1
|
Sakaue H, Kuno A. isoAsp-Quest: workflow development for isoAsp identification using database searches. J Biochem 2025; 177:37-44. [PMID: 39441692 DOI: 10.1093/jb/mvae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
A recent study reported that isomerization of aspartyl residues (Asp) occurs in various tissues and proteins in vivo. For a comprehensive analysis of post-translational modifications, the mass spectrometry (MS)-based proteomic approach is a straightforward method; however, the isomerization of Asp does not alter its molecular weight. Therefore, a unique method is required to analyse Asp isomers using MS. Herein, we present a novel strategy, isoAsp-Quest, which is a database search-oriented isoAsp identification method. isoAsp is specifically converted to 18O-labelled Lα-Asp by the enzymatic reaction of protein L-isoaspartyl-O-methyltransferase (PIMT) in 18O water with a mass shift of 2 Da, which, in principle, enables us to distinguish Asp isomers. However, in practise, a labelled Lα-Asp signal overlaps with that of endogenous Lα-Asp, making detection challenging. Therefore, degradation of the endogenous Lα-Asp peptide by AspN and subsequent removal of AspN were performed prior to the PIMT reaction. This strategy was applied to bovine lens α-crystallin. Consequently, several Asp isomerization sites, consistent with human αA-crystallin, were identified in bovine αA-crystallin, indicating that this strategy is also effective for biological proteins. Therefore, isoAsp-Quest enables the analysis of Lβ-Asp in a straightforward and rapid workflow, which may be useful for the quality control of protein products and biomarker discovery.
Collapse
Affiliation(s)
- Hiroaki Sakaue
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Atsushi Kuno
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
2
|
Aki K, Okamura E. Real-Time 1H NMR reveals position and sequence dependences of amino acid isomerization in amyloid beta fragments in situ. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
TAKATA T. Identification of D-amino Acid Residues in Proteins Using Mass Spectrometry. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takumi TAKATA
- Institute for Integrated Radiation and Nuclear Science, Kyoto University
| |
Collapse
|
4
|
Abdulbagi M, Wang L, Siddig O, Di B, Li B. D-Amino Acids and D-Amino Acid-Containing Peptides: Potential Disease Biomarkers and Therapeutic Targets? Biomolecules 2021; 11:1716. [PMID: 34827714 PMCID: PMC8615943 DOI: 10.3390/biom11111716] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
In nature, amino acids are found in two forms, L and D enantiomers, except for glycine which does not have a chiral center. The change of one form to the other will lead to a change in the primary structure of proteins and hence may affect the function and biological activity of proteins. Indeed, several D-amino acid-containing peptides (DAACPs) were isolated from patients with cataracts, Alzheimer's and other diseases. Additionally, significant levels of free D-amino acids were found in several diseases, reflecting the disease conditions. Studying the molecular mechanisms of the DAACPs formation and the alteration in D-amino acids metabolism will certainly assist in understanding these diseases and finding new biomarkers and drug targets. In this review, the presence of DAACPs and free D-amino acids and their links with disease development and progress are summarized. Similarly, we highlight some recent advances in analytical techniques that led to improvement in the discovery and analysis of DAACPs and D-amino acids.
Collapse
Affiliation(s)
- Mohamed Abdulbagi
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Liya Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Orwa Siddig
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Bin Di
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Magami K, Hachiya N, Morikawa K, Fujii N, Takata T. Isomerization of Asp is essential for assembly of amyloid-like fibrils of αA-crystallin-derived peptide. PLoS One 2021; 16:e0250277. [PMID: 33857260 PMCID: PMC8049310 DOI: 10.1371/journal.pone.0250277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/01/2021] [Indexed: 11/22/2022] Open
Abstract
Post-translational modifications are often detected in age-related diseases associated with protein misfolding such as cataracts from aged lenses. One of the major post-translational modifications is the isomerization of aspartate residues (L-isoAsp), which could be non-enzymatically and spontaneously occurring in proteins, resulting in various effects on the structure and function of proteins including short peptides. We have reported that the structure and function of an αA66–80 peptide, corresponding to the 66–80 (66SDRDKFVIFLDVKHF80) fragment of human lens αA-crystallin, was dramatically altered by the isomerization of aspartate residue (Asp) at position 76. In the current study, we observed amyloid-like fibrils of L-isoAsp containing αA66–80 using electron microscopy. The contribution of each amino acid for the peptide structure was further evaluated by circular dichroism (CD), bis-ANS, and thioflavin T fluorescence using 14 alanine substituents of αA66–80, including L-isoAsp at position 76. CD of 14 alanine substituents demonstrated random coiled structures except for the substituents of positively charged residues. Bis-ANS fluorescence of peptide with substitution of hydrophobic residue with alanine revealed decreased hydrophobicity of the peptide. Thioflavin T fluorescence also showed that the hydrophobicity around Asp76 of the peptide is important for the formation of amyloid-like fibrils. One of the substitutes, H79A (SDRDKFVIFL(L-isoD)VKAF) demonstrated an exact β-sheet structure in CD and highly increased Thioflavin T fluorescence. This phenomenon was inhibited by the addition of protein-L-isoaspartate O-methyltransferase (PIMT), which is an enzyme that changes L-isoAsp into Asp. These interactions were observed even after the formation of amyloid-like fibrils. Thus, isomerization of Asp in peptide is key to form fibrils of αA-crystallin-derived peptide, and L-isoAsp on fibrils can be a candidate for disassembling amyloid-like fibrils of αA-crystallin-derived peptides.
Collapse
Affiliation(s)
- Kosuke Magami
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Naomi Hachiya
- Tokyo Metropolitan Industrial Technology Research Institute, Aomi, Koto-ku, Tokyo, Japan
| | - Kazuo Morikawa
- Tokyo Metropolitan Industrial Technology Research Institute, Aomi, Koto-ku, Tokyo, Japan
| | - Noriko Fujii
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, Japan
| | - Takumi Takata
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, Japan
- * E-mail:
| |
Collapse
|
6
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
7
|
Lee CH, Lou YC, Wang AHJ. DMTMM-Mediated Intramolecular Cyclization of Acidic Residues in Peptides/Proteins. ACS OMEGA 2021; 6:4708-4718. [PMID: 33644578 PMCID: PMC7905807 DOI: 10.1021/acsomega.0c05503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The formation of succinimide in proteins has attracted considerable attention in protein aging and biopharmaceutical research. The succinimide formation occurs spontaneously in proteins and is prone to hydrolysis to yield aspartate and isoaspartate, resulting in altered protein functions. Herein, we demonstrated that the coupling reagent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) can mediate intramolecular cyclization of aspartic acid to form succinimide efficiently in the LL37-derived short antimicrobial peptide KR12. The formation of succinimide in KR12 was confirmed by liquid chromatography tandem mass spectrometry and nuclear magnetic resonance. Moreover, the succinimide-containing KR12 displayed decreased antimicrobial activity, helicity, and serum stability in comparison with unmodified KR12. The succinimide formation usually changes the protein structure and function, and only in rare cases, it can help to maintain the protein stability. In addition to succinimide, DMTMM can also mediate intraresidue cyclization of N-terminal glutamate to form pyroglutamate. Our work thus provides a convenient and efficient method for preparation of succinimide/pyroglutamate-containing peptides, which can be used for studying their impact on peptide/protein function.
Collapse
Affiliation(s)
- Chi-Hua Lee
- Institute
of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yuan-Chao Lou
- Biomedical
Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Andrew H.-J. Wang
- Institute
of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
8
|
Isomerization of Aspartyl Residue in Amyloid Beta Fragments: The Kinetics by Real-Time 1H NMR Under Neutral and Basic Conditions. J SOLUTION CHEM 2020. [DOI: 10.1007/s10953-020-01018-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Sadakane Y, Senda S, Deguchi T, Tanaka A, Tsuruta H, Morimoto S. Effect of amino acids present at the carboxyl end of succinimidyl residue on the rate constants for succinimidyl hydrolysis in small peptides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140496. [PMID: 32673742 DOI: 10.1016/j.bbapap.2020.140496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022]
Abstract
Structural alterations of aspartyl and asparaginyl residues in various proteins can lead to their malfunction, which may result in severe health disorders. The formation and hydrolysis of succinimidyl intermediates are crucial in specific protein modifications. Nonetheless, only few studies investigating the hydrolysis of succinimidyl intermediates have been published. In this study, we established a method to prepare peptides bearing succinimidyl residues using recombinant protein l-isoaspartyl methyltransferase and ultrafiltration units. Using succinimidyl peptides, we examined the effect of amino acid residues on succinimidyl hydrolysis at the carboxyl end of succinimidyl residues and determined the rate constant of hydrolysis for each peptide. The rate constant of succinimidyl hydrolysis in the peptide bearing a Ser residue at the carboxyl side (0.50 ± 0.02 /h) was 3.0 times higher than that for the peptide bearing an Ala residue (0.17 ± 0.01 /h), whereas it was just 1.2 times higher for the peptide bearing a Gly residue (0.20 ± 0.01 /h). The rate constant of succinimidyl formation in the peptide bearing a Ser residue [(2.44 ± 0.11) × 10-3 /d] was only 1.2 times higher than that for the peptide bearing an Ala residue ([1.87 ± 0.09) × 10-3 /d], whereas 5.5 times higher for the peptide bearing a Gly residue [(10.2 ± 0.2) × 10-3 /d]. These results show that the Gly and Ser residues at the carboxyl end of the succinimidyl residue have opposing roles in succinimidyl formation and hydrolysis. Catalysis of Ser residue's hydroxyl group plays a crucial role in succinimidyl hydrolysis.
Collapse
Affiliation(s)
- Yutaka Sadakane
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan.
| | - Sayumi Senda
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Taku Deguchi
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Atsuki Tanaka
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Hiromasa Tsuruta
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Shota Morimoto
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| |
Collapse
|
10
|
Aki K, Okamura E. Side-chain conformers to allow conversion from normal to isoaspartate in age-related proteins and peptides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140483. [PMID: 32659262 DOI: 10.1016/j.bbapap.2020.140483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 11/29/2022]
Abstract
Dβ (or D-iso)- and Lβ- (or iso)- aspartyl (Asp) residues are accumulated in aged lens crystallins and amyloid beta (Aβ) proteins, respectively, as a result of spontaneous, nonenzymatic isomerization of normal Lα-Asp. To explore why such uncommon Asp isomers are accumulated, the stability of Lα-, Lβ-, and Dβ-Asp was compared in view of the staggered side-chain conformers. By using cylindrin (KVKVLGD7VIEV) from αB-crystallin and Aβ17-25 (L17VFF20AED23)VG25) containing Asp isomers, the vicinal spin-spin coupling constants of Asp Hα-Hβ1 and Hα-Hβ2 were quantified by high-resolution solution 1H NMR. It was found that the trans conformer was extremely preferred in Dβ-Asp7 side-chain of cylindrin. In Aβ17-25, the side chain of Lβ-Asp23 was likely to adopt trans conformer, while gauche conformers were rather rich in Lα-Asp23. In gauche conformers, the close distance between Asp carboxylate carbon (CCOO-) and backbone nitrogen (N) next to Asp is advantageous to the intramolecular cyclization to form succinimide intermediate, followed by the conversion from α- to β-Asp. The cyclization is limited in the trans conformer because of the long distance between CCOO- and N, to keep Dβ- or Lβ-Asp stable. This would be the reason for the site specificity of Asp isomerization in proteins. The higher population of trans conformer in Asp side chain, the less isomerization of Asp as shown as Asp76 in αA-crystallin. The stability and less reactivity of normal Asp and its isomers are the potential factors to determine whether or not the abnormal accumulation is permitted in aged crystallins and Aβ.
Collapse
Affiliation(s)
- Kenzo Aki
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan
| | - Emiko Okamura
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| |
Collapse
|
11
|
Takata T, Ha S, Koide T, Fujii N. Site-specific rapid deamidation and isomerization in human lens αA-crystallin in vitro. Protein Sci 2020; 29:955-965. [PMID: 31930615 PMCID: PMC7096717 DOI: 10.1002/pro.3821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022]
Abstract
Recent studies have suggested that the isomerization/racemization of aspartate residues in proteins increases in aged tissues. One such residue is Asp151 in lens-specific αA-crystallin. Although many isomerization/racemization sites have been reported in various proteins, the factors that lead to those modifications in proteins in vivo remain obscure. Therefore, an in vitro system is needed to assess the mechanisms of modifications of Asp under various conditions. Deamidation of Asn to Asp in proteins occurs more rapidly than isomerization/racemization of Asp, although the reaction passes through the same intermediate in both pathways. Here, therefore, we replaced Asp151 in human lens αA-crystallin with Asn by using site-directed mutagenesis. The recombinant protein was expressed in Escherichia coli and used to investigate the deamidation/isomerization/racemization of Asn151 after incubation at 50°C for various durations and under different pH. After incubation, the mutant αA-crystallin was subjected to enzymatic digestion followed by liquid chromatography-MS/MS to evaluate the ratio of modifications in Asn151-containing peptides. The Asp151Asn αA-crystallin mutant showed rapid deamidation to Asp with the formation of specific Asp isomers. In particular, deamidation increased greatly under basic conditions. By contrast, subunit-subunit interactions between αA-crystallin and αB-crystallin had little effect on the modification of Asn151. Our findings suggest that the Asp151Asn αA-crystallin mutant represents a good in vitro model protein to assess deamidation, isomerization, and the racemization intermediates. Furthermore, our in vitro results show a different trend from in vivo data, implying the presence of specific factors that induce racemization from L-Asp to D-Asp residues in vivo.
Collapse
Affiliation(s)
- Takumi Takata
- Kyoto University Institute for Integrated Radiation and Nuclear ScienceOsakaJapan
| | - Seongmin Ha
- Department of ChemistryGraduate School of Science, Kyoto UniversityKyotoJapan
| | | | - Noriko Fujii
- Kyoto University Institute for Integrated Radiation and Nuclear ScienceOsakaJapan
| |
Collapse
|
12
|
Truscott RJW, Friedrich MG. Molecular Processes Implicated in Human Age-Related Nuclear Cataract. Invest Ophthalmol Vis Sci 2020; 60:5007-5021. [PMID: 31791064 PMCID: PMC7043214 DOI: 10.1167/iovs.19-27535] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human age-related nuclear cataract is commonly characterized by four biochemical features that involve modifications to the structural proteins that constitute the bulk of the lens: coloration, oxidation, insolubility, and covalent cross-linking. Each of these is progressive and increases as the cataract worsens. Significant progress has been made in understanding the origin of the factors that underpin the loss of lens transparency. Of these four hallmarks of cataract, it is protein-protein cross-linking that has been the most intransigent, and it is only recently, with the advent of proteomic methodology, that mechanisms are being elucidated. A diverse range of cross-linking processes involving several amino acids have been uncovered. Although other hypotheses for the etiology of cataract have been advanced, it is likely that spontaneous decomposition of the structural proteins of the lens, which do not turn over, is responsible for the age-related changes to the properties of the lens and, ultimately, for cataract. Cataract may represent the first and best characterized of a number of human age-related diseases where spontaneous protein modification leads to ongoing deterioration and, ultimately, a loss of tissue function.
Collapse
Affiliation(s)
- Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | - Michael G Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| |
Collapse
|
13
|
Off-pathway 3D-structure provides protection against spontaneous Asn/Asp isomerization: shielding proteins Achilles heel. Q Rev Biophys 2020; 53:e2. [PMID: 32000865 DOI: 10.1017/s003358351900009x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spontaneous deamidation prompted backbone isomerization of Asn/Asp residues resulting in - most cases - the insertion of an extra methylene group into the backbone poses a threat to the structural integrity of proteins. Here we present a systematical analysis of how temperature, pH, presence of charged residues, but most importantly backbone conformation and dynamics affect isomerization rates as determined by nuclear magnetic resonance in the case of designed peptide-models. We demonstrate that restricted mobility (such as being part of a secondary structural element) may safeguard against isomerization, but this protective factor is most effective in the case of off-pathway folds which can slow the reaction by several magnitudes compared to their on-pathway counterparts. We show that the geometric descriptors of the initial nucleophilic attack of the isomerization can be used to classify local conformation and contribute to the design of stable protein drugs, antibodies or the assessment of the severity of mutations. At any –Asn/AspGly– sites in proteins a spontaneous backbone isomerization occurs within days under physiological conditions leading to various forms of proteopathy. This unwanted transformation especially harmful to long-lived proteins (e.g. hemoglobin and crystallins), can be slowed down, though never stopped, by a rigid three-dimensional protein fold, if it can delay in the conformational maze, on-pathway intermediates from occurring.
Collapse
|
14
|
Effect of Ocular Hypertension on D- β-Aspartic Acid-Containing Proteins in the Retinas of Rats. J Ophthalmol 2019; 2019:2431481. [PMID: 31240134 PMCID: PMC6556240 DOI: 10.1155/2019/2431481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/28/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose To investigate the effect of ocular hypertension-induced isomerization of aspartic acid in retinal proteins. Methods Adult Wistar rats with ocular hypertension were used as an experimental model. D-β-aspartic acid-containing proteins were isolated by SDS-PAGE and western blot with an anti-D-β-aspartic acid antibody and identified by liquid chromatography-mass spectrometry analysis. The concentration of ATP was measured by ELISA. Results D-β-aspartic acid was expressed in a protein band at around 44.5 kDa at much higher quantities in the retinas of rats with ocular hypertension than in those of normotensive rats. The 44.5 kDa protein band was mainly composed of α-enolase, S-arrestin, and ATP synthase subunits α and β, in both the ocular hypertensive and normotensive retinas. Moreover, increasing intraocular pressure was correlated with increasing ATP concentrations in the retinas of rats. Conclusion Ocular hypertension affected the expression of proteins containing D-β-aspartic acid, including ATP synthase subunits, and up-regulation of ATP in the retinas of rats.
Collapse
|
15
|
Fujii N, Takata T, Fujii N, Aki K, Sakaue H. D-Amino acids in protein: The mirror of life as a molecular index of aging. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018. [DOI: 10.1016/j.bbapap.2018.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Kirikoshi R, Manabe N, Takahashi O. Phosphate-Catalyzed Succinimide Formation from Asp Residues: A Computational Study of the Mechanism. Int J Mol Sci 2018; 19:ijms19020637. [PMID: 29495268 PMCID: PMC5855859 DOI: 10.3390/ijms19020637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 01/15/2023] Open
Abstract
Aspartic acid (Asp) residues in proteins and peptides are prone to the non-enzymatic reactions that give biologically uncommon l-β-Asp, d-Asp, and d-β-Asp residues via the cyclic succinimide intermediate (aminosuccinyl residue, Suc). These abnormal Asp residues are known to have relevance to aging and pathologies. Despite being non-enzymatic, the Suc formation is thought to require a catalyst under physiological conditions. In this study, we computationally investigated the mechanism of the Suc formation from Asp residues that were catalyzed by the dihydrogen phosphate ion, H2PO4−. We used Ac–l-Asp–NHMe (Ac = acetyl, NHMe = methylamino) as a model compound. The H2PO4− ion (as a catalyst) and two explicit water molecules (as solvent molecules stabilizing the negative charge) were included in the calculations. All of the calculations were performed by density functional theory with the B3LYP functional. We revealed a phosphate-catalyzed two-step mechanism (cyclization–dehydration) of the Suc formation, where the first step is predicted to be rate-determining. In both steps, the reaction involved a proton relay mediated by the H2PO4− ion. The calculated activation barrier for this mechanism (100.3 kJ mol−1) is in reasonable agreement with an experimental activation energy (107 kJ mol−1) for the Suc formation from an Asp-containing peptide in a phosphate buffer, supporting the catalytic mechanism of the H2PO4− ion that is revealed in this study.
Collapse
Affiliation(s)
- Ryota Kirikoshi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Noriyoshi Manabe
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Ohgi Takahashi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
17
|
Nakayoshi T, Kato K, Fukuyoshi S, Takahashi O, Kurimoto E, Oda A. Comparison of the activation energy barrier for succinimide formation from α- and β-aspartic acid residues obtained from density functional theory calculations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:759-766. [PMID: 29305913 DOI: 10.1016/j.bbapap.2017.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 10/18/2022]
Abstract
The l-α-Asp residues in peptides or proteins are prone to undergo nonenzymatic reactions to form l-β-Asp, d-α-Asp, and d-β-Asp residues via a succinimide five-membered ring intermediate. From these three types of isomerized aspartic acid residues, particularly d-β-Asp has been widely detected in aging tissue. In this study, we computationally investigated the cyclization of α- and β-Asp residues to form succinimide with dihydrogen phosphate ion as a catalyst (H2PO4-). We performed the study using B3LYP/6-31+G(d,p) density functional theory calculations. The comparison of the activation barriers of both residues is discussed. All the calculations were performed using model compounds in which an α/β-Asp-Gly sequence is capped with acetyl and methylamino groups on the N- and C-termini, respectively. Moreover, H2PO4- catalyzes all the steps of the succinimide formation (cyclization-dehydration) acting as a proton-relay mediator. The calculated activation energy barriers for succinimide formation of α- and β-Asp residues are 26.9 and 26.0kcalmol-1, respectively. Although it was experimentally confirmed that β-Asp has higher stability than α-Asp, there was no clear difference between the activation barriers. Therefore, the higher stability of β-Asp residue than α-Asp residue may be caused by an entropic effect associated with the succinimide formation.
Collapse
Affiliation(s)
- Tomoki Nakayoshi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan; Faculty of Pharmacy, Meijo University, Nagoya 468-0077, Japan
| | - Koichi Kato
- Faculty of Pharmacy, Meijo University, Nagoya 468-0077, Japan; Department of Pharmacy, Kinjo Gakuin University, 463-8521 Nagoya, Japan
| | - Shuichi Fukuyoshi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ohgi Takahashi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Eiji Kurimoto
- Faculty of Pharmacy, Meijo University, Nagoya 468-0077, Japan
| | - Akifumi Oda
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan; Faculty of Pharmacy, Meijo University, Nagoya 468-0077, Japan; Institute for Protein Research, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
18
|
Racemization of Serine Residues Catalyzed by Dihydrogen Phosphate Ion: A Computational Study. Catalysts 2017. [DOI: 10.3390/catal7120363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Spontaneous, nonenzymatic reactions in proteins are known to have relevance to aging and age-related diseases, such as cataract and Alzheimer’s disease. Among such reactions is the racemization of Ser residues, but its mechanism in vivo remains to be clarified. The most likely intermediate is an enol. Although being nonenzymatic, the enolization would need to be catalyzed to occur at a biologically relevant rate. In the present study, we computationally found plausible reaction pathways for the enolization of a Ser residue where a dihydrogen phosphate ion, H2PO4−, acts as a catalyst. The H2PO4− ion mediates the proton transfer required for the enolization by acting simultaneously as both a general base and a general acid. Using the B3LYP density functional theory method, reaction pathways were located in the gas phase and hydration effects were evaluated by single-point calculations using the SM8 continuum model. The activation barriers calculated for the reaction pathways found were around 100 kJ mol−1, which is consistent with spontaneous reactions occurring at physiological temperature. Our results are also consistent with experimental observations that Ser residue racemization occurs more readily in flexible regions in proteins.
Collapse
|
19
|
Zhu XJ, Zhang KK, He WW, Du Y, Hooi M, Lu Y. Racemization at the Asp 58 residue in αA-crystallin from the lens of high myopic cataract patients. J Cell Mol Med 2017; 22:1118-1126. [PMID: 28994184 PMCID: PMC5783843 DOI: 10.1111/jcmm.13363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/19/2017] [Indexed: 01/25/2023] Open
Abstract
Post-translational modifications in lens proteins are key causal factors in cataract. As the most abundant post-translational modification in the lens, racemization may be closely related to the pathogenesis of cataract. Racemization of αA-crystallin, a crucial structural and heat shock protein in the human lens, could significantly influence its structure and function. In previous studies, elevated racemization from l-Asp 58 to d-isoAsp58 in αA-crystallin has been found in age-related cataract (ARC) lenses compared to normal aged human lenses. However, the role of racemization in high myopic cataract (HMC), which is characterized by an early onset of nuclear cataract, remains unknown. In the current study, apparently different from ARC, significantly increased racemization from l-Asp 58 to d-Asp 58 in αA-crystallin was identified in HMC lenses. The average racemization rates for each Asp isoform were calculated in ARC and HMC group. In ARC patients, the conversion of l-Asp 58 to d-isoAsp 58, up to 31.89%, accounted for the main proportion in racemization, which was in accordance with the previous studies. However, in HMC lenses, the conversion of l-Asp 58 to d-Asp 58, as high as 35.44%, accounted for the largest proportion of racemization in αA-crystallin. The different trend in the conversion of αA-crystallin by racemization, especially the elevated level of d-Asp 58 in HMC lenses, might prompt early cataractogenesis and a possible explanation of distinct phenotypes of cataract in HMC.
Collapse
Affiliation(s)
- Xiang-Jia Zhu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Ke Zhang
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Wen He
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Du
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Yi Lu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Jansson ET. Strategies for analysis of isomeric peptides. J Sep Sci 2017; 41:385-397. [PMID: 28922569 DOI: 10.1002/jssc.201700852] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 01/09/2023]
Abstract
This review presents an overview and recent progress of strategies for detecting isomerism in peptides, with focus on d/l epimerization and the various isomers that the presence of an aspartic acid residue may yield in a protein or peptide. While mass spectrometry has become a majorly used method of choice within proteomics, isomerism is inherently difficult to analyze because it is a modification that does not yield any change in mass of the analyte. Here, several techniques used for analysis of peptide isomerism are discussed, including enzymatic assays, liquid chromatography, and capillary electrophoresis. Recent progress in method development using mass spectrometry is also discussed, including labeling strategies, fragmentation techniques, and ion-mobility spectrometry.
Collapse
Affiliation(s)
- Erik T Jansson
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Takechi-Haraya Y, Aki K, Tohyama Y, Harano Y, Kawakami T, Saito H, Okamura E. Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy. Pharmaceuticals (Basel) 2017; 10:ph10020042. [PMID: 28420127 PMCID: PMC5490399 DOI: 10.3390/ph10020042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Glycosaminoglycans (GAGs), which are covalently-linked membrane proteins at the cell surface have recently been suggested to involve in not only endocytic cellular uptake but also non-endocytic direct cell membrane translocation of arginine-rich cell-penetrating peptides (CPPs). However, in-situ comprehensive observation and the quantitative analysis of the direct membrane translocation processes are challenging, and the mechanism therefore remains still unresolved. In this work, real-time in-cell NMR spectroscopy was applied to investigate the direct membrane translocation of octaarginine (R8) into living cells. By introducing 4-trifluoromethyl-l-phenylalanine to the N terminus of R8, the non-endocytic membrane translocation of 19F-labeled R8 (19F-R8) into a human myeloid leukemia cell line was observed at 4 °C with a time resolution in the order of minutes. 19F NMR successfully detected real-time R8 translocation: the binding to anionic GAGs at the cell surface, followed by the penetration into the cell membrane, and the entry into cytosol across the membrane. The NMR concentration analysis enabled quantification of how much of R8 was staying in the respective translocation processes with time in situ. Taken together, our in-cell NMR results provide the physicochemical rationale for spontaneous penetration of CPPs in cell membranes.
Collapse
Affiliation(s)
- Yuki Takechi-Haraya
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Kenzo Aki
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Yumi Tohyama
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Yuichi Harano
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Toru Kawakami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Emiko Okamura
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| |
Collapse
|
22
|
Sakaue H, Kinouchi T, Fujii N, Takata T, Fujii N. Isomeric Replacement of a Single Aspartic Acid Induces a Marked Change in Protein Function: The Example of Ribonuclease A. ACS OMEGA 2017; 2:260-267. [PMID: 31457226 PMCID: PMC6641078 DOI: 10.1021/acsomega.6b00346] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/16/2017] [Indexed: 05/11/2023]
Abstract
lα-Aspartic acid (Asp) residues in proteins are nonenzymatically isomerized to abnormal lβ-, dα-, and dβ-Asp isomers under physiological conditions. Such an isomerization of Asp residues is considered to be a trigger of protein denaturation because it either elongates the main chain or induces a different orientation of the side chain within the protein structure or both. However, previous studies have found no direct evidence of the effects of Asp isomers on protein function. Therefore, the production of Asp-isomer-containing proteins is required to verify the effects of Asp isomerization. Here, we describe the production of an Asp-isomer-containing protein using the expressed protein ligation. As a model protein, bovine pancreatic ribonuclease A (RNase A, EC 3.1.27.5), which catalyzes the cleavage of phosphodiester bonds in RNA, was used. In this study, lα-Asp at position 121 in RNase A was replaced by lβ-, dα-, and dβ-Asp. The objective aspartic acid at position 121 is located near the active site and related to RNA cleavage. The RNase A with lα-Asp at position 121 showed a normal activity. By contrast, the catalytic activity of lβ-, dα-, and dβ-Asp-containing RNase A was markedly decreased. This study represents the first synthesis and analysis of a protein containing four different Asp isomers.
Collapse
Affiliation(s)
- Hiroaki Sakaue
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tadatoshi Kinouchi
- Research
Reactor Institute, Kyoto University, Sennan-gun, Kumatori-cho, Osaka 590-0494, Japan
| | - Norihiko Fujii
- Radioisotope
Research Center, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Takumi Takata
- Research
Reactor Institute, Kyoto University, Sennan-gun, Kumatori-cho, Osaka 590-0494, Japan
| | - Noriko Fujii
- Research
Reactor Institute, Kyoto University, Sennan-gun, Kumatori-cho, Osaka 590-0494, Japan
- E-mail:
| |
Collapse
|
23
|
Aki K, Okamura E. Kinetics of the competitive reactions of isomerization and peptide bond cleavage at l-α- and d-β-aspartyl residues in an αA-crystallin fragment. J Pept Sci 2016; 23:28-37. [PMID: 27905156 DOI: 10.1002/psc.2945] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 12/23/2022]
Abstract
d-β-aspartyl (Asp) residue has been found in a living body such as aged lens crystallin, although l-α-amino acids are constituents in natural proteins. Isomerization from l-α- to d-β-Asp probably modulates structures to affect biochemical reactions. At Asp residue, isomerization and peptide bond cleavage compete with each other. To gain insight into how fast each reaction proceeds, the analysis requires the consideration of both pathways simultaneously and independently. No information has been provided, however, about these competitive processes because each reaction has been studied separately. The contribution of Asp isomers to the respective pathways has still been veiled. In this work, the two competitive reactions, isomerization and spontaneous peptide bond cleavage at Asp residue, were simultaneously observed and compared in an αA-crystallin fragment, S51 LFRTVLD58 SG60 containing l-α- and d-β-Asp58 isomers. The kinetics showed that the formation of l- and d-succinimide (Suc) intermediate, as a first step of isomerization, was comparable at l-α- and d-β-Asp. Although l-Suc was converted to l-β-Asp, d-Suc was liable to return to the original d-β-Asp, the reverse reaction marked enough to consider d-β-Asp as apparently stable. d-β-Asp was also resistant to the peptide bond cleavage. Such apparent less reactivity is probably the reason for gradual and abnormal accumulation of d-β-Asp in a living body under physiological conditions. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kenzo Aki
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji, 670-8524, Japan
| | - Emiko Okamura
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji, 670-8524, Japan
| |
Collapse
|
24
|
Takahashi O, Kirikoshi R, Manabe N. Racemization of the Succinimide Intermediate Formed in Proteins and Peptides: A Computational Study of the Mechanism Catalyzed by Dihydrogen Phosphate Ion. Int J Mol Sci 2016; 17:ijms17101698. [PMID: 27735868 PMCID: PMC5085730 DOI: 10.3390/ijms17101698] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 02/06/2023] Open
Abstract
In proteins and peptides, d-aspartic acid (d-Asp) and d-β-Asp residues can be spontaneously formed via racemization of the succinimide intermediate formed from l-Asp and l-asparagine (l-Asn) residues. These biologically uncommon amino acid residues are known to have relevance to aging and pathologies. Although nonenzymatic, the succinimide racemization will not occur without a catalyst at room or biological temperature. In the present study, we computationally investigated the mechanism of succinimide racemization catalyzed by dihydrogen phosphate ion, H2PO4−, by B3LYP/6-31+G(d,p) density functional theory calculations, using a model compound in which an aminosuccinyl (Asu) residue is capped with acetyl (Ace) and NCH3 (Nme) groups on the N- and C-termini, respectively (Ace–Asu–Nme). It was shown that an H2PO4− ion can catalyze the enolization of the Hα–Cα–C=O portion of the Asu residue by acting as a proton-transfer mediator. The resulting complex between the enol form and H2PO4− corresponds to a very flat intermediate region on the potential energy surface lying between the initial reactant complex and its mirror-image geometry. The calculated activation barrier (18.8 kcal·mol−1 after corrections for the zero-point energy and the Gibbs energy of hydration) for the enolization was consistent with the experimental activation energies of Asp racemization.
Collapse
Affiliation(s)
- Ohgi Takahashi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Ryota Kirikoshi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Noriyoshi Manabe
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
25
|
Kim I, Saito T, Fujii N, Kanamoto T, Fujii N. One-shot LC-MS/MS analysis of post-translational modifications including oxidation and deamidation of rat lens α- and β-crystallins induced by γ-irradiation. Amino Acids 2016; 48:2855-2866. [PMID: 27600614 DOI: 10.1007/s00726-016-2324-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 08/30/2016] [Indexed: 11/30/2022]
Abstract
The eye lens is a transparent organ that functions to focus light and images on the retina. The transparency and high refraction of the lens are maintained by the function of α-, β-, and γ-crystallins. These long-lived proteins are subject to various post-translational modifications, such as oxidation, deamidation, truncation and isomerization, which occur gradually during the aging process. Such modifications, which are generated by UV light and oxidative stress, decrease crystallin solubility and lens transparency, and ultimately lead to the development of age-related cataracts. Here, we irradiated young rat lenses with γ-rays (5-500 Gy) and extracted the water-soluble (WS) and water-insoluble (WI) protein fractions. The WS and WI lens proteins were digested with trypsin, and the resulting peptides were analyzed by one-shot LC-MS/MS to determine the specific sites of oxidation of methionine and tryptophan, deamidation sites of asparagine and glutamine, and isomerization of aspartyl in rat α- and β-crystallins in the WS and WI fractions. Oxidation and deamidation occurred in several crystallins after irradiation at more than, respectively, 50 and 5 Gy; however, isomerization did not occur in any crystallin even after exposure to 500 Gy of irradiation. The number of oxidation and deamidation sites was much higher in the WI than in the WS fraction. Furthermore, the oxidation and deamidation sites in rat crystallins resemble those reported in crystallins from human age-related cataracts. Thus, this study on post-translational modifications of crystallins induced by ionizing irradiation may provide useful information relevant to the formation of human age-related cataracts.
Collapse
Affiliation(s)
- Ingu Kim
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takeshi Saito
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.,Research Reactor Institute, Kyoto University, Kumatori, 590-0494, Osaka, Japan
| | - Norihiko Fujii
- Radioisotope Research Center, Teikyo University, Kaga Itabashi-ku, Tokyo, 173-8605, Japan
| | - Takashi Kanamoto
- Department of Ophthalmology, Hiroshima Memorial Hospital, Honkawacho, Naka-ku, Hiroshima, 730-0802, Japan
| | - Noriko Fujii
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan. .,Research Reactor Institute, Kyoto University, Kumatori, 590-0494, Osaka, Japan.
| |
Collapse
|
26
|
Takahashi O, Manabe N, Kirikoshi R. A Computational Study of the Mechanism of Succinimide Formation in the Asn-His Sequence: Intramolecular Catalysis by the His Side Chain. Molecules 2016; 21:327. [PMID: 27005609 PMCID: PMC6274526 DOI: 10.3390/molecules21030327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 11/20/2022] Open
Abstract
The rates of deamidation reactions of asparagine (Asn) residues which occur spontaneously and nonenzymatically in peptides and proteins via the succinimide intermediate are known to be strongly dependent on the nature of the following residue on the carboxyl side (Xxx). The formation of the succinimide intermediate is by far the fastest when Xxx is glycine (Gly), the smallest amino acid residue, while extremely slow when Xxx is bulky such as isoleucine (Ile) and valine (Val). In this respect, it is very interesting to note that the succinimide formation is definitely accelerated when Xxx is histidine (His) despite its large size. In this paper, we computationally show that, in an Asn-His sequence, the His side-chain imidazole group (in the neutral Nε-protonated form) can specifically catalyze the formation of the tetrahedral intermediate in the succinimide formation by mediating a proton transfer. The calculations were performed for Ace-Asn-His-Nme (Ace = acetyl, Nme = methylamino) as a model compound by the density functional theory with the B3LYP functional and the 6-31+G(d,p) basis set. We also show that the tetrahedral intermediate, once protonated at the NH₂ group, easily releases an ammonia molecule to give the succinimide species.
Collapse
Affiliation(s)
- Ohgi Takahashi
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Noriyoshi Manabe
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Ryota Kirikoshi
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
27
|
Aki K, Okamura E. D-β-aspartyl residue exhibiting uncommon high resistance to spontaneous peptide bond cleavage. Sci Rep 2016; 6:21594. [PMID: 26876027 PMCID: PMC4753488 DOI: 10.1038/srep21594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/27/2016] [Indexed: 11/17/2022] Open
Abstract
Although L-amino acids were selected as main constituents of peptides and proteins during chemical evolution, D-aspartyl (Asp) residue is found in a variety of living tissues. In particular, D-β-Asp is thought to be stable than any other Asp isomers, and this could be a reason for gradual accumulation in abnormal proteins and peptides to modify their structures and functions. It is predicted that D-β-Asp shows high resistance to biomolecular reactions. For instance, less reactivity of D-β-Asp is expected to bond cleavage, although such information has not been provided yet. In this work, the spontaneous peptide bond cleavage was compared between Asp isomers, by applying real-time solution-state NMR to eye lens αΑ-crystallin 51–60 fragment, S51LFRTVLD58SG60 and αΒ-crystallin 61–67 analog, F61D62TGLSG67 consisting of L-α- and D-β-Asp 58 and 62, respectively. Kinetic analysis showed how tough the uncommon D-β-Asp residue was against the peptide bond cleavage as compared to natural L-α-Asp. Differences in pKa and conformation between L-α- and D-β-Asp side chains were plausible factors to determine reactivity of Asp isomers. The present study, for the first time, provides a rationale to explain less reactivity of D-β-Asp to allow abnormal accumulation.
Collapse
Affiliation(s)
- Kenzo Aki
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan
| | - Emiko Okamura
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan
| |
Collapse
|
28
|
Quantitative analysis of isomeric (l-α-, l-β-, d-α-, d-β-) aspartyl residues in proteins from elderly donors. J Pharm Biomed Anal 2015; 116:25-33. [DOI: 10.1016/j.jpba.2015.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/03/2015] [Accepted: 04/20/2015] [Indexed: 01/20/2023]
|
29
|
Fujii N, Takata T, Fujii N, Aki K. Isomerization of aspartyl residues in crystallins and its influence upon cataract. Biochim Biophys Acta Gen Subj 2015; 1860:183-91. [PMID: 26275494 DOI: 10.1016/j.bbagen.2015.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/25/2015] [Accepted: 08/03/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND Age-related cataracts, which probably form due to insolubilization of lens proteins, can lead to loss of vision. Although the exact reason is unknown, lens protein aggregation may be triggered by increases in PTMs such as D-β-, L-β- and D-α-Asp isomers. These isomers have been observed in aged lens; however, there have been few quantitative and site-specific studies owing to the lack of a quick and precise method for distinguishing between D- and L-Asp in a peptide or protein. SCOPE OF REVIEW We describe a new method for detecting peptides containing Asp isomers at individual sites in any protein by using an LC-MS/MS system combined with commercial enzymes that specifically react with different isomers. We also summarize current data on the effect of Asp isomerization on lens crystallins. MAJOR CONCLUSIONS The new technique enabled the analysis of isomers of Asp residues in lens proteins precisely and quickly. An extensive proportion of Asp isomerization was observed at all Asp sites of crystallins in the insoluble fraction of aged lens. In addition, d-amino acid substitutions in crystallin-mimic peptides showed altered structural formation and function. These results indicate that isomerization of Asp residues affects the stability, structure and inter-subunit interaction of lens crystallins, which will induce crystallin aggregation and insolubilization, disrupt the associated functions, and ultimately contribute to the onset of senile cataract formation. GENERAL SIGNIFICANCE The mechanism underlying the onset of age-related diseases may involve isomerization, whereby D-amino acids are incorporated in the L-amino acid world of life. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Noriko Fujii
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan.
| | - Takumi Takata
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Norihiko Fujii
- Radioisotope Research Center, Teikyo University, Kaga Itabashi-ku, Tokyo 173-8605, Japan
| | - Kenzo Aki
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Kamiohno, Himeji 670-8524, Japan
| |
Collapse
|
30
|
Liu C, Topchiy E, Lehmann T, Basile F. Characterization of the dehydration products due to thermal decomposition of peptides by liquid chromatography-tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:625-632. [PMID: 25800200 DOI: 10.1002/jms.3570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/30/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Thermal decomposition (TD) of proteins is being investigated as a rapid digestion step for bottom-up proteomics. Mass spectrometry (MS) analyses of the TD products of simple peptides and intact proteins have revealed several nonvolatile products at masses lower than the precursor biomolecule (M). In addition to products stemming from site-specific cleavages, many signals are also observed at a corresponding M-18, most likely because of dehydration (M-H2O) during the heating process. Understanding the structural nature of the water loss product is important in establishing the utility of their tandem mass spectra (collision-induced dissociation) in determining the precursor ion amino acid sequence in a bottom-up proteomic workflow. Dehydration of a peptide can take place from a variety of sources including side chain groups, C-terminus, and/or intramolecular cyclization (C to N-terminus cyclization). In this work, liquid chromatography-tandem MS (LC-MS/MS) and a series of standard peptides (angiotensin II, DRVYIHPF and its cyclic analog) are implemented to decipher the structure of the TD dehydration product. In addition, a derivatization strategy incorporating N-terminus acetylation was developed that allowed the direct comparison of tandem mass spectra of standard cyclic peptides with those resulting from the TD process, thus eliminating any ambiguity from the direct comparison of their mass spectra (due to gas-phase cyclization of b-ions, which can result in sequence scrambling of the precursor ion). Results from these investigations indicated that peptide dehydrated TD products were mostly linear in nature, and water loss was favored from the C-terminus carboxyl group or, when present, the aspartic acid side chain. Given the predictable nature of the formation of TD dehydration products, their MS/MS analysis can be of utility in providing complementary and confirmatory sequence information of the precursor peptide.
Collapse
Affiliation(s)
- Chenglin Liu
- Department of Chemistry, University of Wyoming, Laramie, WY, 82071, USA
| | | | | | | |
Collapse
|
31
|
Aki K, Okamura E. Staggered side-chain conformers of aspartyl residues prerequisite to transformation from L-α- to D-β-aspartate 58 in human-lens αA-crystallin fragment. Biophys Chem 2015; 196:10-5. [DOI: 10.1016/j.bpc.2014.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/01/2014] [Indexed: 12/29/2022]
|
32
|
Maeda H, Takata T, Fujii N, Sakaue H, Nirasawa S, Takahashi S, Sasaki H, Fujii N. Rapid Survey of Four Asp Isomers in Disease-Related Proteins by LC-MS combined with Commercial Enzymes. Anal Chem 2014; 87:561-8. [DOI: 10.1021/ac504413e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hiroki Maeda
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takumi Takata
- Research
Reactor Institute, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Norihiko Fujii
- Radioisotope
Research Center, Teikyo University, Kaga Itabashi-ku, Tokyo 173-8605, Japan
| | - Hiroaki Sakaue
- International University of Health and Welfare, Ohtawara, Tochigi 324-8501, Japan
| | - Satoru Nirasawa
- Japan International
Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Saori Takahashi
- Akita Research Institute
of Food and Brewing, Akita, 010-1623, Japan
| | - Hiroshi Sasaki
- Kanazawa Medical University, Kanazawa, Ishikawa 920-0293, Japan
| | - Noriko Fujii
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Research
Reactor Institute, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
33
|
Roles of intramolecular and intermolecular hydrogen bonding in a three-water-assisted mechanism of succinimide formation from aspartic acid residues. Molecules 2014; 19:11440-52. [PMID: 25093984 PMCID: PMC6271739 DOI: 10.3390/molecules190811440] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/20/2014] [Accepted: 07/23/2014] [Indexed: 11/17/2022] Open
Abstract
Aspartic acid (Asp) residues in peptides and proteins are prone to isomerization to the β-form and racemization via a five-membered succinimide intermediate. These nonenzymatic reactions have relevance to aging and age-related diseases. In this paper, we report a three water molecule-assisted, six-step mechanism for the formation of succinimide from Asp residues found by density functional theory calculations. The first two steps constitute a stepwise iminolization of the C-terminal amide group. This iminolization involves a quintuple proton transfer along intramolecular and intermolecular hydrogen bonds formed by the C-terminal amide group, the side-chain carboxyl group, and the three water molecules. After a conformational change (which breaks the intramolecular hydrogen bond involving the iminol nitrogen) and a reorganization of water molecules, the iminol nitrogen nucleophilically attacks the carboxyl carbon of the Asp side chain to form a five-membered ring. This cyclization is accompanied by a triple proton transfer involving two water molecules, so that a gem-diol tetrahedral intermediate is formed. The last step is dehydration of the gem-diol group catalyzed by one water molecule, and this is the rate-determining step. The calculated overall activation barrier (26.7 kcal mol−1) agrees well with an experimental activation energy.
Collapse
|
34
|
Ramkumar S, Fujii N, Fujii N, Thankappan B, Sakaue H, Ingu K, Natarajaseenivasan K, Anbarasu K. Comparison of effect of gamma ray irradiation on wild-type and N-terminal mutants of αA-crystallin. Mol Vis 2014; 20:1002-16. [PMID: 25018622 PMCID: PMC4087120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/03/2014] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To study the comparative structural and functional changes between wild-type (wt) and N-terminal congenital cataract causing αA-crystallin mutants (R12C, R21L, R49C, and R54C) upon exposure to different dosages of gamma rays. METHODS Alpha A crystallin N-terminal mutants were created with the site-directed mutagenesis method. The recombinantly overexpressed and purified wt and mutant proteins were used for further studies. A (60)Co source was used to generate gamma rays to irradiate wild and mutant proteins at dosages of 0.5, 1.0, and 2.0 kGy. The biophysical property of the gamma irradiated (GI) and non-gamma irradiated (NGI) αA-crystallin wt and N-terminal mutants were determined. Oligomeric size was determined by size exclusion high-performance liquid chromatography (HPLC), the secondary structure with circular dichroism (CD) spectrometry, conformation of proteins with surface hydrophobicity, and the functional characterization were determined regarding chaperone activity using the alcohol dehydrogenase (ADH) aggregation assay. RESULTS αA-crystallin N-terminal mutants formed high molecular weight (HMW) cross-linked products as well as aggregates when exposed to GI compared to the NGI wt counterparts. Furthermore, all mutants exhibited changed β-sheet and random coil structure. The GI mutants demonstrated decreased surface hydrophobicity when compared to αA-crystallin wt at 0, 1.0, and 1.5 kGy; however, at 2.0 kGy a drastic increase in hydrophobicity was observed only in the mutant R54C, not the wt. In contrast, chaperone activity toward ADH was gradually elevated at the minimum level in all GI mutants, and significant elevation was observed in the R12C mutant. CONCLUSIONS Our findings suggest that the N-terminal mutants of αA-crystallin are structurally and functionally more sensitive to GI when compared to their NGI counterparts and wt. Protein oxidation as a result of gamma irradiation drives the protein to cross-link and aggregate culminating in cataract formation.
Collapse
Affiliation(s)
- Srinivasagan Ramkumar
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Noriko Fujii
- Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, Japan
| | - Norihiko Fujii
- Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, Japan,Teikyo University, Japan
| | - Bency Thankappan
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Hiroaki Sakaue
- Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, Japan
| | - Kim Ingu
- Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, Japan
| | | | - Kumarasamy Anbarasu
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
35
|
Takahashi O, Kirikoshi R. Intramolecular cyclization of aspartic acid residues assisted by three water molecules: a density functional theory study. ACTA ACUST UNITED AC 2014. [DOI: 10.1088/1749-4699/7/1/015005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|