection. Conclusions In the present study we demonstrated for banana shrimp that genetic parameters can be estimated from commercial samples (using pedigrees based on DNA markers), that selection for shrimp colour should be successful under such commercial conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0132-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nguyen Hong Nguyen
- University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia.
| | - Jane Quinn
- University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia.
| | - Daniel Powell
- University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia.
| | - Abigail Elizur
- University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia.
| | - Ngo Phu Thoa
- University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia.
| | - Josephine Nocillado
- University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia.
| | - Robert Lamont
- University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia.
| | | | - Wayne Knibb
- University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia.
| |
Collapse
|
21
|
Kulkarni AD, Kiron V, Rombout JHWM, Brinchmann MF, Fernandes JMO, Sudheer NS, Singh BIS. Protein profiling in the gut of Penaeus monodon gavaged with oral WSSV-vaccines and live white spot syndrome virus. Proteomics 2014; 14:1660-73. [PMID: 24782450 DOI: 10.1002/pmic.201300405] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 03/23/2014] [Accepted: 04/25/2014] [Indexed: 11/12/2022]
Abstract
White spot syndrome virus (WSSV) is a pathogen that causes considerable mortality of the farmed shrimp, Penaeus monodon. Candidate 'vaccines', WSSV envelope protein VP28 and formalin-inactivated WSSV, can provide short-lived protection against the virus. In this study, P. monodon was orally intubated with the aforementioned vaccine candidates, and protein expression in the gut of immunised shrimps was profiled. The alterations in protein profiles in shrimps infected orally with live-WSSV were also examined. Seventeen of the identified proteins in the vaccine and WSSV-intubated shrimps varied significantly compared to those in the control shrimps. These proteins, classified under exoskeletal, cytoskeletal, immune-related, intracellular organelle part, intracellular calcium-binding or energy metabolism, are thought to directly or indirectly affect shrimp's immunity. The changes in the expression levels of crustacyanin, serine proteases, myosin light chain, and ER protein 57 observed in orally vaccinated shrimp may probably be linked to immunoprotective responses. On the other hand, altered expression of proteins linked to exoskeleton, calcium regulation and energy metabolism in WSSV-intubated shrimps is likely to symbolise disturbances in calcium homeostasis and energy metabolism.
Collapse
Affiliation(s)
- Amod D Kulkarni
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | | | | | | | | | | | | |
Collapse
|