1
|
Politei JM, Patrono A. Clinically Meaningful Outcomes after 1 Year of Treatment with Setmelanotide in an Adult Patient with a Variant in SH2B1. Obes Facts 2024:1-6. [PMID: 39284294 DOI: 10.1159/000541267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Monogenic obesity is caused by a unique genetic dysfunction, often appears in childhood, and can be accompanied by neuroendocrine, skeletal, developmental, and behavioral disorders, among other manifestations. Some variants in the SH2B1 gene have been suggested as strong candidates for the development of autosomal dominant obesity. CASE PRESENTATION We describe here the clinical response after 1 year of setmelanotide treatment in a 22-year-old patient with an SH2B1 variant. After 3 months of treatment, our patient lost 5.4% of body weight. This period was followed by a 3-month period of noncompliance, in which the patient gained 4% body weight. After reinstating daily drug administration, the patient showed a 19.5% reduction in body weight and a clear improvement in all hunger scales after 1 year of treatment. CONCLUSION These results indicate that the changes seen are drug dependent and provide positive evidence for the administration of setmelanotide in adult patients with heterozygous variants in the SH2B1 gene.
Collapse
Affiliation(s)
- Juan M Politei
- Neurology Department, SPINE Foundation, Buenos Aires, Argentina
| | - Andrea Patrono
- Nutrition Department, Trinity Clinic, Buenos Aires, Argentina
| |
Collapse
|
2
|
Manco L, Albuquerque D, Aranda B, Rodrigues D, Machado-Rodrigues AM, Padez C. Differential sex-association between PCSK1 polymorphisms and obesity risk in Portuguese children. Am J Hum Biol 2024; 36:e24023. [PMID: 38009939 DOI: 10.1002/ajhb.24023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVES The proprotein convertase subtilisin/Kexin type 1 gene (PCSK1) is implicated in hypothalamic appetite control. Several studies have addressed the relationship between PCSK1 polymorphisms and obesity, although conflicting results were observed. We tested the potential association of four PCSK1 variants with the risk of overweight/obesity and related variables in Portuguese children. METHODS This is a case-control study, where four PCSK1 variants, rs6230 (c.-101T>C), rs6232 (p.N221D), rs6235 (p.S690T), and rs3811942 (c.*265T>C), were analyzed in Portuguese children (aged 5-13 years-old). Anthropometric measures were objectively collected and used to provide weight-for-age, height-for-age, and body mass index (BMI) for age. The indices generated were compared to standard reference values of WHO to obtain the corresponding Z-scores. RESULTS Logistic regression, in the dominant model, revealed no significant associations between the four individual PCSK1 variants and the risk of overweight/obesity in the total population. However, stratifying the sample by sex, a marginally significant association was found between the rs6235 minor C-allele and increased overweight/obesity in boys (n = 345) (OR 1.55 [1.01-2.38] p = .044), but not in girls (n = 340) (OR 0.73 [0.46-1.14] p = .169). Consistently, boys with genotype GG presented lower BMI Z-score (0.62) when compared to those with the genotypes GC + CC (1.04). Testing for different effects in males versus females, a significant interaction was found between the rs6235 polymorphism and sex for BMI Z-score (p = .025). CONCLUSIONS Results of this study suggest for a sex-differentiated association between PCSK1 rs6235 and overweight/ obesity in Portuguese children.
Collapse
Affiliation(s)
- Licínio Manco
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - David Albuquerque
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, Portugal
| | - Beatriz Aranda
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, Portugal
| | - Daniela Rodrigues
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, Portugal
| | - Aristides M Machado-Rodrigues
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, Portugal
- Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Cristina Padez
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Guijo B, Argente J, Martos-Moreno GÁ. The N221D variant in PCSK1 is highly prevalent in childhood obesity and can influence the metabolic profile. J Pediatr Endocrinol Metab 2023; 36:1140-1145. [PMID: 37877373 DOI: 10.1515/jpem-2023-0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVES To study the prevalence and influence on metabolic profile of the prohormone-convertase-1 (PCSK1) N221D variant in childhood obesity, proven its role in the leptin-melanocortin signaling pathway as in proinsulin and other prohormone cleavage. METHODS Transversal study of 1066 children with obesity (mean age and BMI Z-score 10.38 ± 3.44 years and +4.38 ± 1.77, respectively), 51.4 % males, 54.4 % prepubertal, 71.5 % Caucasians and 20.8 % Latinos. Anthropometric and metabolic features were compared between patients carrying the N221D variant in PCSK1 and patients with no variants found after next generation sequencing analysis of 17 genes (CREBBP, CPE, HTR2C, KSR2, LEP, LEPR, MAGEL2, MC3R, MC4R, MRAP2, NCOA1, PCSK1, POMC, SH2B1, SIM1, TBX3 and TUB) involved in the leptin-melanocortin pathway. RESULTS No variants were found in 531 patients (49.8 %), while 68 patients carried the PCSK1 N221D variant (42 isolately, and 26 with at least one additional gene variant). Its prevalence was higher in Caucasians vs. Latinos (χ2 7.81; p<0.01). Patients carrying exclusively the PCSK1 N221D variant (n=42) showed lower insulinemia (p<0.05), HOMA index (p<0.05) and area under the curve for insulin in the oral glucose tolerance test (p<0.001) and higher WBISI (p<0.05) than patients with no variants, despite similar obesity severity, age, sex and ethnic distribution. CONCLUSIONS The N221D variant in PCSK1 is highly prevalent in childhood obesity, influenced by ethnicity. Indirect estimation of insulin resistance, based on insulinemia could be byassed in these patients and underestimate their type 2 diabetes mellitus risk.
Collapse
Affiliation(s)
- Blanca Guijo
- Departments of Pediatrics and Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Jesús Argente
- Departments of Pediatrics and Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de alimentación IMDEA, CEIUAM+CSIC, Madrid, Spain
| | - Gabriel Ángel Martos-Moreno
- Departments of Pediatrics and Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Keller M, Svensson SIA, Rohde-Zimmermann K, Kovacs P, Böttcher Y. Genetics and Epigenetics in Obesity: What Do We Know so Far? Curr Obes Rep 2023; 12:482-501. [PMID: 37819541 DOI: 10.1007/s13679-023-00526-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW Enormous progress has been made in understanding the genetic architecture of obesity and the correlation of epigenetic marks with obesity and related traits. This review highlights current research and its challenges in genetics and epigenetics of obesity. RECENT FINDINGS Recent progress in genetics of polygenic traits, particularly represented by genome-wide association studies, led to the discovery of hundreds of genetic variants associated with obesity, which allows constructing polygenic risk scores (PGS). In addition, epigenome-wide association studies helped identifying novel targets and methylation sites being important in the pathophysiology of obesity and which are essential for the generation of methylation risk scores (MRS). Despite their great potential for predicting the individual risk for obesity, the use of PGS and MRS remains challenging. Future research will likely discover more loci being involved in obesity, which will contribute to better understanding of the complex etiology of human obesity. The ultimate goal from a clinical perspective will be generating highly robust and accurate prediction scores allowing clinicians to predict obesity as well as individual responses to body weight loss-specific life-style interventions.
Collapse
Affiliation(s)
- Maria Keller
- Medical Department III-Endocrinology, Nephrology, Rheumatology, Medical Center, University of Leipzig, 04103, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Stina Ingrid Alice Svensson
- EpiGen, Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
| | - Kerstin Rohde-Zimmermann
- Medical Department III-Endocrinology, Nephrology, Rheumatology, Medical Center, University of Leipzig, 04103, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, Medical Center, University of Leipzig, 04103, Leipzig, Germany
| | - Yvonne Böttcher
- EpiGen, Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway.
- EpiGen, Medical Division, Akershus University Hospital, 1478, Lørenskog, Norway.
| |
Collapse
|
5
|
Velazquez-Roman J, Angulo-Zamudio UA, Leon-Sicairos N, Flores-Villaseñor H, Benitez-Baez M, Espinoza-Salomón A, Karam-León A, Villamil-Ramírez H, Canizales-Quinteros S, Macías-Kauffer L, Monroy-Higuera J, Acosta-Smith E, Canizalez-Roman A. Association of PCSK1 and PPARG1 Allelic Variants with Obesity and Metabolic Syndrome in Mexican Adults. Genes (Basel) 2023; 14:1775. [PMID: 37761915 PMCID: PMC10531047 DOI: 10.3390/genes14091775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic diseases, including obesity, diabetes, and metabolic syndrome, are among the most important public health challenges worldwide. Metabolic diseases are classified as multifactorial diseases in which genetic variants such as single-nucleotide polymorphisms (SNPs) may play an important role. The present study aimed to identify associations linking allelic variants of the PCSK1, TMEM18, GPX5, ZPR1, ZBTB16, and PPARG1 genes with anthropometric and biochemical traits and metabolic diseases (obesity or metabolic syndrome) in an adult population from northwestern Mexico. METHODS Blood samples were collected from 523 subjects, including 247 with normal weight, 276 with obesity, and 147 with metabolic syndrome. Anthropometric and biochemical characteristics were recorded, and single-nucleotide polymorphisms (SNPs) were genotyped by real-time PCR. RESULTS PCSK1 was significantly (p < 0.05) associated with BMI, weight, and waist-to-hip ratio; TMEM18 was significantly associated with systolic blood pressure and triglyceride levels; GPX5 was significantly associated with HDL cholesterol levels. In addition, PCSK1 was associated with obesity (p = 1.0 × 10-4) and metabolic syndrome (p = 3.0 × 10-3), whereas PPARG1 was associated with obesity (p = 0.044). CONCLUSIONS The associations found in this study, mainly between allelic variants of PCSK1 and metabolic traits, obesity, and metabolic syndrome, may represent a risk for developing metabolic diseases in adult subjects from northwestern Mexico.
Collapse
Affiliation(s)
- Jorge Velazquez-Roman
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
| | - Uriel A. Angulo-Zamudio
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
| | - Nidia Leon-Sicairos
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
- Pediatric Hospital of Sinaloa, Constitución 530, Jorge Almada, Culiacan Sinaloa 80200, Mexico
| | - Hector Flores-Villaseñor
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
- The Sinaloa State Public Health Laboratory, Secretariat of Health, Culiacan Sinaloa 80020, Mexico
| | - Miriam Benitez-Baez
- Programa de Doctorado, Posgrado Integral en Biotecnología, FCQB, UAS, Culiacan Sinaloa 80013, Mexico; (M.B.-B.); (A.K.-L.); (J.M.-H.)
| | - Ana Espinoza-Salomón
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
| | - Alejandra Karam-León
- Programa de Doctorado, Posgrado Integral en Biotecnología, FCQB, UAS, Culiacan Sinaloa 80013, Mexico; (M.B.-B.); (A.K.-L.); (J.M.-H.)
| | - Hugo Villamil-Ramírez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City 04510, Mexico; (H.V.-R.); (S.C.-Q.); (L.M.-K.)
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City 04510, Mexico; (H.V.-R.); (S.C.-Q.); (L.M.-K.)
| | - Luis Macías-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City 04510, Mexico; (H.V.-R.); (S.C.-Q.); (L.M.-K.)
| | - Jose Monroy-Higuera
- Programa de Doctorado, Posgrado Integral en Biotecnología, FCQB, UAS, Culiacan Sinaloa 80013, Mexico; (M.B.-B.); (A.K.-L.); (J.M.-H.)
| | - Erika Acosta-Smith
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
| | - Adrian Canizalez-Roman
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
- The Women’s Hospital, Secretariat of Health, Culiacan Sinaloa 80020, Mexico
| |
Collapse
|
6
|
Nawaz S, Chinnadurai R, Al Chalabi S, Evans P, Kalra PA, Syed AA, Sinha S. Obesity and Chronic Kidney Disease A Current Review. Obes Sci Pract 2022; 9:61-74. [PMID: 37034567 PMCID: PMC10073820 DOI: 10.1002/osp4.629] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 11/08/2022] Open
Abstract
Background Obesity poses significant challenges to healthcare globally, particularly through its bi-directional relationship with co-morbid metabolic conditions such as type 2 diabetes and hypertension. There is also emerging evidence of an association between obesity and chronic kidney disease (CKD) which is less well characterized. Methods A literature search of electronic libraries was conducted to identify and present a narrative review of the interplay between obesity and CKD. Findings Obesity may predispose to CKD directly as it is linked to the histopathological finding of obesity-related glomerulopathy and indirectly through its widely recognized complications such as atherosclerosis, hypertension, and type 2 diabetes. The biochemical and endocrine products of adipose tissue contribute to pathophysiological processes such as inflammation, oxidative stress, endothelial dysfunction, and proteinuria. The prevention and management of obesity may prove critical in counteracting both the development and advancement of CKD. Moreover, measures of abdominal adiposity such as waist circumference, are generally associated with worse morbidity and mortality in individuals receiving maintenance hemodialysis. Conclusion Obesity is a risk factor for the onset and progression of CKD and should be recognized as a potential target for a preventative public health approach to reduce CKD rates within the general population. Future research should focus on the use of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors in patients with CKD and obesity due to their multi-faceted actions on major outcomes.
Collapse
Affiliation(s)
- Saira Nawaz
- Faculty of Biology Medicine and Health University of Manchester Manchester UK
| | - Rajkumar Chinnadurai
- Faculty of Biology Medicine and Health University of Manchester Manchester UK
- Department of Renal Medicine Salford Royal Hospital Northern Care Alliance NHS Foundation Trust Salford UK
| | - Saif Al Chalabi
- Faculty of Biology Medicine and Health University of Manchester Manchester UK
- Department of Renal Medicine Salford Royal Hospital Northern Care Alliance NHS Foundation Trust Salford UK
| | - Philip Evans
- Department of Renal Medicine Liverpool University Hospitals NHS Foundation Trust Liverpool UK
| | - Philip A Kalra
- Faculty of Biology Medicine and Health University of Manchester Manchester UK
- Department of Renal Medicine Salford Royal Hospital Northern Care Alliance NHS Foundation Trust Salford UK
| | - Akheel A. Syed
- Faculty of Biology Medicine and Health University of Manchester Manchester UK
- Department of Diabetes Endocrinology and Obesity Medicine Salford Royal Hospital Northern Care Alliance NHS Foundation Trust Salford UK
| | - Smeeta Sinha
- Faculty of Biology Medicine and Health University of Manchester Manchester UK
- Department of Renal Medicine Salford Royal Hospital Northern Care Alliance NHS Foundation Trust Salford UK
| |
Collapse
|
7
|
Shakya M, Martin NK, Arunagiri A, Martin MG, Arvan P, Low MJ, Lindberg I. The G209R mutant mouse as a model for human PCSK1 polyendocrinopathy. Endocrinology 2022; 163:6542675. [PMID: 35245347 PMCID: PMC9044177 DOI: 10.1210/endocr/bqac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/19/2022]
Abstract
PCSK1 encodes an enzyme required for prohormone maturation into bioactive peptides. A striking number of SNPs and rare mutations in PCSK1 are associated with a range of clinical phenotypes. Infants bearing two copies of a catalytically inactivating mutation, such as G209R, exhibit life-threatening chronic diarrhea and subsequently develop systemic endocrinopathies. Using CRISPR/Cas9 technology, we have engineered a mouse model bearing a G209R missense mutation in exon 6 of the murine Pcsk1 locus. Most pups homozygous for the G209R mutation succumbed by day 2, and surviving pups were severely dwarfed. In homozygous (but not heterozygous) pups, blood glucose levels were significantly lower, accompanied by elevated plasma insulin-like immunoreactivity and accumulation of large quantities of unprocessed proinsulin in the pancreas. Peptide hormone processing was also aberrant in G209R mouse pituitary, with mature ACTH levels markedly reduced in homozygotes, accompanied by a significant accumulation of POMC. We also observed a significant reduction in PC1/3 protein in the brains of G209R homozygous mice by Western blotting, while PC2 levels remained unaffected. Most likely due to the continued presence of PC2, pituitary and brain levels of α-MSH were not impaired. Analysis of intestinal cell types indicated a modest reduction of enteroendocrine cells in G209R homozygotes. We suggest that the G209R Pcsk1 mouse model recapitulates many of the dramatic neonatal deficiencies of human patients with this homozygous mutation.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy & Neurobiology, University of Maryland School of
Medicine, Baltimore, MD, USA
| | - Surbhi
- Department Molecular & Integrative Physiology, University of
Michigan, Ann Arbor, MI, USA
| | - Nicolle K Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel
Children’s Hospital and the David Geffen School of Medicine, University of California Los
Angeles, Los Angeles, CA, USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of
Michigan, Ann Arbor, MI, USA
| | - Martin G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel
Children’s Hospital and the David Geffen School of Medicine, University of California Los
Angeles, Los Angeles, CA, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of
Michigan, Ann Arbor, MI, USA
| | - Malcolm J Low
- Department Molecular & Integrative Physiology, University of
Michigan, Ann Arbor, MI, USA
| | - Iris Lindberg
- Department of Anatomy & Neurobiology, University of Maryland School of
Medicine, Baltimore, MD, USA
- Correspondence: Iris Lindberg, PhD, Department of Anatomy and Neurobiology, University of Maryland
School of Medicine, 20 Penn St, HSF2, S218, Baltimore, MD 21201, USA.
| |
Collapse
|
8
|
Тимашева ЯР, Балхиярова ЖР, Кочетова ОВ. [Current state of the obesity research: genetic aspects, the role of microbiome, and susceptibility to COVID-19]. PROBLEMY ENDOKRINOLOGII 2021; 67:20-35. [PMID: 34533011 PMCID: PMC9753850 DOI: 10.14341/probl12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 11/06/2022]
Abstract
Obesity affects over 700 million people worldwide and its prevalence keeps growing steadily. The problem is particularly relevant due to the increased risk of COVID-19 complications and mortality in obese patients. Obesity prevalence increase is often associated with the influence of environmental and behavioural factors, leading to stigmatization of people with obesity due to beliefs that their problems are caused by poor lifestyle choices. However, hereditary predisposition to obesity has been established, likely polygenic in nature. Morbid obesity can result from rare mutations having a significant effect on energy metabolism and fat deposition, but the majority of patients does not present with monogenic forms. Microbiome low diversity significantly correlates with metabolic disorders (inflammation, insulin resistance), and the success of weight loss (bariatric) surgery. However, data on the long-term consequences of bariatric surgery and changes in the microbiome composition and genetic diversity before and after surgery are currently lacking. In this review, we summarize the results of studies of the genetic characteristics of obesity patients, molecular mechanisms of obesity, contributing to the unfavourable course of coronavirus infection, and the evolution of their microbiome during bariatric surgery, elucidating the mechanisms of disease development and creating opportunities to identify potential new treatment targets and design effective personalized approaches for the diagnosis, management, and prevention of obesity.
Collapse
Affiliation(s)
- Я. Р. Тимашева
- Институт биохимии и генетики Уфимского федерального исследовательского центра Российской академии наук;
Башкирский государственный медицинский университет
| | - Ж. Р. Балхиярова
- Институт биохимии и генетики Уфимского федерального исследовательского центра Российской академии наук;
Башкирский государственный медицинский университет;
Университет Суррея
| | - О. В. Кочетова
- Институт биохимии и генетики Уфимского федерального исследовательского центра Российской академии наук
| |
Collapse
|
9
|
Rich KA, Roggenbuck J, Kolb SJ. Searching Far and Genome-Wide: The Relevance of Association Studies in Amyotrophic Lateral Sclerosis. Front Neurosci 2021; 14:603023. [PMID: 33584177 PMCID: PMC7873947 DOI: 10.3389/fnins.2020.603023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Genome-wide association studies (GWAS) and rare variant association studies (RVAS) are applied across many areas of complex disease to analyze variation in whole genomes of thousands of unrelated patients. These approaches are able to identify variants and/or biological pathways which are associated with disease status and, in contrast to traditional linkage studies or candidate gene approaches, do so without requiring multigenerational affected families, prior hypotheses, or known genes of interest. However, the novel associations identified by these methods typically have lower effect sizes than those found in classical family studies. In the motor neuron disease amyotrophic lateral sclerosis (ALS), GWAS, and RVAS have been used to identify multiple disease-associated genes but have not yet resulted in novel therapeutic interventions. There is significant urgency within the ALS community to identify additional genetic markers of disease to uncover novel biological mechanisms, stratify genetic subgroups of disease, and drive drug development. Given the widespread and increasing application of genetic association studies of complex disease, it is important to recognize the strengths and limitations of these approaches. Here, we review ALS gene discovery via GWAS and RVAS.
Collapse
Affiliation(s)
- Kelly A Rich
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jennifer Roggenbuck
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
10
|
Molecular pathway analysis associates alterations in obesity-related genes and antipsychotic-induced weight gain. Acta Neuropsychiatr 2020; 32:72-83. [PMID: 31619305 DOI: 10.1017/neu.2019.41] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Antipsychotics often induce excessive weight gain. We hypothesised that individuals with genetic variations related to known obesity-risk genes have an increased risk of excessive antipsychotic-induced weight gain (AIWG). This hypothesis was tested in a subset of the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) trial data set. METHODS The CATIE trial compared effects and side effects of five different antipsychotics through an 18-month period. Based on the maximum weight gain recorded, excessive weight gain was defined as >7% weight gain. Cytoscape and GeneMANIA were instrumental in composing a molecular pathway from eight selected genes linked to obesity. Genetic information on a total of 495.172 single-nucleotide polymorphisms (SNPs) were available from 765 (556 males) individuals. Enrichment test was conducted through ReactomePA and Bioconductor. A permutation test was performed, testing the generated pathway against 105 permutated pathways (p ≤ 0.05). In addition, a standard genome-wide association study (GWAS) analysis was performed. RESULT GWAS analysis did not detect significant differences related to excessive weight gain. The pathway generated contained 28 genes. A total of 2067 SNPs were significantly expressed (p < 0.01) within this pathway when comparing excessive weight gainers to the rest of the sample. Affected genes including PPARG and PCSK1 were not previously related to treatment-induced weight gain. CONCLUSIONS The molecular pathway composed from high-risk obesity genes was shown to overlap with genetics of patients who gained >7% weight gain during the CATIE trial. This suggests that genes related to obesity compose a pathway of increased risk of excessive AIWG. Further independent analyses are warranted that may confirm or clarify the possible reasoning behind.
Collapse
|
11
|
Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet 2019; 20:467-484. [PMID: 31068683 DOI: 10.1038/s41576-019-0127-1] [Citation(s) in RCA: 979] [Impact Index Per Article: 195.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genome-wide association studies (GWAS) involve testing genetic variants across the genomes of many individuals to identify genotype-phenotype associations. GWAS have revolutionized the field of complex disease genetics over the past decade, providing numerous compelling associations for human complex traits and diseases. Despite clear successes in identifying novel disease susceptibility genes and biological pathways and in translating these findings into clinical care, GWAS have not been without controversy. Prominent criticisms include concerns that GWAS will eventually implicate the entire genome in disease predisposition and that most association signals reflect variants and genes with no direct biological relevance to disease. In this Review, we comprehensively assess the benefits and limitations of GWAS in human populations and discuss the relevance of performing more GWAS.
Collapse
Affiliation(s)
- Vivian Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Nikunj Patel
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Michelle Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Québec City, Québec, Canada.,Department of Molecular Medicine, Laval University, Québec City, Quebec, Canada
| | - Guillaume Paré
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada. .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada. .,Inserm UMRS 954 N-GERE (Nutrition-Genetics-Environmental Risks), University of Lorraine, Faculty of Medicine, Nancy, France.
| |
Collapse
|
12
|
Rohde K, Keller M, la Cour Poulsen L, Blüher M, Kovacs P, Böttcher Y. Genetics and epigenetics in obesity. Metabolism 2019; 92:37-50. [PMID: 30399374 DOI: 10.1016/j.metabol.2018.10.007] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022]
Abstract
Obesity is among the most threatening health burdens worldwide and its prevalence has markedly increased over the last decades. Obesity maybe considered a heritable trait. Identifications of rare cases of monogenic obesity unveiled that hypothalamic circuits and the brain-adipose axis play an important role in the regulation of energy homeostasis, appetite, hunger and satiety. For example, mutations in the leptin gene cause obesity through almost unsuppressed overeating. Common (multifactorial) obesity, most likely resulting from a concerted interplay of genetic, epigenetic and environmental factors, is clearly linked to genetic predisposition by multiple risk variants, which, however only account for a minor part of the general BMI variability. Although GWAS opened new avenues in elucidating the complex genetics behind common obesity, understanding the biological mechanisms relative to the specific risk contributing to obesity remains poorly understood. Non-genetic factors such as eating behavior or physical activity strongly modulate the individual risk for developing obesity. These factors may interact with genetic predisposition for obesity through epigenetic mechanisms. Thus, here, we review the current knowledge about monogenic and common (multifactorial) obesity highlighting the important recent advances in our knowledge on how epigenetic regulation is involved in the etiology of obesity.
Collapse
Affiliation(s)
- Kerstin Rohde
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig 04103, Germany; University of Oslo, Institute of Clinical Medicine, Oslo 0316, Norway.
| | - Maria Keller
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig 04103, Germany.
| | - Lars la Cour Poulsen
- Akershus University Hospital, Department of Clinical Molecular Biology, Medical Division, Lørenskog 1478, Norway.
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig 04103, Germany.
| | - Peter Kovacs
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig 04103, Germany.
| | - Yvonne Böttcher
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig 04103, Germany; University of Oslo, Institute of Clinical Medicine, Oslo 0316, Norway; Akershus University Hospital, Department of Clinical Molecular Biology, Medical Division, Lørenskog 1478, Norway.
| |
Collapse
|
13
|
Ayers KL, Glicksberg BS, Garfield AS, Longerich S, White JA, Yang P, Du L, Chittenden TW, Gulcher JR, Roy S, Fiedorek F, Gottesdiener K, Cohen S, North KE, Schadt EE, Li SD, Chen R, Van der Ploeg LHT. Melanocortin 4 Receptor Pathway Dysfunction in Obesity: Patient Stratification Aimed at MC4R Agonist Treatment. J Clin Endocrinol Metab 2018; 103:2601-2612. [PMID: 29726959 PMCID: PMC7263790 DOI: 10.1210/jc.2018-00258] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/27/2018] [Indexed: 01/03/2023]
Abstract
CONTEXT The hypothalamic melanocortin 4 receptor (MC4R) pathway serves a critical role in regulating body weight. Loss of function (LoF) mutations in the MC4R pathway, including mutations in the pro-opiomelanocortin (POMC), prohormone convertase 1 (PCSK1), leptin receptor (LEPR), or MC4R genes, have been shown to cause early-onset severe obesity. METHODS Through a comprehensive epidemiological analysis of known and predicted LoF variants in the POMC, PCSK1, and LEPR genes, we sought to estimate the number of US individuals with biallelic MC4R pathway LoF variants. RESULTS We predict ~650 α-melanocyte-stimulating hormone (MSH)/POMC, 8500 PCSK1, and 3600 LEPR homozygous and compound heterozygous individuals in the United States, cumulatively enumerating >12,800 MC4R pathway-deficient obese patients. Few of these variants have been genetically diagnosed to date. These estimates increase when we include a small subset of less rare variants: β-MSH/POMC,PCSK1 N221D, and a PCSK1 LoF variant (T640A). To further define the MC4R pathway and its potential impact on obesity, we tested associations between body mass index (BMI) and LoF mutation burden in the POMC, PCSK1, and LEPR genes in various populations. We show that the cumulative allele burden in individuals with two or more LoF alleles in one or more genes in the MC4R pathway are predisposed to a higher BMI than noncarriers or heterozygous LoF carriers with a defect in only one gene. CONCLUSIONS Our analysis represents a genetically rationalized study of the hypothalamic MC4R pathway aimed at genetic patient stratification to determine which obese subpopulations should be studied to elucidate MC4R agonist (e.g., setmelanotide) treatment responsiveness.
Collapse
Affiliation(s)
- Kristin L Ayers
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
- Sema4, Stamford, Connecticut
| | - Benjamin S Glicksberg
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | | | - Lei Du
- WuXiNextCode, Cambridge, Massachusetts
| | | | | | - Sophie Roy
- Rhythm Pharmaceuticals, Boston, Massachusetts
| | | | | | | | - Kari E North
- University of North Carolina, Chapel Hill, North Carolina
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
- Sema4, Stamford, Connecticut
| | - Shuyu D Li
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
- Sema4, Stamford, Connecticut
- Correspondence and Reprint Requests: Shuyu D. Li, PhD, or Rong Chen, PhD, Icahn School of Medicine at Mount Sinai, 1255 5th Avenue, New York, New York 10029. E-mail: or; or Lex H. T. Van der Ploeg, PhD, Rhythm Pharmaceuticals, 500 Boylston Street, Boston, Massachusetts 02116. E-mail:
| | - Rong Chen
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
- Sema4, Stamford, Connecticut
- Correspondence and Reprint Requests: Shuyu D. Li, PhD, or Rong Chen, PhD, Icahn School of Medicine at Mount Sinai, 1255 5th Avenue, New York, New York 10029. E-mail: or; or Lex H. T. Van der Ploeg, PhD, Rhythm Pharmaceuticals, 500 Boylston Street, Boston, Massachusetts 02116. E-mail:
| | - Lex H T Van der Ploeg
- Rhythm Pharmaceuticals, Boston, Massachusetts
- Correspondence and Reprint Requests: Shuyu D. Li, PhD, or Rong Chen, PhD, Icahn School of Medicine at Mount Sinai, 1255 5th Avenue, New York, New York 10029. E-mail: or; or Lex H. T. Van der Ploeg, PhD, Rhythm Pharmaceuticals, 500 Boylston Street, Boston, Massachusetts 02116. E-mail:
| |
Collapse
|
14
|
The importance of gene-environment interactions in human obesity. Clin Sci (Lond) 2017; 130:1571-97. [PMID: 27503943 DOI: 10.1042/cs20160221] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/23/2016] [Indexed: 12/16/2022]
Abstract
The worldwide obesity epidemic has been mainly attributed to lifestyle changes. However, who becomes obese in an obesity-prone environment is largely determined by genetic factors. In the last 20 years, important progress has been made in the elucidation of the genetic architecture of obesity. In parallel with successful gene identifications, the number of gene-environment interaction (GEI) studies has grown rapidly. This paper reviews the growing body of evidence supporting gene-environment interactions in the field of obesity. Heritability, monogenic and polygenic obesity studies provide converging evidence that obesity-predisposing genes interact with a variety of environmental, lifestyle and treatment exposures. However, some skepticism remains regarding the validity of these studies based on several issues, which include statistical modelling, confounding, low replication rate, underpowered analyses, biological assumptions and measurement precision. What follows in this review includes (1) an introduction to the study of GEI, (2) the evidence of GEI in the field of obesity, (3) an outline of the biological mechanisms that may explain these interaction effects, (4) methodological challenges associated with GEI studies and potential solutions, and (5) future directions of GEI research. Thus far, this growing body of evidence has provided a deeper understanding of GEI influencing obesity and may have tremendous applications in the emerging field of personalized medicine and individualized lifestyle recommendations.
Collapse
|
15
|
Anandhakrishnan A, Korbonits M. Glucagon-like peptide 1 in the pathophysiology and pharmacotherapy of clinical obesity. World J Diabetes 2016; 7:572-598. [PMID: 28031776 PMCID: PMC5155232 DOI: 10.4239/wjd.v7.i20.572] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/26/2016] [Accepted: 10/18/2016] [Indexed: 02/05/2023] Open
Abstract
Though the pathophysiology of clinical obesity is undoubtedly multifaceted, several lines of clinical evidence implicate an important functional role for glucagon-like peptide 1 (GLP-1) signalling. Clinical studies assessing GLP-1 responses in normal weight and obese subjects suggest that weight gain may induce functional deficits in GLP-1 signalling that facilitates maintenance of the obesity phenotype. In addition, genetic studies implicate a possible role for altered GLP-1 signalling as a risk factor towards the development of obesity. As reductions in functional GLP-1 signalling seem to play a role in clinical obesity, the pharmacological replenishment seems a promising target for the medical management of obesity in clinical practice. GLP-1 analogue liraglutide at a high dose (3 mg/d) has shown promising results in achieving and maintaining greater weight loss in obese individuals compared to placebo control, and currently licensed anti-obesity medications. Generally well tolerated, provided that longer-term data in clinical practice supports the currently available evidence of superior short- and long-term weight loss efficacy, GLP-1 analogues provide promise towards achieving the successful, sustainable medical management of obesity that remains as yet, an unmet clinical need.
Collapse
|
16
|
Seidah NG, Abifadel M, Prost S, Boileau C, Prat A. The Proprotein Convertases in Hypercholesterolemia and Cardiovascular Diseases: Emphasis on Proprotein Convertase Subtilisin/Kexin 9. Pharmacol Rev 2016; 69:33-52. [DOI: 10.1124/pr.116.012989] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
17
|
Stijnen P, Ramos-Molina B, O'Rahilly S, Creemers JWM. PCSK1 Mutations and Human Endocrinopathies: From Obesity to Gastrointestinal Disorders. Endocr Rev 2016; 37:347-71. [PMID: 27187081 DOI: 10.1210/er.2015-1117] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prohormone convertase 1/3, encoded by the PCSK1 gene, is a serine endoprotease that is involved in the processing of a variety of proneuropeptides and prohormones. Humans who are homozygous or compound heterozygous for loss-of-function mutations in PCSK1 exhibit a variable and pleiotropic syndrome consisting of some or all of the following: obesity, malabsorptive diarrhea, hypogonadotropic hypogonadism, altered thyroid and adrenal function, and impaired regulation of plasma glucose levels in association with elevated circulating proinsulin-to-insulin ratio. Recently, more common variants in the PCSK1 gene have been found to be associated with alterations in body mass index, increased circulating proinsulin levels, and defects in glucose homeostasis. This review provides an overview of the endocrinopathies and other disorders observed in prohormone convertase 1/3-deficient patients, discusses the possible biochemical basis for these manifestations of the disease, and proposes a model whereby certain missense mutations in PCSK1 may result in proteins with a dominant negative action.
Collapse
Affiliation(s)
- Pieter Stijnen
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Bruno Ramos-Molina
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Stephen O'Rahilly
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - John W M Creemers
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
18
|
Ramos-Molina B, Martin MG, Lindberg I. PCSK1 Variants and Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:47-74. [PMID: 27288825 DOI: 10.1016/bs.pmbts.2015.12.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PCSK1, encoding prohormone convertase 1/3 (PC1/3), was one of the first genes linked to monogenic early-onset obesity. PC1/3 is a protease involved in the biosynthetic processing of a variety of neuropeptides and prohormones in endocrine tissues. PC1/3 activity is essential for the activating cleavage of many peptide hormone precursors implicated in the regulation of food ingestion, glucose homeostasis, and energy homeostasis, for example, proopiomelanocortin, proinsulin, proglucagon, and proghrelin. A large number of genome-wide association studies in a variety of different populations have now firmly established a link between three PCSK1 polymorphisms frequent in the population and increased risk of obesity. Human subjects with PC1/3 deficiency, a rare autosomal-recessive disorder caused by the presence of loss-of-function mutations in both alleles, are obese and display a complex set of endocrinopathies. Increasing numbers of genetic diagnoses of infants with persistent diarrhea has recently led to the finding of many novel PCSK1 mutations. PCSK1-deficient infants experience severe intestinal malabsorption during the first years of life, requiring controlled nutrition; these children then become hyperphagic, with associated obesity. The biochemical characterization of novel loss-of-function PCSK1 mutations has resulted in the discovery of new pathological mechanisms affecting the cell biology of the endocrine cell beyond simple loss of enzyme activity, for example, dominant-negative effects of certain mutants on wild-type PC1/3 protein, and activation of the cellular unfolded protein response by endoplasmic reticulum-retained mutants. A better understanding of these molecular and cellular pathologies may illuminate possible treatments for the complex endocrinopathy of PCSK1 deficiency, including obesity.
Collapse
Affiliation(s)
- B Ramos-Molina
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - M G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, Los Angeles, CA, United States of America
| | - I Lindberg
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, United States of America.
| |
Collapse
|
19
|
Blanco EH, Ramos-Molina B, Lindberg I. Revisiting PC1/3 Mutants: Dominant-Negative Effect of Endoplasmic Reticulum-Retained Mutants. Endocrinology 2015; 156. [PMID: 26207343 PMCID: PMC4588832 DOI: 10.1210/en.2015-1068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prohormone convertase 1/3 (PC1/3), encoded by the gene PCSK1, is critical for peptide hormone synthesis. An increasing number of studies have shown that inactivating mutations in PCSK1 are correlated with endocrine pathologies ranging from intestinal dysfunction to morbid obesity, whereas the common nonsynonymous polymorphisms rs6232 (N221D) and rs6234-rs6235 (Q665E-S690T) are highly associated with obesity risk. In this report, we revisited the biochemical and cellular properties of PC1/3 variants in the context of a wild-type PC1/3 background instead of the S357G hypermorph background used for all previous studies. In the wild-type background the PC1/3 N221D variant exhibited 30% lower enzymatic activity in a fluorogenic assay than wild-type PC1/3; this inhibition was greater than that detected in an equivalent experiment using the PC1/3 S357G background. A PC1/3 variant with the linked carboxyl-terminal polymorphisms Q665E-S690T did not show this difference. We also analyzed the biochemical properties of 2 PC1/3 mutants, G209R and G593R, which are retained in the endoplasmic reticulum (ER), and studied their effects on wild-type PC1/3. The expression of ER-retained mutants induced ER stress markers and also resulted in dominant-negative blockade of wild-type PC1/3 prodomain cleavage and decreased expression of wild-type PC1/3, suggesting facilitation of the entry of wild-type protein to a degradative proteasomal pathway. Dominant-negative effects of PC1/3 mutations on the expression and maturation of wild-type protein, with consequential effects on PC1/3 availability, add a new element which must be considered in population and clinical studies of this gene.
Collapse
Affiliation(s)
- Elias H Blanco
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Bruno Ramos-Molina
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The proprotein convertases subtilisin/kexin (PCSKs) are endoproteases identified as activators of precursors from hormones and peptides. On the basis of the variety of substrates and regulation in disease, they have been recognized as mediators in atherogenesis. The discovery of PCSK9, which regulates low-density lipoprotein receptor cell membrane availability, has led to a resurgence of interest in these enzymes and their function in cardiovascular diseases. RECENT FINDINGS Recent data demonstrate that PCSKs are expressed in human atheroma and are regulated in animal models of atherosclerosis. In animal models, inhibition of PCSKs, such as PCSK3, affects cell proliferation and migration as well as inflammation, reducing atherosclerosis. In addition, targeting PCSK9 lowers cholesterol levels and has now been demonstrated to lessen vascular lesion formation in mice. Experimentally investigated novel anti-PCSK9 strategies include genome editing and vaccination. Furthermore, studies show that PCSKs contribute to the initiation and progression of cardiometabolic risk factors, such as insulin resistance and obesity. SUMMARY PCSKs affect cardiovascular diseases on multiple levels, including atherosclerotic lesion formation as well as their contribution to cardiometabolic risk factors. PCSK9 is a key regulator of plasma cholesterol levels, thereby potentially affecting atherosclerosis and has rapidly emerged as a pharmacological target.
Collapse
Affiliation(s)
- Philipp Stawowy
- Deutsches Herzzentrum Berlin, Department of Medicine/Cardiology, Berlin, Germany
| |
Collapse
|
21
|
Abstract
The global rise in the prevalence of obesity and associated co-morbidities such as type 2 diabetes, cardiovascular disease, and cancer represents a major public health concern. The biological response to increased consumption of palatable foods or a reduction in energy expenditure is highly variable between individuals. A more detailed mechanistic understanding of the molecular, physiological, and behavioral pathways involved in the development of obesity in susceptible individuals is critical for identifying effective mechanism-based preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Agatha A van der Klaauw
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
22
|
Meyre D. Re: "The Association of Common Variants in PCSK1 With Obesity: A HuGE Review and Meta-Analysis". Am J Epidemiol 2015; 181:732-3. [PMID: 25861816 DOI: 10.1093/aje/kwv063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- David Meyre
- Department of Clinical Epidemiology and Biostatistics, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
Stijnen P, Tuand K, Varga TV, Franks PW, Aertgeerts B, Creemers JWM. The authors reply. Am J Epidemiol 2015; 181:733-4. [PMID: 25861817 DOI: 10.1093/aje/kwv061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pieter Stijnen
- Laboratory of Biochemical Neuro-endocrinology, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Krizia Tuand
- Laboratory of Biochemical Neuro-endocrinology, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University and Skåne University Hospital Malmö, Malmö, Sweden
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University and Skåne University Hospital Malmö, Malmö, Sweden Department of Public Health and Clinical Medicine, Faculty of Medicine, Umeå University, Umeå, Sweden Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Bert Aertgeerts
- Academic Center for General Practice, Department of Public health and Primary Care, Katholieke Universiteit Leuven, Leuven, Belgium
| | - John W M Creemers
- Laboratory of Biochemical Neuro-endocrinology, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Nead KT, Li A, Wehner MR, Neupane B, Gustafsson S, Butterworth A, Engert JC, Davis AD, Hegele RA, Miller R, den Hoed M, Khaw KT, Kilpeläinen TO, Wareham N, Edwards TL, Hallmans G, Varga TV, Kardia SLR, Smith JA, Zhao W, Faul JD, Weir D, Mi J, Xi B, Quinteros SC, Cooper C, Sayer AA, Jameson K, Grøntved A, Fornage M, Sidney S, Hanis CL, Highland HM, Häring HU, Heni M, Lasky-Su J, Weiss ST, Gerhard GS, Still C, Melka MM, Pausova Z, Paus T, Grant SFA, Hakonarson H, Price RA, Wang K, Scherag A, Hebebrand J, Hinney A, Franks PW, Frayling TM, McCarthy MI, Hirschhorn JN, Loos RJ, Ingelsson E, Gerstein HC, Yusuf S, Beyene J, Anand SS, Meyre D. Contribution of common non-synonymous variants in PCSK1 to body mass index variation and risk of obesity: a systematic review and meta-analysis with evidence from up to 331 175 individuals. Hum Mol Genet 2015; 24:3582-94. [PMID: 25784503 DOI: 10.1093/hmg/ddv097] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/13/2015] [Indexed: 12/31/2022] Open
Abstract
Polymorphisms rs6232 and rs6234/rs6235 in PCSK1 have been associated with extreme obesity [e.g. body mass index (BMI) ≥ 40 kg/m(2)], but their contribution to common obesity (BMI ≥ 30 kg/m(2)) and BMI variation in a multi-ethnic context is unclear. To fill this gap, we collected phenotypic and genetic data in up to 331 175 individuals from diverse ethnic groups. This process involved a systematic review of the literature in PubMed, Web of Science, Embase and the NIH GWAS catalog complemented by data extraction from pre-existing GWAS or custom-arrays in consortia and single studies. We employed recently developed global meta-analytic random-effects methods to calculate summary odds ratios (OR) and 95% confidence intervals (CIs) or beta estimates and standard errors (SE) for the obesity status and BMI analyses, respectively. Significant associations were found with binary obesity status for rs6232 (OR = 1.15, 95% CI 1.06-1.24, P = 6.08 × 10(-6)) and rs6234/rs6235 (OR = 1.07, 95% CI 1.04-1.10, P = 3.00 × 10(-7)). Similarly, significant associations were found with continuous BMI for rs6232 (β = 0.03, 95% CI 0.00-0.07; P = 0.047) and rs6234/rs6235 (β = 0.02, 95% CI 0.00-0.03; P = 5.57 × 10(-4)). Ethnicity, age and study ascertainment significantly modulated the association of PCSK1 polymorphisms with obesity. In summary, we demonstrate evidence that common gene variation in PCSK1 contributes to BMI variation and susceptibility to common obesity in the largest known meta-analysis published to date in genetic epidemiology.
Collapse
Affiliation(s)
- Kevin T Nead
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Aihua Li
- Department of Clinical Epidemiology and Biostatistics
| | - Mackenzie R Wehner
- Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Binod Neupane
- Department of Clinical Epidemiology and Biostatistics
| | - Stefan Gustafsson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Adam Butterworth
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - James C Engert
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton General Hospital, Hamilton, ON, Canada L8L 2X
| | | | - Robert A Hegele
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada L8S 4L8, Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala SE 751 05, Sweden
| | | | - Marcel den Hoed
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada H3H 2R9, Six Nations Health Services, Ohsweken, Canada N0A 1M0
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Tuomas O Kilpeläinen
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada H3H 2R9, Blackburn Cardiovascular Genetics Laboratory, Robarts Research Institute, London, ON, Canada N6A 5K8
| | - Nick Wareham
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada H3H 2R9
| | - Todd L Edwards
- Department of Medicine, University of Western Ontario, London, ON, Canada N6A 3K7
| | - Göran Hallmans
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Tibor V Varga
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sharon L R Kardia
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jennifer A Smith
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen 2100, Denmark
| | - Wei Zhao
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jessica D Faul
- Center for Human Genetics Research, Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA
| | - David Weir
- Center for Human Genetics Research, Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA
| | - Jie Mi
- Department of Public Health and Clinical Medicine, Umeå University, Umeå 901 87, Sweden
| | - Bo Xi
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö 205 02, Sweden
| | | | - Cyrus Cooper
- Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA, Department of Epidemiology, Capital Institute of Pediatrics, Beijing 100020, China, Department of Maternal and Child Health Care, School of Public Health, Shandong University, Jinan 250100, China
| | - Avan Aihie Sayer
- Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Karen Jameson
- Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Anders Grøntved
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Myriam Fornage
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Stephen Sidney
- National Institute for Health Research Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Craig L Hanis
- National Institute for Health Research Biomedical Research Unit, University of Oxford, Oxford OX3 7LE, UK
| | - Heather M Highland
- National Institute for Health Research Biomedical Research Unit, University of Oxford, Oxford OX3 7LE, UK
| | - Hans-Ulrich Häring
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense DK-5230, Denmark, University of Texas Health Science Center at Houston Institute of Molecular Medicine and Division of Epidemiology Human Genetics and Environmental Sciences, School of Public Health, Houston, TX 77030, USA
| | - Martin Heni
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense DK-5230, Denmark, University of Texas Health Science Center at Houston Institute of Molecular Medicine and Division of Epidemiology Human Genetics and Environmental Sciences, School of Public Health, Houston, TX 77030, USA
| | - Jessica Lasky-Su
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA 94612, USA, The Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Scott T Weiss
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA 94612, USA, The Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Glenn S Gerhard
- Internal Medicine IV (Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry), University Hospital of Tuebingen, Tübingen 72076, Germany
| | | | - Melkaey M Melka
- The Department of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zdenka Pausova
- The Department of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tomáš Paus
- Center for Genomic Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Struan F A Grant
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Department of Pathology and Laboratory Medicine, Pennsylvania State University, Hershey, PA 17033, USA, Geisinger Obesity Institute, Danville, PA 17822, USA
| | - Hakon Hakonarson
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Department of Pathology and Laboratory Medicine, Pennsylvania State University, Hershey, PA 17033, USA, Geisinger Obesity Institute, Danville, PA 17822, USA
| | - R Arlen Price
- The Hospital for Sick Children, Department of Physiology, University of Toronto, Toronto, ON, Canada M5G 1X
| | - Kai Wang
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK, Rotman Research Institute, University of Toronto, Toronto, Canada M6A 2E1
| | - Andre Scherag
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | - Paul W Franks
- Department of Medicine, University of Western Ontario, London, ON, Canada N6A 3K7, MRC Epidemiology Unit, University of Cambridge, Cambridge, UK, Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy M Frayling
- Zilkha Neurogenetic Institute, Department of Psychiatry and Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mark I McCarthy
- Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena 07740, Germany
| | - Joel N Hirschhorn
- Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Essen 45141, Germany, Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA, Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter EX2 4TH, UK
| | - Ruth J Loos
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada H3H 2R9, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 9DU, UK
| | - Erik Ingelsson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hertzel C Gerstein
- Department of Clinical Epidemiology and Biostatistics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA, Divisions of Genetics and Endocrinology, Children's Hospital, Boston, MA 02115, USA
| | - Salim Yusuf
- Department of Clinical Epidemiology and Biostatistics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA, Divisions of Genetics and Endocrinology, Children's Hospital, Boston, MA 02115, USA
| | - Joseph Beyene
- Department of Clinical Epidemiology and Biostatistics
| | - Sonia S Anand
- Department of Clinical Epidemiology and Biostatistics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA, Divisions of Genetics and Endocrinology, Children's Hospital, Boston, MA 02115, USA
| | - David Meyre
- Department of Clinical Epidemiology and Biostatistics, Divisions of Genetics and Endocrinology, Children's Hospital, Boston, MA 02115, USA, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA,
| |
Collapse
|
25
|
Stijnen P, Tuand K, Varga TV, Franks PW, Aertgeerts B, Creemers JWM. The association of common variants in PCSK1 with obesity: a HuGE review and meta-analysis. Am J Epidemiol 2014; 180:1051-65. [PMID: 25355447 DOI: 10.1093/aje/kwu237] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Congenital deficiency of the proprotein convertase subtilisine/kexin type 1 gene (PCSK1), which encodes proprotein convertase 1/3, causes a severe multihormonal disorder marked by early-onset obesity. The single nucleotide polymorphisms (SNPs) rs6232 and rs6234-rs6235 in PCSK1 have been associated with obesity. However, case-control studies carried out in populations of different ethnicities have only partly replicated this association. Moreover, these SNPs have only weakly been associated with body mass index (weight (kg)/height (m)(2)) at a genome-wide level of significance. To investigate this discrepancy, we conducted a systematic search for studies published before December 2013 and extracted relevant data. Pooled estimates were calculated for overall and subgroup analyses. This meta-analysis confirmed the association of PCSK1 SNPs with obesity and provides the first evidence that the association between PCSK1 rs6232 and obesity is stronger for childhood obesity than for adult obesity. Moreover, we identified weak associations with body mass index and significantly stronger associations with waist circumference for rs6234-rs6235. No difference was found in the association with different obesity grades, and no association of PCSK1 rs6234-rs6235 with obesity was identified in Asian populations. This systematic Human Genome Epidemiology (HuGE) review showed convincingly that the SNPs rs6232, rs6234, and rs6235 in PCSK1 are associated with obesity in Caucasians.
Collapse
|
26
|
Hernandez-Escalante VM, Nava-Gonzalez EJ, Voruganti VS, Kent JW, Haack K, Laviada-Molina HA, Molina-Segui F, Gallegos-Cabriales EC, Lopez-Alvarenga JC, Cole SA, Mezzles MJ, Comuzzie AG, Bastarrachea RA. Replication of obesity and diabetes-related SNP associations in individuals from Yucatán, México. Front Genet 2014; 5:380. [PMID: 25477898 PMCID: PMC4235406 DOI: 10.3389/fgene.2014.00380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/15/2014] [Indexed: 12/28/2022] Open
Abstract
The prevalence of type 2 diabetes (T2D) is rising rapidly and in Mexicans is ~19%. T2D is affected by both environmental and genetic factors. Although specific genes have been implicated in T2D risk few of these findings are confirmed in studies of Mexican subjects. Our aim was to replicate associations of 39 single nucleotide polymorphisms (SNPs) from 10 genes with T2D-related phenotypes in a community-based Mexican cohort. Unrelated individuals (n = 259) living in southeastern Mexico were enrolled in the study based at the University of Yucatan School of Medicine in Merida. Phenotypes measured included anthropometric measurements, circulating levels of adipose tissue endocrine factors (leptin, adiponectin, pro-inflammatory cytokines), and insulin, glucose, and blood pressure. Association analyses were conducted by measured genotype analysis implemented in SOLAR, adapted for unrelated individuals. SNP Minor allele frequencies ranged from 2.2 to 48.6%. Nominal associations were found for CNR1, SLC30A8, GCK, and PCSK1 SNPs with systolic blood pressure, insulin and glucose, and for CNR1, SLC30A8, KCNJ11, and PCSK1 SNPs with adiponectin and leptin (p < 0.05). P-values greater than 0.0014 were considered significant. Association of SNPs rs10485170 of CNR1 and rs5215 of KCNJ11 with adiponectin and leptin, respectively, reached near significance (p = 0.002). Significant association (p = 0.001) was observed between plasma leptin and rs5219 of KCNJ11.
Collapse
Affiliation(s)
| | - Edna J Nava-Gonzalez
- Facultad de Salud Publica y Nutricion, Universidad Autonoma de Nuevo Leon Nuevo Leon, Monterrey, Mexico
| | - V Saroja Voruganti
- Nutrition and UNC Nutrition Research Institute, University of North Carolina Chapel Hill, NC, USA
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Karin Haack
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Hugo A Laviada-Molina
- Departamento de Investigación, Escuela de Ciencias de la Salud, Universidad Marista de Merida Merida, Yucatan, Mexico
| | - Fernanda Molina-Segui
- Departamento de Investigación, Escuela de Ciencias de la Salud, Universidad Marista de Merida Merida, Yucatan, Mexico
| | | | | | - Shelley A Cole
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Marguerite J Mezzles
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Raul A Bastarrachea
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| |
Collapse
|
27
|
Association of genetic variants of the incretin-related genes with quantitative traits and occurrence of type 2 diabetes in Japanese. Mol Genet Metab Rep 2014; 1:350-361. [PMID: 27896108 PMCID: PMC5121356 DOI: 10.1016/j.ymgmr.2014.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/26/2014] [Accepted: 07/26/2014] [Indexed: 02/08/2023] Open
Abstract
Background None of the high frequency variants of the incretin-related genes has been found by genome-wide association study (GWAS) for association with occurrence of type 2 diabetes in Japanese. However, low frequency and rare and/or high frequency variants affecting glucose metabolic traits remain to be investigated. Method We screened all exons of the incretin-related genes (GCG, GLP1R, DPP4, PCSK1, GIP, and GIPR) in 96 patients with type 2 diabetes and investigated for association of genetic variants of these genes with quantitative metabolic traits upon test meal with 38 young healthy volunteers and with the occurrence of type 2 diabetes in Japanese subjects comprising 1303 patients with type 2 diabetes and 1014 controls. Result Two mutations of GIPR, p.Thr3Alafsx21 and Arg183Gln, were found only in patients with type 2 diabetes, and both of them were treated with insulin. Of ten tagSNPs, we found that risk allele C of SNP393 (rs6235) of PCSK1 was nominally associated with higher fasting insulin and HOMA-R (P = 0.034 and P = 0.030), but not with proinsulin level, incretin level or BMI. The variant showed significant association with occurrence of type 2 diabetes after adjustment for age, sex, and BMI (P = 0.0043). Conclusion Rare variants of GIPR may contribute to the development of type 2 diabetes, possibly through insulin secretory defects. Furthermore, the genetic variant of PCSK1 might influence glucose homeostasis by altered insulin resistance independently of BMI, incretin level or proinsulin conversion, and may be associated with the occurrence of type 2 diabetes in Japanese.
Collapse
Key Words
- BMI, body mass index
- CPR, c-peptide immunoreactivity
- DPP4, dipeptidyl peptidase 4
- GCG, proglucagon gene
- GIP, glucose-dependent insulinotropic peptide
- GIPR, GIP receptor
- GLP-1, glucagon-like peptide 1
- GLP1R, GLP-1 receptor
- GWAS, genome-wide association study
- HOMA-B, homeostasis model assessment as an index of insulin secretion
- HOMA-R, homeostasis model assessment as an index of insulin resistance
- HbA1c, hemoglobin A1c
- IRI, immunoreactive insulin
- Incretin
- LD, linkage disequilibrium
- OR, odds ratio
- Obesity
- PCR, polymerase chain reaction
- PCSK1
- PCSK1, prohormone convertase (PC) enzymes. PC1/3
- Polymorphism
- SNP, single nucleotide polymorphism
- Type 2 diabetes
Collapse
|
28
|
Gu Q, Yazdanpanah M, van Hoek M, Hofman A, Gao X, de Rooij FWM, Sijbrands EJG. Common variants in PCSK1 influence blood pressure and body mass index. J Hum Hypertens 2014; 29:82-6. [PMID: 25031086 DOI: 10.1038/jhh.2014.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/02/2014] [Accepted: 06/11/2014] [Indexed: 12/23/2022]
Abstract
Proprotein convertase subtilisin/kexin-type 1 (PCSK1) activates precursors pro-opiomelanocortin (POMC), proinsulin and prorenin. We investigated if common variants in the PCSK1 gene influence blood pressure and risk of hypertension. Additionally, we investigated the risk of obesity and type 2 diabetes (T2D). In the Rotterdam Study (RS1), a prospective, population-based cohort (n=5974), four single-nucleotide polymorphisms (rs10515237, rs6232, rs436321 and rs3792747) in PCSK1 were studied. Linear and Cox regression models served to analyze associations between variants and end points. Replication was performed in the Rotterdam Study Plus1 (RSPlus1, n=1895). Rs436321 was significantly associated with systolic and diastolic blood pressure and risk of hypertension (odds ratio (OR): 1.1-1.3; P<0.05 in both populations). Rs6232 was associated with body mass index (BMI) (P=0.007 and P=0.04 in RS1 and RSPlus1, respectively). In RSPlus1, heterozygotes for rs6232 had 1.5 times higher risk of obesity (OR: 1.46; 95% confidence interval: 1.04-2.03; P=0.03). We did not find significant associations of PCSK1 with fasting insulin levels and T2D. We found an association of genetic variation in the PCSK1 gene with blood pressure and hypertension. Furthermore, we replicated the association of PCSK1 with BMI and obesity. No relationship was found between PCSK1 variants and fasting insulin levels and T2D. Our findings suggest that genetic variation in PCSK1 may contribute to, at least, some of these interrelated disorders.
Collapse
Affiliation(s)
- Q Gu
- 1] Erasmus Medical Center, Department of Internal Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands [2] Department of Endocrinology, Zhongshan Hospital Fudan University, Shanghai, China
| | - M Yazdanpanah
- Erasmus Medical Center, Department of Internal Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M van Hoek
- Erasmus Medical Center, Department of Internal Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A Hofman
- Erasmus Medical Center, Department of Epidemiology and Biostatistics, Rotterdam, The Netherlands
| | - X Gao
- Department of Endocrinology, Zhongshan Hospital Fudan University, Shanghai, China
| | - F W M de Rooij
- Erasmus Medical Center, Department of Internal Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - E J G Sijbrands
- Erasmus Medical Center, Department of Internal Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
29
|
Prabhu Y, Blanco EH, Liu M, Peinado JR, Wheeler MC, Gekakis N, Arvan P, Lindberg I. Defective transport of the obesity mutant PC1/3 N222D contributes to loss of function. Endocrinology 2014; 155:2391-401. [PMID: 24828610 PMCID: PMC4060179 DOI: 10.1210/en.2013-1985] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the PCSK1 gene encoding prohormone convertase 1/3 (PC1/3) are strongly associated with obesity in humans. The PC1/3(N222D) mutant mouse thus far represents the only mouse model that mimics the PC1/3 obesity phenotype in humans. The present investigation addresses the cell biology of the N222D mutation. Metabolic labeling experiments reveal a clear defect in the kinetics of insulin biosynthesis in islets from PC1/3(N222D) mutant mice, resulting in an increase in both proinsulin and its processing intermediates, predominantly lacking cleavage at the Arg-Arg site. Although the mutant PC1/3 zymogen is correctly processed to the 87-kDa form, pulse-chase immunoprecipitation experiments, labeling, and immunohistochemical experiments using uncleavable variants all demonstrate that the PC1/3-N222D protein is largely mislocalized compared with similar wild-type (WT) constructs, being predominantly retained in the endoplasmic reticulum. The PC1/3-N222D mutant also undergoes more efficient degradation via the ubiquitin-proteasome system than the WT enzyme. Lastly, the mutant PC1/3-N222D protein coimmunoprecipitates with WT PC1/3 and exerts a modest effect on intracellular retention of the WT enzyme. These profound alterations in the cell biology of PC1/3-N222D are likely to contribute to the defective insulin biosynthetic events observed in the mutant mice and may be relevant to the dramatic contributions of polymorphisms in this gene to human obesity.
Collapse
Affiliation(s)
- Yogikala Prabhu
- Department of Anatomy and Neurobiology (Y.P., E.H.B., J.R.P., I.L.), University of Maryland-Baltimore, Baltimore, Maryland 21201; Division of Endocrinology, Metabolism, and Diabetes (M.L., P.A.), University of Michigan, Michigan 48105; and Department of Cell and Molecular Biology (M.C.W., N.G.), The Scripps Research Institute, San Diego, California 92037
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hsiao TJ, Hwang Y, Chang HM, Lin E. Association of the rs6235 variant in the proprotein convertase subtilisin/kexin type 1 (PCSK1) gene with obesity and related traits in a Taiwanese population. Gene 2013; 533:32-7. [PMID: 24140494 DOI: 10.1016/j.gene.2013.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/25/2013] [Accepted: 10/09/2013] [Indexed: 12/22/2022]
Abstract
One particularly interesting single nucleotide polymorphism (SNP), rs6235 (encoding an S690T substitution), in the proprotein convertase subtilisin/kexin type 1 (PCSK1) gene has been widely associated with obesity in several European cohorts. The present study was intended to investigate the association between the PCSK1 rs6235 SNP and the prevalence of overweight or obesity, or obesity-related metabolic traits in a Taiwanese population. A total of 964 Taiwanese subjects with general health examinations were analyzed. Our data revealed no association of PCSK1 rs6235 with the risk of obesity or overweight in the complete subjects. However, the PCSK1 rs6235 SNP exhibited a significant association with overweight among the male subjects (P=0.03), but not among the female subjects. Furthermore, the carriers of GG variant had a significantly higher waist circumference than those with the CC variant (82.5 ± 11.5 vs. 81.2 ± 10.2 cm; P=0.01) and those with the CG variant (82.5 ± 11.5 vs. 81.4 ± 10.4 cm; P=0.021). In addition, the carriers of GG variant had a higher diastolic blood pressure than those with the CC variant (81.9 ± 14.2 vs. 80.3 ± 12.9 mm Hg; P=0.023). Our study indicates that the PCSK1 rs6235 SNP may contribute to the risk of overweight in men and predict obesity-related metabolic traits such as waist circumference and diastolic blood pressure in Taiwanese subjects.
Collapse
Affiliation(s)
- Tun-Jen Hsiao
- College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | | | | | | |
Collapse
|