1
|
Kang S, Brulois K, Choi YJ, Zhang S, Jung JU. Modulation of Lymphotoxin β Surface Expression by Kaposi's Sarcoma-Associated Herpesvirus K3 Through Glycosylation Interference. J Med Virol 2025; 97:e70179. [PMID: 39831393 PMCID: PMC11744495 DOI: 10.1002/jmv.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) employs diverse mechanisms to subvert host immune responses, contributing to its infection and pathogenicity. As an immune evasion strategy, KSHV encodes the Membrane-Associated RING-CH (MARCH)-family E3 ligases, K3, and K5, which target and remove several immune regulators from the cell surface. In this study, we investigate the impact of K3 and K5 on lymphotoxin receptor (LTβR) ligands, LTβ and LIGHT, which are type II transmembrane proteins and function as pivotal immune mediators during virus infection. Upon co-expression of viral MARCH proteins with LTβR ligands, we showed that K3 and K5 selectively targeted LTβ, but not LIGHT, for the downregulation of surface expression. Specifically, K3 and K5 E3 ligases interacted with the transmembrane domain of LTβ. Intriguingly, K3 interacted with an immature form of LTβ, whereas K5 targeted the fully mature form. Subsequent biochemical analyses revealed that K3 disrupted the initial steps of N-glycosylation maturation of LTβ. This interference resulted in the sequestration of LTβ within the endoplasmic reticulum, impeding its trafficking to the plasma membrane. Consequently, the K3-mediated downregulation of LTβ surface expression suppressed the LTβR downstream signaling pathway. These findings uncover a novel mechanism by which KSHV K3 E3 ligase inhibits the membrane trafficking pathway of the LTβ inflammatory ligand through glycosylation interference, potentially evading LTβR-mediated antiviral immunity.
Collapse
Grants
- U01 CA294881 NCI NIH HHS
- This study was supported by grants from the US National Institutes of Health (NIH) CA251275, CA294881, AI152190, AI17120, AI181758, DE023926, DE028521, and U01 CA294881 (Jae U. Jung) and a gift from Sheikha Fatima bint Mubarak.
- R01 AI181758 NIAID NIH HHS
- R01 DE023926 NIDCR NIH HHS
- R01 CA251275 NCI NIH HHS
- R01 AI152190 NIAID NIH HHS
- R01 DE028521 NIDCR NIH HHS
- This study was supported by grants from the US National Institutes of Health (NIH) CA251275, CA294881, AI152190, AI17120, AI181758, DE023926, DE028521, and U01 CA294881 (Jae U. Jung) and a gift from Sheikha Fatima bint Mubarak.
Collapse
Affiliation(s)
- Soowon Kang
- Department of Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Kevin Brulois
- Department of Molecular Microbiology and Immunology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Youn Jung Choi
- Department of Medicine, Division of Rheumatology, Kao Autoimmunity InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Shaoyan Zhang
- Department of Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Jae U. Jung
- Department of Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| |
Collapse
|
2
|
Importance of accessibility to the extracellular juxtamembrane stalk region of membrane protein for substrate recognition by viral ubiquitin ligase K5. Biochem J 2022; 479:2261-2278. [DOI: 10.1042/bcj20220288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a carcinogenic virus that latently infects B cells and causes malignant tumors in immunocompromised patients. KSHV utilizes two viral E3 ubiquitin ligases, K3 and K5, in KSHV-infected cells to mediate the polyubiquitination-dependent down-regulation of several host membrane proteins involved in the immune system. Although K3 and K5 are members of the same family and have similar structural topologies, K3 and K5 have different substrate specificities. Hence, K5 may have a different substrate recognition mode than K3; however, the molecular basis of substrate recognition remains unclear. Here, we investigated the reason why human CD8α, which is known not to be a substrate for both K3 and K5, is not recognized by them, to obtain an understanding for molecular basis of substrate specificity. CD8α forms a disulfide-linked homodimer under experimental conditions to evaluate the viral ligase-mediated down-regulation. It is known that two interchain disulfide linkages in the stalk region between each CD8α monomer (Cys164–Cys164 and Cys181–Cys181) mediate homodimerization. When the interchain disulfide linkage of Cys181–Cys181 was eliminated, CD8α was down-regulated by K5 with a functional RING variant (RINGv) domain via polyubiquitination at the cytoplasmic tail. Aspartic acid, located at the stalk/transmembrane interface of CD8α, was essential for K5-mediated down-regulation of the CD8α mutant without a Cys181–Cys181 linkage. These results suggest that disulfide linkage near the stalk/transmembrane interface critically inhibits substrate targeting by K5. Accessibility to the extracellular juxtamembrane stalk region of membrane proteins may be important for substrate recognition by the viral ubiquitin ligase K5.
Collapse
|
3
|
Kajikawa M, Imaizumi N, Machii S, Nakamura T, Harigane N, Kimura M, Miyano K, Ishido S, Kanamoto T. Kaposi's sarcoma-associated herpesvirus ubiquitin ligases downregulate cell surface expression of l-selectin. J Gen Virol 2021; 102. [PMID: 34726593 DOI: 10.1099/jgv.0.001678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic etiological factor for Kaposi's sarcoma and primary effusion lymphoma in immunocompromised patients. KSHV utilizes two immune evasion E3 ubiquitin ligases, namely K3 and K5, to downregulate the expression of antigen-presenting molecules and ligands of natural killer (NK) cells in the host cells through an ubiquitin-dependent endocytic mechanism. This allows the infected cells to evade surveillance and elimination by cytotoxic lymphocytes and NK cells. The number of host cell molecular substrates reported for these ubiquitin ligases is limited. The identification of novel substrates for these ligases will aid in elucidating the mechanism underlying immune evasion of KSHV. This study demonstrated that K5 downregulated the cell surface expression of l-selectin, a C-type lectin-like adhesion receptor expressed in the lymphocytes. Tryptophan residue located at the centre of the E2-binding site in the K5 RINGv domain was essential to downregulate l-selectin expression. Additionally, the lysine residues located at the cytoplasmic tail of l-selectin were required for the K5-mediated downregulation of l-selectin. K5 promoted the degradation of l-selectin through polyubiquitination. These results suggest that K5 downregulates l-selectin expression on the cell surface by promoting polyubiquitination and ubiquitin-dependent endocytosis, which indicated that l-selectin is a novel substrate for K5. Additionally, K3 downregulated l-selectin expression. The findings of this study will aid in the elucidation of a novel immune evasion mechanism in KSHV.
Collapse
Affiliation(s)
- Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nanae Imaizumi
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Shiho Machii
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Tomoka Nakamura
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nana Harigane
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Minako Kimura
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Kei Miyano
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Taisei Kanamoto
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
4
|
An Update of the Virion Proteome of Kaposi Sarcoma-Associated Herpesvirus. Viruses 2020; 12:v12121382. [PMID: 33276600 PMCID: PMC7761624 DOI: 10.3390/v12121382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
The virion proteins of Kaposi sarcoma-associated herpesvirus (KSHV) were initially characterized in 2005 in two separate studies that combined the detection of 24 viral proteins and a few cellular components via LC-MS/MS or MALDI-TOF. Despite considerable advances in the sensitivity and specificity of mass spectrometry instrumentation in recent years, leading to significantly higher yields in detections, the KSHV virion proteome has not been revisited. In this study, we have re-examined the protein composition of purified KSHV virions via ultra-high resolution Qq time-of-flight mass spectrometry (UHR-QqTOF). Our results confirm the detection of all previously reported virion proteins, in addition to 17 other viral proteins, some of which have been characterized as virion-associated using other methods, and 10 novel proteins identified as virion-associated for the first time in this study. These results add KSHV ORF9, ORF23, ORF35, ORF48, ORF58, ORF72/vCyclin, K3, K9/vIRF1, K10/vIRF4, and K10.5/vIRF3 to the list of KSHV proteins that can be incorporated into virions. The addition of these proteins to the KSHV virion proteome provides novel and important insight into early events in KSHV infection mediated by virion-associated proteins. Data are available via ProteomeXchange with identifier PXD022626.
Collapse
|
5
|
Carriere J, Rao Y, Liu Q, Lin X, Zhao J, Feng P. Post-translational Control of Innate Immune Signaling Pathways by Herpesviruses. Front Microbiol 2019; 10:2647. [PMID: 31798565 PMCID: PMC6868034 DOI: 10.3389/fmicb.2019.02647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
Herpesviruses constitute a large family of disease-causing DNA viruses. Each herpesvirus strain is capable of infecting particular organisms with a specific cell tropism. Upon infection, pattern recognition receptors (PRRs) recognize conserved viral features to trigger signaling cascades that culminate in the production of interferons and pro-inflammatory cytokines. To invoke a proper immune response while avoiding collateral tissue damage, signaling proteins involved in these cascades are tightly regulated by post-translational modifications (PTMs). Herpesviruses have developed strategies to subvert innate immune signaling pathways in order to ensure efficient viral replication and achieve persistent infection. The ability of these viruses to control the proteins involved in these signaling cascades post-translationally, either directly via virus-encoded enzymes or indirectly through the deregulation of cellular enzymes, has been widely reported. This ability provides herpesviruses with a powerful tool to shut off or restrict host antiviral and inflammatory responses. In this review, we highlight recent findings on the herpesvirus-mediated post-translational control along PRR-mediated signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Pinghui Feng
- Section of Infection and Immunity, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Zhu Y, Li Y, Bai B, Fang J, Zhang K, Yin X, Li S, Li W, Ma Y, Cui Y, Wang J, Liu X, Li X, Sun L, Jin N. Construction of an attenuated goatpox virus AV41 strain by deleting the TK gene and ORF8-18. Antiviral Res 2018; 157:111-119. [PMID: 30030019 DOI: 10.1016/j.antiviral.2018.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 11/28/2022]
Abstract
Goatpox virus (GTPV) is prevalent in goats and is associated with high mortality. This virus causes fever, skin nodules, lesions in the respiratory and lymph node enlargement. Considering the safety risks and side effects of vaccination with attenuated live GPTV vaccine strain AV41, an attenuated goatpox virus (GTPV-TK-ORF), was constructed by deleting non-essential gene fragments without affecting replication and related to the virulence and immunomodulatory functions of the goatpox virus AV41 strain (GTPV-AV41) using homologous recombination and the Cre (Cyclization Recombination Enzyme)/Loxp system. The results of both in vivo and in vitro experiments demonstrated that GTPV-TK-ORF was safer than wild type GTPV-AV41, possessed satisfactory immunogenicity, and could protect goats from a virulent GTPV-AV40 infection. Moreover, the IFN-γ, GTPV-specific antibody, and neutralizing antibody levels in the GTPV-TK-ORF-immunized group were significantly higher than that in the normal saline control group following immunization (P < 0.01). Thus, GTPV-TK-ORF may be used as a potential novel vaccine and viral vector with good safety and immunogenicity.
Collapse
Affiliation(s)
- Yilong Zhu
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Yiquan Li
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China; Medical College, Yanbian University, Yanji, 133002, China
| | - Bing Bai
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Jinbo Fang
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Kelong Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Xunzhe Yin
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Shanzhi Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Wenjie Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Yizhen Ma
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Yingli Cui
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Jing Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Xing Liu
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Xiao Li
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China; Institute of Virology, Wenzhou University Town, Wenzhou, 325035, China.
| | - Lili Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Department of Head and Neck Surgery, Tumor Hospital of Jilin Province, Changchun, 130012, China.
| | - Ningyi Jin
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China; Institute of Virology, Wenzhou University Town, Wenzhou, 325035, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Dodagatta-Marri E, Mitchell DA, Pandit H, Sonawani A, Murugaiah V, Idicula-Thomas S, Nal B, Al-Mozaini MM, Kaur A, Madan T, Kishore U. Protein-Protein Interaction between Surfactant Protein D and DC-SIGN via C-Type Lectin Domain Can Suppress HIV-1 Transfer. Front Immunol 2017; 8:834. [PMID: 28824609 PMCID: PMC5534670 DOI: 10.3389/fimmu.2017.00834] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/03/2017] [Indexed: 01/01/2023] Open
Abstract
Surfactant protein D (SP-D) is a soluble C-type lectin, belonging to the collectin (collagen-containing calcium-dependent lectin) family, which acts as an innate immune pattern recognition molecule in the lungs at other mucosal surfaces. Immune regulation and surfactant homeostasis are salient functions of SP-D. SP-D can bind to a range of viral, bacterial, and fungal pathogens and trigger clearance mechanisms. SP-D binds to gp120, the envelope protein expressed on HIV-1, through its C-type lectin or carbohydrate recognition domain. This is of importance since SP-D is secreted by human mucosal epithelial cells and is present in the female reproductive tract, including vagina. Another C-type lectin, dendritic cell (DC)-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), present on the surface of the DCs, also binds to HIV-1 gp120 and facilitates viral transfer to the lymphoid tissues. DCs are also present at the site of HIV-1 entry, embedded in vaginal or rectal mucosa. In the present study, we report a direct protein-protein interaction between recombinant forms of SP-D (rfhSP-D) and DC-SIGN via their C-type lectin domains. Both SP-D and DC-SIGN competed for binding to immobilized HIV-1 gp120. Pre-incubation of human embryonic kidney cells expressing surface DC-SIGN with rfhSP-D significantly inhibited the HIV-1 transfer to activated peripheral blood mononuclear cells. In silico analysis revealed that SP-D and gp120 may occupy same sites on DC-SIGN, which may explain the reduced transfer of HIV-1. In summary, we demonstrate, for the first time, that DC-SIGN is a novel binding partner of SP-D, and this interaction can modulate HIV-1 capture and transfer to CD4+ T cells. In addition, the present study also reveals a novel and distinct mechanism of host defense by SP-D against HIV-1.
Collapse
Affiliation(s)
- Eswari Dodagatta-Marri
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Daniel A Mitchell
- Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital Coventry and Warwickshire Campus, Coventry, United Kingdom
| | - Hrishikesh Pandit
- Department of Innate Immunity, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Archana Sonawani
- Department of Innate Immunity, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Valarmathy Murugaiah
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Susan Idicula-Thomas
- Department of Innate Immunity, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Béatrice Nal
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Maha M Al-Mozaini
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Anuvinder Kaur
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Uday Kishore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
8
|
Pednekar L, Pandit H, Paudyal B, Kaur A, Al-Mozaini MA, Kouser L, Ghebrehiwet B, Mitchell DA, Madan T, Kishore U. Complement Protein C1q Interacts with DC-SIGN via Its Globular Domain and Thus May Interfere with HIV-1 Transmission. Front Immunol 2016; 7:600. [PMID: 28066413 PMCID: PMC5177617 DOI: 10.3389/fimmu.2016.00600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells capable of priming naïve T-cells. Its C-type lectin receptor, DC-SIGN, regulates a wide range of immune functions. Along with its role in HIV-1 pathogenesis through complement opsonization of the virus, DC-SIGN has recently emerged as an adaptor for complement protein C1q on the surface of immature DCs via a trimeric complex involving gC1qR, a receptor for the globular domain of C1q. Here, we have examined the nature of interaction between C1q and DC-SIGN in terms of domain localization, and implications of C1q–DC-SIGN-gC1qR complex formation on HIV-1 transmission. We first expressed and purified recombinant extracellular domains of DC-SIGN and its homologue DC-SIGNR as tetramers comprising of the entire extra cellular domain including the α-helical neck region and monomers comprising of the carbohydrate recognition domain only. Direct binding studies revealed that both DC-SIGN and DC-SIGNR were able to bind independently to the recombinant globular head modules ghA, ghB, and ghC, with ghB being the preferential binder. C1q appeared to interact with DC-SIGN or DC-SIGNR in a manner similar to IgG. Mutational analysis using single amino acid substitutions within the globular head modules showed that TyrB175 and LysB136 were critical for the C1q–DC-SIGN/DC-SIGNR interaction. Competitive studies revealed that gC1qR and ghB shared overlapping binding sites on DC-SIGN, implying that HIV-1 transmission by DCs could be modulated due to the interplay of gC1qR-C1q with DC-SIGN. Since C1q, gC1qR, and DC-SIGN can individually bind HIV-1, we examined how C1q and gC1qR modulated HIV-1–DC-SIGN interaction in an infection assay. Here, we report, for the first time, that C1q suppressed DC-SIGN-mediated transfer of HIV-1 to activated pooled peripheral blood mononuclear cells, although the globular head modules did not. The protective effect of C1q was negated by the addition of gC1qR. In fact, gC1qR enhanced DC-SIGN-mediated HIV-1 transfer, suggesting its role in HIV-1 pathogenesis. Our results highlight the consequences of multiple innate immune pattern recognition molecules forming a complex that can modify their functions in a way, which may be advantageous for the pathogen.
Collapse
Affiliation(s)
- Lina Pednekar
- Biosciences, College of Health and Life Sciences, Brunel University London , Uxbridge , UK
| | - Hrishikesh Pandit
- Department of Innate Immunity, National Institute for Research in Reproductive Health (ICMR) , Mumbai , India
| | - Basudev Paudyal
- Biosciences, College of Health and Life Sciences, Brunel University London , Uxbridge , UK
| | - Anuvinder Kaur
- Biosciences, College of Health and Life Sciences, Brunel University London , Uxbridge , UK
| | - Maha Ahmed Al-Mozaini
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre , Riyadh , Saudi Arabia
| | - Lubna Kouser
- Biosciences, College of Health and Life Sciences, Brunel University London , Uxbridge , UK
| | - Berhane Ghebrehiwet
- Department of Medicine, State University of New York , Stony Brook, NY , USA
| | - Daniel A Mitchell
- Clinical Sciences Research Laboratories, University of Warwick , Coventry , UK
| | - Taruna Madan
- Department of Innate Immunity, National Institute for Research in Reproductive Health (ICMR) , Mumbai , India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London , Uxbridge , UK
| |
Collapse
|
9
|
Oh J, Shin JS. Molecular mechanism and cellular function of MHCII ubiquitination. Immunol Rev 2016; 266:134-44. [PMID: 26085212 DOI: 10.1111/imr.12303] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The major histocompatibility complex class II (MHCII) is ubiquitinated via the evolutionarily conserved lysine in the cytoplasmic tail of the β chain in dendritic cells (DCs) and B cells. The ubiquitination is mediated by the membrane-associated RING-CH1 (MARCH1) ubiquitin ligase although it can be also mediated by the homologous ligase MARCH8 in model cell lines. The ubiquitination promotes MHCII endocytosis and lysosomal sorting that results in a reduction in the level of MHCII at cell surface. Functionally, MHCII ubiquitination serves as a means by which DCs suppress MHCII expression and reduce antigen presentation in response to the immune regulatory cytokine interleukin-10 (IL-10) and regulatory T cells. Recently, additional roles of MHCII ubiquitination have emerged. MHCII ubiquitination promoted DC production of inflammatory cytokines in response to the Toll-like receptor ligands. It also potentiated DC ability to activate antigen-specific naive CD4(+) T cells while limiting the amount of antigens presented at cell surface. Similarly, MHCII ubiquitination promoted DC activation of CD4(+) thymocytes supporting regulatory T-cell development independent of its effect of limiting antigen presentation. Thus, ubiquitination appears to confer MHCII a function independent of presenting antigens by a mechanism yet to be identified.
Collapse
Affiliation(s)
- Jaehak Oh
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Jeoung-Sook Shin
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
van de Weijer ML, Luteijn RD, Wiertz EJHJ. Viral immune evasion: Lessons in MHC class I antigen presentation. Semin Immunol 2015; 27:125-37. [PMID: 25887630 DOI: 10.1016/j.smim.2015.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/13/2015] [Indexed: 12/19/2022]
Abstract
The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.
Collapse
Affiliation(s)
| | - Rutger D Luteijn
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
11
|
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) primarily persists as a latent episome in infected cells. During latent infection, only a limited number of viral genes are expressed that help to maintain the viral episome and prevent lytic reactivation. The latent KSHV genome persists as a highly ordered chromatin structure with bivalent chromatin marks at the promoter-regulatory region of the major immediate-early gene promoter. Various stimuli can induce chromatin modifications to an active euchromatic epigenetic mark, leading to the expression of genes required for the transition from the latent to the lytic phase of KSHV life cycle. Enhanced replication and transcription activator (RTA) gene expression triggers a cascade of events, resulting in the modulation of various cellular pathways to support viral DNA synthesis. RTA also binds to the origin of lytic DNA replication to recruit viral, as well as cellular, proteins for the initiation of the lytic DNA replication of KSHV. In this review we will discuss some of the pivotal genetic and epigenetic factors that control KSHV reactivation from the transcriptionally restricted latent program.
Collapse
|
12
|
The Membrane Associated RING-CH Proteins: A Family of E3 Ligases with Diverse Roles through the Cell. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:637295. [PMID: 27419207 PMCID: PMC4897099 DOI: 10.1155/2014/637295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/22/2014] [Indexed: 01/03/2023]
Abstract
Since the discovery that conjugation of ubiquitin to proteins can drive proteolytic degradation, ubiquitination has been shown to perform a diverse range of functions in the cell. It plays an important role in endocytosis, signal transduction, trafficking of vesicles inside the cell, and even DNA repair. The process of ubiquitination-mediated control has turned out to be remarkably complex, involving a diverse array of proteins and many levels of control. This review focuses on a family of structurally related E3 ligases termed the membrane-associated RING-CH (MARCH) ubiquitin ligases, which were originally discovered as structural homologs to the virals E3s, K3, and K5 from Kaposi's sarcoma-associated herpesvirus (KSHV). These proteins contain a catalytic RING-CH finger and are typically membrane-bound, with some having up to 14 putative transmembrane domains. Despite several lines of evidence showing that the MARCH proteins play a complex and essential role in several cellular processes, this family remains understudied.
Collapse
|
13
|
Campbell DM, Rappocciolo G, Jenkins FJ, Rinaldo CR. Dendritic cells: key players in human herpesvirus 8 infection and pathogenesis. Front Microbiol 2014; 5:452. [PMID: 25221546 PMCID: PMC4148009 DOI: 10.3389/fmicb.2014.00452] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/11/2014] [Indexed: 11/13/2022] Open
Abstract
Human herpesvirus 8 (HHV-8; Kaposi's sarcoma-associated herpesvirus) is an oncogenic gammaherpesvirus that primarily infects cells of the immune and vascular systems. HHV-8 interacts with and targets professional antigen presenting cells and influences their function. Infection alters the maturation, antigen presentation, and immune activation capabilities of certain dendritic cells (DC) despite non-robust lytic replication in these cells. DC sustains a low level of antiviral functionality during HHV-8 infection in vitro. This may explain the ability of healthy individuals to effectively control this virus without disease. Following an immune compromising event, such as organ transplantation or human immunodeficiency virus type 1 infection, a reduced cellular antiviral response against HHV-8 compounded with skewed DC cytokine production and antigen presentation likely contributes to the development of HHV-8 associated diseases, i.e., Kaposi's sarcoma and certain B cell lymphomas. In this review we focus on the role of DC in the establishment of HHV-8 primary and latent infection, the functional state of DC during HHV-8 infection, and the current understanding of the factors influencing virus-DC interactions in the context of HHV-8-associated disease.
Collapse
Affiliation(s)
- Diana M Campbell
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA
| | - Giovanna Rappocciolo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA
| | - Frank J Jenkins
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA ; Department of Pathology, School of Medicine, University of Pittsburgh Pittsburgh, PA, USA
| | - Charles R Rinaldo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA ; Department of Pathology, School of Medicine, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
14
|
Kaposi's sarcoma-associated herpesvirus K3 and K5 ubiquitin E3 ligases have stage-specific immune evasion roles during lytic replication. J Virol 2014; 88:9335-49. [PMID: 24899205 DOI: 10.1128/jvi.00873-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED The downregulation of immune synapse components such as major histocompatibility complex class I (MHC-I) and ICAM-1 is a common viral immune evasion strategy that protects infected cells from targeted elimination by cytolytic effector functions of the immune system. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes two membrane-bound ubiquitin E3 ligases, called K3 and K5, which share the ability to induce internalization and degradation of MHC-I molecules. Although individual functions of K3 and K5 outside the viral genome are well characterized, their roles during the KSHV life cycle are still unclear. In this study, we individually introduced the amino acid-coding sequences of K3 or K5 into a ΔK3 ΔK5 recombinant virus, at either original or interchanged genomic positions. Recombinants harboring coding sequences within the K5 locus showed higher K3 and K5 protein expression levels and more rapid surface receptor downregulation than cognate recombinants in which coding sequences were introduced into the K3 locus. To identify infected cells undergoing K3-mediated downregulation of MHC-I, we employed a novel reporter virus, called red-green-blue-BAC16 (RGB-BAC16), which was engineered to harbor three fluorescent protein expression cassettes: EF1α-monomeric red fluorescent protein 1 (mRFP1), polyadenylated nuclear RNA promoter (pPAN)-enhanced green fluorescent protein (EGFP), and pK8.1-monomeric blue fluorescent protein (tagBFP), marking latent, immediate early, and late viral gene expression, respectively. Analysis of RGB-derived K3 and K5 deletion mutants showed that while the K5-mediated downregulation of MHC-I was concomitant with pPAN induction, the reduction of MHC-I surface expression by K3 was evident in cells that were enriched for pPAN-driven EGFP(high) and pK8.1-driven blue fluorescent protein-positive (BFP(+)) populations. These data support the notion that immunoreceptor downregulation occurs by a sequential process wherein K5 is critical during the immediately early phase and K3 plays a significant role during later stages. IMPORTANCE Although the roles of K3 and K5 outside the viral genome are well characterized, the function of these proteins in the context of the KSHV life cycle has remained unclear, particularly in the case of K3. This study examined the relative contributions of K3 and K5 to the downregulation of MHC-I during the lytic replication of KSHV. We show that while K5 acts immediately upon entry into the lytic phase, K3-mediated downregulation of MHC-I was evident during later stages of lytic replication. The identification of distinctly timed K3 and K5 activities significantly advances our understanding of KSHV-mediated immune evasion. Crucial to this study was the development of a novel recombinant KSHV, called RGB-BAC16, which facilitated the delineation of stage-specific phenotypes.
Collapse
|
15
|
Calistri A, Munegato D, Carli I, Parolin C, Palù G. The ubiquitin-conjugating system: multiple roles in viral replication and infection. Cells 2014; 3:386-417. [PMID: 24805990 PMCID: PMC4092849 DOI: 10.3390/cells3020386] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/17/2022] Open
Abstract
Through the combined action of ubiquitinating and deubiquitinating enzymes, conjugation of ubiquitin to a target protein acts as a reversible post-translational modification functionally similar to phosphorylation. Indeed, ubiquitination is more and more recognized as a central process for the fine regulation of many cellular pathways. Due to their nature as obligate intracellular parasites, viruses rely on the most conserved host cell machineries for their own replication. Thus, it is not surprising that members from almost every viral family are challenged by ubiquitin mediated mechanisms in different steps of their life cycle and have evolved in order to by-pass or exploit the cellular ubiquitin conjugating system to maximize their chance to establish a successful infection. In this review we will present several examples of the complex interplay that links viruses and the ubiquitin conjugation machinery, with a special focus on the mechanisms evolved by the human immunodeficiency virus to escape from cellular restriction factors and to exit from infected cells.
Collapse
Affiliation(s)
- Arianna Calistri
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Denis Munegato
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Ilaria Carli
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| |
Collapse
|
16
|
Labo N, Miley W, Marshall V, Gillette W, Esposito D, Bess M, Turano A, Uldrick T, Polizzotto MN, Wyvill KM, Bagni R, Yarchoan R, Whitby D. Heterogeneity and breadth of host antibody response to KSHV infection demonstrated by systematic analysis of the KSHV proteome. PLoS Pathog 2014; 10:e1004046. [PMID: 24675986 PMCID: PMC3968157 DOI: 10.1371/journal.ppat.1004046] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/17/2014] [Indexed: 01/15/2023] Open
Abstract
The Kaposi sarcoma associated herpesvirus (KSHV) genome encodes more than 85 open reading frames (ORFs). Serological evaluation of KSHV infection now generally relies on reactivity to just one latent and/or one lytic protein (commonly ORF73 and K8.1). Most of the other polypeptides encoded by the virus have unknown antigenic profiles. We have systematically expressed and purified products from 72 KSHV ORFs in recombinant systems and analyzed seroreactivity in US patients with KSHV-associated malignancies, and US blood donors (low KSHV seroprevalence population). We identified several KSHV proteins (ORF38, ORF61, ORF59 and K5) that elicited significant responses in individuals with KSHV-associated diseases. In these patients, patterns of reactivity were heterogeneous; however, HIV infection appeared to be associated with breadth and intensity of serological responses. Improved antigenic characterization of additional ORFs may increase the sensitivity of serologic assays, lead to more rapid progresses in understanding immune responses to KSHV, and allow for better comprehension of the natural history of KSHV infection. To this end, we have developed a bead-based multiplex assay detecting antibodies to six KSHV antigens.
Collapse
Affiliation(s)
- Nazzarena Labo
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Vickie Marshall
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - William Gillette
- Protein Expression Laboratory, Advanced Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Dominic Esposito
- Protein Expression Laboratory, Advanced Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Matthew Bess
- Protein Expression Laboratory, Advanced Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Alexandra Turano
- Protein Expression Laboratory, Advanced Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Thomas Uldrick
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mark N. Polizzotto
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Kathleen M. Wyvill
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Rachel Bagni
- Protein Expression Laboratory, Advanced Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| |
Collapse
|
17
|
Fuentes-González AM, Contreras-Paredes A, Manzo-Merino J, Lizano M. The modulation of apoptosis by oncogenic viruses. Virol J 2013; 10:182. [PMID: 23741982 PMCID: PMC3691765 DOI: 10.1186/1743-422x-10-182] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/27/2013] [Indexed: 12/13/2022] Open
Abstract
Transforming viruses can change a normal cell into a cancer cell during their normal life cycle. Persistent infections with these viruses have been recognized to cause some types of cancer. These viruses have been implicated in the modulation of various biological processes, such as proliferation, differentiation and apoptosis. The study of infections caused by oncogenic viruses had helped in our understanding of several mechanisms that regulate cell growth, as well as the molecular alterations leading to cancer. Therefore, transforming viruses provide models of study that have enabled the advances in cancer research. Viruses with transforming abilities, include different members of the Human Papillomavirus (HPV) family, Hepatitis C virus (HCV), Human T-cell Leukemia virus (HTLV-1), Epstein Barr virus (EBV) and Kaposi’s Sarcoma Herpesvirus (KSHV). Apoptosis, or programmed cell death, is a tightly regulated process that plays an important role in development and homeostasis. Additionally, it functions as an antiviral defense mechanism. The deregulation of apoptosis has been implicated in the etiology of diverse diseases, including cancer. Oncogenic viruses employ different mechanisms to inhibit the apoptotic process, allowing the propagation of infected and damaged cells. During this process, some viral proteins are able to evade the immune system, while others can directly interact with the caspases involved in apoptotic signaling. In some instances, viral proteins can also promote apoptosis, which may be necessary for an accurate regulation of the initial stages of infection.
Collapse
Affiliation(s)
- Alma Mariana Fuentes-González
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando 22, col. Sección XVI, Tlalpan, C.P. 14080, Mexico City, Mexico
| | | | | | | |
Collapse
|