1
|
Jiang H, Chen W, Zhu G, Zhang L, Tucker B, Hao L, Feng S, Ci H, Ma J, Wang L, Stashenko P, Li YP. Correction: RNAi-Mediated Silencing of Atp6i and Atp6i Haploinsufficiency Prevents Both Bone Loss and Inflammation in a Mouse Model of Periodontal Disease. PLoS One 2024; 19:e0301147. [PMID: 38507349 PMCID: PMC10954136 DOI: 10.1371/journal.pone.0301147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0058599.].
Collapse
|
2
|
Wang J, McVicar A, Chen Y, Deng HW, Zhao Z, Chen W, Li YP. Atp6i deficient mouse model uncovers transforming growth factor-β1 /Smad2/3 as a key signaling pathway regulating odontoblast differentiation and tooth root formation. Int J Oral Sci 2023; 15:35. [PMID: 37599332 PMCID: PMC10440342 DOI: 10.1038/s41368-023-00235-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/01/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
The biomolecular mechanisms that regulate tooth root development and odontoblast differentiation are poorly understood. We found that Atp6i deficient mice (Atp6i-/-) arrested tooth root formation, indicated by truncated Hertwig's epithelial root sheath (HERS) progression. Furthermore, Atp6i deficiency significantly reduced the proliferation and differentiation of radicular odontogenic cells responsible for root formation. Atp6i-/- mice had largely decreased expression of odontoblast differentiation marker gene expression profiles (Col1a1, Nfic, Dspp, and Osx) in the alveolar bone. Atp6i-/- mice sample RNA-seq analysis results showed decreased expression levels of odontoblast markers. Additionally, there was a significant reduction in Smad2/3 activation, inhibiting transforming growth factor-β (TGF-β) signaling in Atp6i-/- odontoblasts. Through treating pulp precursor cells with Atp6i-/- or wild-type OC bone resorption-conditioned medium, we found the latter medium to promote odontoblast differentiation, as shown by increased odontoblast differentiation marker genes expression (Nfic, Dspp, Osx, and Runx2). This increased expression was significantly blocked by anti-TGF-β1 antibody neutralization, whereas odontoblast differentiation and Smad2/3 activation were significantly attenuated by Atp6i-/- OC conditioned medium. Importantly, ectopic TGF-β1 partially rescued root development and root dentin deposition of Atp6i-/- mice tooth germs were transplanted under mouse kidney capsules. Collectively, our novel data shows that the prevention of TGF-β1 release from the alveolar bone matrix due to OC dysfunction may lead to osteopetrosis-associated root formation via impaired radicular odontoblast differentiation. As such, this study uncovers TGF-β1 /Smad2/3 as a key signaling pathway regulating odontoblast differentiation and tooth root formation and may contribute to future therapeutic approaches to tooth root regeneration.
Collapse
Affiliation(s)
- Jue Wang
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Abigail McVicar
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yilin Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Chen
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Yi-Ping Li
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
3
|
Sargazi S, Arshad R, Ghamari R, Rahdar A, Bakhshi A, Karkan SF, Ajalli N, Bilal M, Díez-Pascual AM. siRNA-based nanotherapeutics as emerging modalities for immune-mediated diseases: A preliminary review. Cell Biol Int 2022; 46:1320-1344. [PMID: 35830711 PMCID: PMC9543380 DOI: 10.1002/cbin.11841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022]
Abstract
Immune‐mediated diseases (IMDs) are chronic conditions that have an immune‐mediated etiology. Clinically, these diseases appear to be unrelated, but pathogenic pathways have been shown to connect them. While inflammation is a common occurrence in the body, it may either stimulate a favorable immune response to protect against harmful signals or cause illness by damaging cells and tissues. Nanomedicine has tremendous promise for regulating inflammation and treating IMIDs. Various nanoparticles coated with nanotherapeutics have been recently fabricated for effective targeted delivery to inflammatory tissues. RNA interference (RNAi) offers a tremendous genetic approach, particularly if traditional treatments are ineffective against IMDs. In cells, several signaling pathways can be suppressed by using RNAi, which blocks the expression of particular messenger RNAs. Using this molecular approach, the undesirable effects of anti‐inflammatory medications can be reduced. Still, there are many problems with using short‐interfering RNAs (siRNAs) to treat IMDs, including poor localization of the siRNAs in target tissues, unstable gene expression, and quick removal from the blood. Nanotherapeutics have been widely used in designing siRNA‐based carriers because of the restricted therapy options for IMIDs. In this review, we have discussed recent trends in the fabrication of siRNA nanodelivery systems, including lipid‐based siRNA nanocarriers, liposomes, and cationic lipids, stable nucleic acid‐lipid particles, polymeric‐based siRNA nanocarriers, polyethylenimine (PEI)‐based nanosystems, chitosan‐based nanoformulations, inorganic material‐based siRNA nanocarriers, and hybrid‐based delivery systems. We have also introduced novel siRNA‐based nanocarriers to control IMIDs, such as pulmonary inflammation, psoriasis, inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, etc. This study will pave the way for new avenues of research into the diagnosis and treatment of IMDs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Reza Ghamari
- Department of Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ali Bakhshi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
4
|
Guan X, He Y, Li Y, Shi C, Wei Z, Zhao R, Han Y, Pan L, Yang J, Hou TZ. Gremlin aggravates periodontitis via activating the NF-κB signaling pathway. J Periodontol 2022; 93:1589-1602. [PMID: 34993960 DOI: 10.1002/jper.21-0474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Accepted: 11/20/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Gremlin has been reported to regulate inflammation and osteogenesis. Periodontitis is a destructive disease degenerating periodontal tissues, therefore leads to alveolar bone resorption and tooth loss. Based on the importance of Gremlin's bio-activity, the aim of this study is to, in vivo and in vitro, unveil the function of Gremlin in regulating the development of periodontitis and its consequent effects on alveolar bone loss. METHODS Clinical specimens were used to determine the expression of Gremlin in periodontal tissues by immunohistochemical staining and western blot. Then utilizing the rat periodontitis model to investigate the function of gremlin-regulated nuclear factor-kappa B (NF-κB) pathway during the development of periodontal inflammation and the alveolar bone loss. Lastly, the regulation of the osteogenesis of human periodontal ligament stem cells (hPDLSCs) by Gremlin under inflamed condition was analyzed by alkaline phosphatase (ALP) and alizarin red staining (ARS). RESULTS We found clinically and experimentally that the expression of Gremlin is markedly increased in periodontitis tissues. Interestingly, we revealed that Gremlin regulated the progress of periodontitis via regulating the activities of NF-κB pathway and interleukin-1β (IL-1β). Notably, we observed that Gremlin influenced the osteogenesis of hPDLSCs. Thus, our present study identified Gremlin as a new key regulator for development of periodontitis. CONCLUSIONS Our current study illustrated that Gremlin acts as a crucial mediator and possibly serves as a potential diagnostic marker for periodontitis. Discovery of new factors involved in the pathophysiology of periodontitis could contribute to the development of novel therapeutic treatment for the disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaoyue Guan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yani He
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yingxue Li
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Chen Shi
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zhichen Wei
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Rui Zhao
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yue Han
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Lifei Pan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Jianmin Yang
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tie Zhou Hou
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
5
|
Complementary Experimental Methods in Genetics Open Up New Avenues of Research to Elucidate the Pathogenesis of Periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:209-227. [DOI: 10.1007/978-3-030-96881-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Yang B, Pang X, Li Z, Chen Z, Wang Y. Immunomodulation in the Treatment of Periodontitis: Progress and Perspectives. Front Immunol 2021; 12:781378. [PMID: 34868054 PMCID: PMC8640126 DOI: 10.3389/fimmu.2021.781378] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is one of the most common dental diseases. Compared with healthy periodontal tissues, the immune microenvironment plays the key role in periodontitis by allowing the invasion of pathogens. It is possible that modulating the immune microenvironment can supplement traditional treatments and may even promote periodontal regeneration by using stem cells, bacteria, etc. New anti-inflammatory therapies can enhance the generation of a viable local immune microenvironment and promote cell homing and tissue formation, thereby achieving higher levels of immune regulation and tissue repair. We screened recent studies to summarize the advances of the immunomodulatory treatments for periodontitis in the aspects of drug therapy, microbial therapy, stem cell therapy, gene therapy and other therapies. In addition, we included the changes of immune cells and cytokines in the immune microenvironment of periodontitis in the section of drug therapy so as to make it clearer how the treatments took effects accordingly. In the future, more research needs to be done to improve immunotherapy methods and understand the risks and long-term efficacy of these methods in periodontitis.
Collapse
Affiliation(s)
- Bo Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xuefei Pang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhipeng Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Chu A, Zirngibl RA, Manolson MF. The V-ATPase a3 Subunit: Structure, Function and Therapeutic Potential of an Essential Biomolecule in Osteoclastic Bone Resorption. Int J Mol Sci 2021; 22:ijms22136934. [PMID: 34203247 PMCID: PMC8269383 DOI: 10.3390/ijms22136934] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
This review focuses on one of the 16 proteins composing the V-ATPase complex responsible for resorbing bone: the a3 subunit. The rationale for focusing on this biomolecule is that mutations in this one protein account for over 50% of osteopetrosis cases, highlighting its critical role in bone physiology. Despite its essential role in bone remodeling and its involvement in bone diseases, little is known about the way in which this subunit is targeted and regulated within osteoclasts. To this end, this review is broadened to include the three other mammalian paralogues (a1, a2 and a4) and the two yeast orthologs (Vph1p and Stv1p). By examining the literature on all of the paralogues/orthologs of the V-ATPase a subunit, we hope to provide insight into the molecular mechanisms and future research directions specific to a3. This review starts with an overview on bone, highlighting the role of V-ATPases in osteoclastic bone resorption. We then cover V-ATPases in other location/functions, highlighting the roles which the four mammalian a subunit paralogues might play in differential targeting and/or regulation. We review the ways in which the energy of ATP hydrolysis is converted into proton translocation, and go in depth into the diverse role of the a subunit, not only in proton translocation but also in lipid binding, cell signaling and human diseases. Finally, the therapeutic implication of targeting a3 specifically for bone diseases and cancer is discussed, with concluding remarks on future directions.
Collapse
|
8
|
Silencing of Ac45 Simultaneously Inhibits Osteoclast-Mediated Bone Resorption and Attenuates Dendritic Cell-Mediated Inflammation through Impairing Acidification and Cathepsin K Secretion. Infect Immun 2020; 89:IAI.00436-20. [PMID: 33077625 DOI: 10.1128/iai.00436-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
Endodontic disease is characterized by inflammation and destruction of periapical tissues, leading to severe bone resorption and tooth loss. ATP6AP1 (Ac45) has been implicated in human immune diseases, yet the mechanism underlying how Ac45 regulates immune response and reaction in inflammatory diseases remains unknown. We generated endodontic disease mice through bacterial infection as an inflammatory disease model and used adeno-associated virus (AAV)-mediated Ac45 RNA interference knockdown to study the function of Ac45 in periapical inflammation and bone resorption. We demonstrated that the AAV small hairpin RNA targeting Ac45 (AAV-sh-Ac45) impaired cellular acidification, extracellular acidification, and bone resorption. Our results showed that local delivery of AAV-sh-Ac45 in periapical tissues in bacterium-induced inflammatory lesions largely reduced bone destruction, inhibited inflammation, and dramatically reduced mononuclear immune cells. T-cell, macrophage, and dendritic cell infiltration in the periapical lesion was dramatically reduced, and the periodontal ligament was protected from inflammation-induced destruction. Furthermore, AAV-sh-Ac45 significantly reduced osteoclast formation and the expression of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-10 (IL-10), IL-12, IL-1α, IL-6, and IL-17. Interestingly, AAV-sh-Ac45 impaired mature cathepsin K secretion more significantly than that by AAV-sh-C1 and AAV-sh-CtsK Unbiased genome-wide transcriptome sequencing analysis of Ctsk -/- dendritic cells stimulated with lipopolysaccharide demonstrated that the ablation of Ctsk dramatically reduced dendritic cell-mediated inflammatory signaling. Taken together, our results indicated that AAV-sh-Ac45 simultaneously inhibits osteoclast-mediated bone resorption and attenuates dendritic cell-mediated inflammation through impairing acidification and cathepsin K secretion. Thus, Ac45 may be a novel target for therapeutic approaches to attenuate inflammation and bone erosion in endodontic disease and other inflammation-related osteolytic diseases.
Collapse
|
9
|
Goker F, Larsson L, Del Fabbro M, Asa'ad F. Gene Delivery Therapeutics in the Treatment of Periodontitis and Peri-Implantitis: A State of the Art Review. Int J Mol Sci 2019; 20:ijms20143551. [PMID: 31330797 PMCID: PMC6679027 DOI: 10.3390/ijms20143551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Periodontal disease is a chronic inflammatory condition that affects supporting tissues around teeth, resulting in periodontal tissue breakdown. If left untreated, periodontal disease could have serious consequences; this condition is in fact considered as the primary cause of tooth loss. Being highly prevalent among adults, periodontal disease treatment is receiving increased attention from researchers and clinicians. When this condition occurs around dental implants, the disease is termed peri-implantitis. Periodontal regeneration aims at restoring the destroyed attachment apparatus, in order to improve tooth stability and thus reduce disease progression and subsequent periodontal tissue breakdown. Although many biomaterials have been developed to promote periodontal regeneration, they still have their own set of disadvantages. As a result, regenerative medicine has been employed in the periodontal field, not only to overcome the drawbacks of the conventional biomaterials but also to ensure more predictable regenerative outcomes with minimal complications. Regenerative medicine is considered a part of the research field called tissue engineering/regenerative medicine (TE/RM), a translational field combining cell therapy, biomaterial, biomedical engineering and genetics all with the aim to replace and restore tissues or organs to their normal function using in vitro models for in vivo regeneration. In a tissue, cells are responding to different micro-environmental cues and signaling molecules, these biological factors influence cell differentiation, migration and cell responses. A central part of TE/RM therapy is introducing drugs, genetic materials or proteins to induce specific cellular responses in the cells at the site of tissue repair in order to enhance and improve tissue regeneration. In this review, we present the state of art of gene therapy in the applications of periodontal tissue and peri-implant regeneration. PURPOSE We aim herein to review the currently available methods for gene therapy, which include the utilization of viral/non-viral vectors and how they might serve as therapeutic potentials in regenerative medicine for periodontal and peri-implant tissues.
Collapse
Affiliation(s)
- Funda Goker
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20122 Milano, Italy
| | - Lena Larsson
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20122 Milano, Italy
- IRCCS Orthopedic Institute Galeazzi, 20161 Milano, Italy
| | - Farah Asa'ad
- Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden.
| |
Collapse
|
10
|
Pan W, Yin W, Yang L, Xue L, Ren J, Wei W, Lu Q, Ding H, Liu Z, Nabar NR, Wang M, Hao L. Inhibition of Ctsk alleviates periodontitis and comorbid rheumatoid arthritis via downregulation of the TLR9 signalling pathway. J Clin Periodontol 2019; 46:286-296. [PMID: 30636333 DOI: 10.1111/jcpe.13060] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 11/27/2018] [Accepted: 01/04/2019] [Indexed: 02/05/2023]
Abstract
AIM In this study, we investigate the mechanistic link between rheumatoid arthritis (RA) and periodontitis to identify a novel target (cathepsin K; Ctsk) for the treatment of comorbid periodontitis and RA. METHODS An experimental model of periodontitis with arthritis was established in DBA/1 mice. We then tested the effect of BML-244, a specific inhibitor of Ctsk, by quantifying several inflammatory markers of TLR9 signalling both in vivo and in vitro. RESULTS Our results showed that periodontitis-rheumatoid arthritis comorbidity causes severer periodontal bone and joint cartilage destruction than either disease alone. Inhibition of Ctsk reduced infiltration by dendritic cells and T cells and inflammatory cytokine production; these improvements alleviated the hard-tissue erosion in periodontitis and RA as measured by bone erosion in periodontal lesions and cartilage destruction in knee joints. Inhibition of Ctsk also decreased the expression of TLR4 and TLR9 in vivo, whereas in vitro experiments indicated that Ctsk is involved specifically in the production of cytokines in response to TLR9 engagement. CONCLUSION Our data reveal that periodontitis and RA may have additive pathological effects through dysregulation of the TLR9 pathway and that Ctsk is a critical mediator of this pathway and contributes to the pathogenesis of RA and periodontitis.
Collapse
Affiliation(s)
- Weiyi Pan
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Wuwei Yin
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Li Yang
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Lili Xue
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jie Ren
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Wei Wei
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Qiuyu Lu
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Handong Ding
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Zhaohui Liu
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Neel R Nabar
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Min Wang
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| |
Collapse
|
11
|
Sun X, Han Y, Liu Y, Tang Y, Wang J. Proliferation and apoptosis of rheumatoid arthritis fibroblast‐like synoviocytes following signal transducer and activator of transcription 3 RNA interference delivery. J Cell Biochem 2018; 120:2869-2875. [PMID: 29236318 DOI: 10.1002/jcb.26596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/07/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Xuehui Sun
- Qingdao University Qingdao Shandong China
- Department of Rheumatism and Immunity The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Yun Han
- Department of Anesthesiology The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Ying Liu
- Department of Rheumatism and Immunity The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Yanchun Tang
- Department of Rheumatism and Immunity The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Jibo Wang
- Department of Rheumatism and Immunity The Affiliated Hospital of Qingdao University Qingdao Shandong China
| |
Collapse
|
12
|
McConnell M, Feng S, Chen W, Zhu G, Shen D, Ponnazhagan S, Deng L, Li YP. Osteoclast proton pump regulator Atp6v1c1 enhances breast cancer growth by activating the mTORC1 pathway and bone metastasis by increasing V-ATPase activity. Oncotarget 2018; 8:47675-47690. [PMID: 28504970 PMCID: PMC5564597 DOI: 10.18632/oncotarget.17544] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
It is known that V-ATPases (vacuolar H+-ATPase) are involved in breast cancer growth and metastasis. Part of this action is similar to their role in osteoclasts, where they’re involved in extracellular acidification and matrix destruction; however, the roles of their subunits in cancer cell proliferation, signaling, and other pro-tumor actions are not well established. Analysis of TCGA data shows that V-ATPase subunit Atp6v1c1 is overexpressed or amplified in 34% of human breast cancer cases, with a 2-fold decrease in survival at 12 years. Whereas other subunits, such as Atp6v1c2 and Atp6v0a3, are overexpressed or genomically amplified less often, 6% each respectively, and have less impact on survival. Experiments show that lentiviral-shRNA mediated ATP6v1c1 knockdown in 4T1 mouse mammary cancer cells significantly reduces orthotopic and intraosseous tumor growth. ATP6v1c1 knockdown also significantly reduces tumor stimulated bone resorption through osteoclastogenesis at the bone and metastasis in vivo, as well as V-ATPase activity, proliferation, and mTORC1 activation in vitro. To generalize the effects of ATP6v1c1 knockdown on proliferation and mTORC1 activation we used human cancer cell lines - MCF-7, MDA-MB-231, and MDA-MB-435s. ATP6V1C1 knockdown reduced cell proliferation and impaired mTORC1 pathway activation in cancer cells but not in the untransformed cell line C3H10T1/2. Our study reveals that V-ATPase activity may be mediated through mTORC1 and that ATP6v1c1 can be knocked down to block both V-ATPase and mTORC1 activity.
Collapse
Affiliation(s)
- Matthew McConnell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shengmei Feng
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Shanghai Institute of Traumatology and Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guochun Zhu
- Shanghai Institute of Traumatology and Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Dejun Shen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Lianfu Deng
- Shanghai Institute of Traumatology and Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Chen W, Zhu G, Tang J, Zhou HD, Li YP. C/ebpα controls osteoclast terminal differentiation, activation, function, and postnatal bone homeostasis through direct regulation of Nfatc1. J Pathol 2018; 244:271-282. [PMID: 29083488 PMCID: PMC6240466 DOI: 10.1002/path.5001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022]
Abstract
Osteoclast lineage commitment and differentiation have been studied extensively, although the mechanism by which transcription factor(s) control osteoclast terminal differentiation, activation, and function remains unclear. CCAAT/enhancer-binding protein α (C/ebpα) has been reported to be a key regulator of osteoclast cell lineage commitment, yet C/ebpα's roles in osteoclast terminal differentiation, activation and function, and bone homeostasis, under physiological or pathological conditions, have not been studied because newborn C/ebpα-null mice die within several hours after birth. Furthermore, the function of C/ebpα in osteoclast terminal differentiation, activation, and function is largely unknown. Herein, we generated and analyzed an osteoclast-specific C/ebpα conditional knockout (CKO) mouse model via Ctsk-Cre mice and found that C/ebpα-deficient mice exhibited a severe osteopetrosis phenotype due to impaired osteoclast terminal differentiation, activation, and function, including mildly reduced osteoclast number, impaired osteoclast polarization, actin formation, and bone resorption, which demonstrated the novel function of C/ebpα in cell function and terminal differentiation. Interestingly, C/ebpα deficiency did not affect bone formation or monocyte/macrophage development. Our results further demonstrated that C/ebpα deficiency suppressed the expression of osteoclast functional genes, e.g. encoding cathepsin K (Ctsk), Atp6i (Tcirg1), and osteoclast regulator genes, e.g. encoding c-fos (Fos), and nuclear factor of activated T-cells 1 (Nfatc1), while having no effect on Pu.1 (Spi1) expression. Promoter activity mapping and ChIP assay defined the critical cis-regulatory element (CCRE) in the promoter region of Nfatc1, and also showed that the CCREs were directly associated with C/ebpα, which enhanced the promoter's activity. The deficiency of C/ebpα in osteoclasts completely blocked ovariectomy-induced bone loss, indicating that C/ebpα is a promising new target for the treatment of osteolytic diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America,Correspondence to: Yi-Ping Li, Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2606, Fax: 205-975-4919, and Wei Chen, Department of Pathology, University of Alabama at Birmingham, SHEL 815, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2605, Fax: 205-975-4919,
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America
| | - Jun Tang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America
| | - Hou-De Zhou
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, ChangSha, Hunan, China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America,Correspondence to: Yi-Ping Li, Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2606, Fax: 205-975-4919, and Wei Chen, Department of Pathology, University of Alabama at Birmingham, SHEL 815, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2605, Fax: 205-975-4919,
| |
Collapse
|
14
|
Pan J, Wang J, Hao L, Zhu G, Nguyen DN, Li Q, Liu Y, Zhao Z, Li YP, Chen W. The Triple Functions of D2 Silencing in Treatment of Periapical Disease. J Endod 2017; 43:272-278. [DOI: 10.1016/j.joen.2016.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/30/2016] [Accepted: 07/18/2016] [Indexed: 10/20/2022]
|
15
|
Chen W, Gao B, Hao L, Zhu G, Jules J, Macdougall MJ, Han X, Zhou X, Li YP. The silencing of cathepsin K used in gene therapy for periodontal disease reveals the role of cathepsin K in chronic infection and inflammation. J Periodontal Res 2016; 51:647-60. [PMID: 26754272 PMCID: PMC5482270 DOI: 10.1111/jre.12345] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is a severe chronic inflammatory disease and one of the most prevalent non-communicable chronic diseases that affects the majority of the world's adult population. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this dreadful disease. In this study, we utilized adeno-associated virus (AAV) expressing cathepsin K (Ctsk) small hairpin (sh)RNA (AAV-sh-Ctsk) to silence Ctsk in vivo and subsequently evaluated its impact in periodontitis as a potential therapeutic strategy for this disease. MATERIAL AND METHODS We used a known mouse model of periodontitis, in which wild-type BALB/cJ mice were infected with Porphyromonas gingivalis W50 in the maxillary and mandibular periodontium to induce the disease. AAV-sh-Ctsk was then administrated locally into the periodontal tissues in vivo, followed by analyses to assess progression of the disease. RESULTS AAV-mediated Ctsk silencing drastically protected mice (> 80%) from P. gingivalis-induced bone resorption by osteoclasts. In addition, AAV-sh-Ctsk administration drastically reduced inflammation by impacting the expression of many inflammatory cytokines as well as T-cell and dendritic cell numbers in periodontal lesions. CONCLUSION AAV-mediated Ctsk silencing can simultaneously target both the inflammation and bone resorption associated with periodontitis through its inhibitory effect on immune cells and osteoclast function. Thereby, AAV-sh-Ctsk administration can efficiently protect against periodontal tissue damage and alveolar bone loss, establishing this AAV-mediated local silencing of Ctsk as an important therapeutic strategy for effectively treating periodontal disease.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Bo Gao
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Joel Jules
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Mary J. Macdougall
- Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, SDB Room 702, 1919 7 Avenue South, Birmingham AL 35233, USA
| | - Xiaozhe Han
- Department of Immunology and Infectious Disease, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Xuedong Zhou
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| |
Collapse
|
16
|
Rosenthal EA, Makaryan V, Burt AA, Crosslin DR, Kim DS, Smith JD, Nickerson DA, Reiner AP, Rich SS, Jackson RD, Ganesh SK, Polfus LM, Qi L, Dale DC, Jarvik GP. Association Between Absolute Neutrophil Count and Variation at TCIRG1: The NHLBI Exome Sequencing Project. Genet Epidemiol 2016; 40:470-4. [PMID: 27229898 DOI: 10.1002/gepi.21976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/22/2016] [Accepted: 04/05/2016] [Indexed: 11/11/2022]
Abstract
Neutrophils are a key component of innate immunity. Individuals with low neutrophil count are susceptible to frequent infections. Linkage and association between congenital neutropenia and a single rare missense variant in TCIRG1 have been reported in a single family. Here, we report on nine rare missense variants at evolutionarily conserved sites in TCIRG1 that are associated with lower absolute neutrophil count (ANC; p = 0.005) in 1,058 participants from three cohorts: Atherosclerosis Risk in Communities (ARIC), Coronary Artery Risk Development in Young Adults (CARDIA), and Jackson Heart Study (JHS) of the NHLBI Grand Opportunity Exome Sequencing Project (GO ESP). These results validate the effects of TCIRG1 coding variation on ANC and suggest that this gene may be associated with a spectrum of mild to severe effects on ANC.
Collapse
Affiliation(s)
- Elisabeth A Rosenthal
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Vahagn Makaryan
- Division of General Internal Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Amber A Burt
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - David R Crosslin
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Daniel Seung Kim
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Joshua D Smith
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Alex P Reiner
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Stephen S Rich
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Santhi K Ganesh
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Linda M Polfus
- Human Genetics Center, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Lihong Qi
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, California, United States of America
| | - David C Dale
- Division of General Internal Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | - Gail P Jarvik
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington, United States of America.,Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
17
|
Li S, Hao L, Wang L, Lu Y, Li Q, Zhu Z, Shao JZ, Chen W. Targeting Atp6v1c1 Prevents Inflammation and Bone Erosion Caused by Periodontitis and Reveals Its Critical Function in Osteoimmunology. PLoS One 2015; 10:e0134903. [PMID: 26274612 PMCID: PMC4537256 DOI: 10.1371/journal.pone.0134903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/16/2015] [Indexed: 01/08/2023] Open
Abstract
Periodontal disease (Periodontitis) is a serious disease that affects a majority of adult Americans and is associated with other systemic diseases, including diabetes, rheumatoid arthritis, and other inflammatory diseases. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this pervasive and destructive disease. In this study, we utilized novel adeno-associated virus (AAV)-mediated Atp6v1c1 knockdown gene therapy to treat bone erosion and inflammatory caused by periodontitis in mouse model. Atp6v1c1 is a subunit of the V-ATPase complex and regulator of the assembly of the V0 and V1 domains of the V-ATPase complex. We demonstrated previously that Atp6v1c1 has an essential function in osteoclast mediated bone resorption. We hypothesized that Atp6v1c1 may be an ideal target to prevent the bone erosion and inflammation caused by periodontitis. To test the hypothesis, we employed AAV RNAi knockdown of Atp6v1c1 gene expression to prevent bone erosion and gingival inflammation simultaneously. We found that lesion-specific injection of AAV-shRNA-Atp6v1c1 into the periodontal disease lesions protected against bone erosion (>85%) and gingival inflammation caused by P. gingivalis W50 infection. AAV-mediated Atp6v1c1 knockdown dramatically reduced osteoclast numbers and inhibited the infiltration of dendritic cells and macrophages in the bacteria-induced inflammatory lesions in periodontitis. Silencing of Atp6v1c1 expression also prevented the expressions of osteoclast-related genes and pro-inflammatory cytokine genes. Our data suggests that AAV-shRNA-Atp6v1c1 treatment can significantly attenuate the bone erosion and inflammation caused by periodontitis, indicating the dual function of AAV-shRNA-Atp6v1c1 as an inhibitor of bone erosion mediated by osteoclasts, and as an inhibitor of inflammation through down-regulation of pro-inflammatory cytokine expression. This study demonstrated that Atp6v1c1 RNAi knockdown gene therapy mediated by AAV-shRNA-Atp6v1c1 is a promising novel therapeutic approach for the treatment of bone erosion and inflammatory related diseases, such as periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Sheng Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- College of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Lin Wang
- College of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yun Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Qian Li
- Life Science College, Zhejiang University, 388 Yuhang Road, Hangzhou, 310058, People's Republic of China
| | - Zheng Zhu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- College of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Jian-Zhong Shao
- Life Science College, Zhejiang University, 388 Yuhang Road, Hangzhou, 310058, People's Republic of China
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- * E-mail:
| |
Collapse
|
18
|
Zhu Z, Chen W, Hao L, Zhu G, Lu Y, Li S, Wang L, Li YP. Ac45 silencing mediated by AAV-sh-Ac45-RNAi prevents both bone loss and inflammation caused by periodontitis. J Clin Periodontol 2015; 42:599-608. [PMID: 25952706 DOI: 10.1111/jcpe.12415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2015] [Indexed: 02/05/2023]
Abstract
AIM Periodontitis induced by oral pathogens leads to severe periodontal tissue damage and osteoclast-mediated bone resorption caused by inflammation. On the basis of the importance of Ac45 in osteoclast formation and function, we performed this study to evaluate the therapeutic potential of periodontitis by local adeno-associated virus (AAV)-mediated Ac45 gene knockdown. MATERIAL AND METHODS We used AAV-mediated short hairpin RNAi knockdown of Ac45 gene expression (AAV-sh-Ac45) to inhibit bone erosion and gingival inflammation simultaneously in a well-established periodontitis mouse model induced by Porphyromonas gingivalis W50. Histological studies were performed to evaluate the bone protection of AAV-sh-Ac45. Immunochemistry, ELISA and qRT-PCR were performed to reveal the role of Ac45 knockdown on inflammation, immune response and expression of cytokine. RESULTS We found that Ac45 knockdown impaired osteoclast-mediated extracellular acidification and bone resorption in vitro and in vivo. Furthermore, local administration of AAV-sh-Ac45 protected mice from bone erosion by >85% and attenuated inflammation and decreased infiltration of T cells, dendritic cells and macrophages in the periodontal lesion. Notably, the expression of pro-inflammatory cytokines was also reduced. CONCLUSIONS Local AAV-sh-Ac45 gene therapy efficiently protects against periodontal tissue damage and bone erosion through both inhibition of osteoclast function and attenuating inflammation, and may represent a powerful new treatment strategy for periodontitis.
Collapse
Affiliation(s)
- Zheng Zhu
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yun Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sheng Li
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Deficiency of cathepsin K prevents inflammation and bone erosion in rheumatoid arthritis and periodontitis and reveals its shared osteoimmune role. FEBS Lett 2015; 589:1331-1339. [PMID: 25896020 DOI: 10.1016/j.febslet.2015.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022]
Abstract
Using rheumatoid arthritis (RA) and periodontitis mouse models, we demonstrate that RA and periodontitis share many pathological features, such as deregulated cytokine production, increased immune-cell infiltration, increased expression of Toll-like receptors (TLRs), and enhanced osteoclast activity and bone erosion. We reveal that genetic deletion of cathepsin K (Ctsk) caused a radical reduction in inflammation and bone erosion within RA joint capsules and periodontal lesions, a drastic decrease in immune-cell infiltration, and a significant reduction in osteoclasts, macrophages, dendritic and T-cells. Deficiency of Ctsk greatly decreased the expression of TLR-4, 5, and 9 and their downstream cytokines in periodontal gingival epithelial lesions and synovial RA lesions. Hence, Ctsk may be targeted to treat RA and periodontitis simultaneously due to its shared osteoimmune role.
Collapse
|
20
|
Hao L, Chen J, Zhu Z, Reddy MS, Mountz JD, Chen W, Li YP. Odanacatib, A Cathepsin K-Specific Inhibitor, Inhibits Inflammation and Bone Loss Caused by Periodontal Diseases. J Periodontol 2015; 86:972-83. [PMID: 25879791 DOI: 10.1902/jop.2015.140643] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Periodontitis is a bacteria-induced inflammatory disease mainly affecting periodontal tissues, leading to periodontal inflammation, bone breakdown, and loss of the tooth. The main obstacle for treating periodontitis effectively is the difficulty in finding a target that can inhibit bone loss and inflammation simultaneously. Recent studies showed that cathepsin K (CTSK) might have functions in the immune system besides its role in osteoclasts. Thus, targeting CTSK would have a potential therapeutic effect in both the bone system and the immune system during the progression of periodontitis. METHODS In the current study, a small molecular inhibitor (odanacatib [ODN]) is explored to inhibit the function of CTSK in a bacteria-induced periodontitis mouse model. RESULTS The application of ODN decreased the number of osteoclasts, macrophages, and T cells, as well as the expression of Toll-like receptors (TLRs) in the periodontitis lesion area. Furthermore, lack of CTSK inhibited the expression of TLR4, TLR5, and TLR9 and their downstream cytokine signaling in the gingival epithelial cells in periodontitis lesions, demonstrating that the innate immune response was inhibited in periodontitis. CONCLUSION The present results show that inhibition of CTSK can prevent bone loss and the immune response during the progression of periodontitis, indicating that CTSK is a promising target for treating inflammatory diseases such as periodontitis by affecting both osteoclasts and the immune system.
Collapse
Affiliation(s)
- Liang Hao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Jianwei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Zheng Zhu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Michael S Reddy
- Department of Periodontology, University of Alabama at Birmingham School of Dentistry, Birmingham, AL
| | - John D Mountz
- Department of Medicine, University of Alabama at Birmingham
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL.,Department of Periodontology, University of Alabama at Birmingham School of Dentistry, Birmingham, AL
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL.,Department of Periodontology, University of Alabama at Birmingham School of Dentistry, Birmingham, AL
| |
Collapse
|
21
|
A small molecule, odanacatib, inhibits inflammation and bone loss caused by endodontic disease. Infect Immun 2015; 83:1235-45. [PMID: 25583522 DOI: 10.1128/iai.01713-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Periapical disease, an inflammatory disease mainly caused by dental caries, is one of the most prevalent infectious diseases of humans, affecting both children and adults. The infection travels through the root, leading to inflammation, bone destruction, and severe pain for the patient. Therefore, the development of a new class of anti-periapical disease therapies is necessary and critical for treatment and prevention. A small molecule, odanacatib (ODN), which is a cathepsin K (Ctsk) inhibitor, was investigated to determine its ability to treat this disease in a mouse model of periapical disease. While Ctsk was originally found in osteoclasts as an osteoclast-specific lysosomal protease, we were surprised to find that ODN can suppress the bacterium-induced immune response as well as bone destruction in the lesion area. X rays and microcomputed tomography (micro-CT) showed that ODN treatment had significant bone protection effects at different time points. Immunohistochemical and immunofluorescent staining show that ODN treatment dramatically decreased F4/80+ macrophages and CD3+ T cells in the lesion areas 42 days after infection. Consistent with these findings, quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) analysis showed low levels of proinflammatory mRNAs (for tumor necrosis factor alpha, interleukin 6, and interleukin 23α) and corresponding cytokine expression in the ODN-treated disease group. The levels of mRNA for Toll-like receptors 4, 5, and 9 also largely decreased in the ODN-treated disease group. Our results demonstrated that ODN can inhibit endodontic disease development, bone erosion, and immune response. These results indicate that application of this small molecule offers a new opportunity to design effective therapies that could prevent periapical inflammation and revolutionize current treatment options.
Collapse
|
22
|
Kartner N, Manolson MF. Novel techniques in the development of osteoporosis drug therapy: the osteoclast ruffled-border vacuolar H(+)-ATPase as an emerging target. Expert Opin Drug Discov 2014; 9:505-22. [PMID: 24749538 DOI: 10.1517/17460441.2014.902155] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Bone loss occurs in many diseases, including osteoporosis, rheumatoid arthritis and periodontal disease. For osteoporosis alone, it is estimated that 75 million people are afflicted worldwide, with high risks of fractures and increased morbidity and mortality. The demand for treatment consumes an ever-increasing share of healthcare resources. Successive generations of antiresorptive bisphosphonate drugs have reduced side effects, minimized frequency of dosing, and increased efficacy in halting osteoporotic bone loss, but their shortcomings have remained significant to the extent that a monoclonal antibody antiresorptive has recently taken a significant market share. Yet this latter, paradigm-shifting approach has its own drawbacks. AREAS COVERED This review summarizes recent literature on bone-remodeling cell and molecular biology and the background for existing approaches and emerging therapeutics and targets for treating osteoporosis. The authors discuss vacuolar H(+)-ATPase (V-ATPase) molecular biology and the recent advances in targeting the osteoclast ruffled-border V-ATPase (ORV) for the development of novel antiresorptive drugs. They also cover examples from the V-ATPase-targeted drug discovery literature, including conventional molecular biology methods, in silico drug discovery, and gene therapy in more detail as proofs of concept. EXPERT OPINION Existing therapeutic options for osteoporosis have limitations and inherent drawbacks. Thus, the search for novel approaches to osteoporosis drug discovery remains relevant. Targeting the ORV may be one of the more selective means of regulating bone resorption. Furthermore, this approach may be effective without removing active osteoclasts from the finely balanced osteoclast-osteoblast coupling required for normal bone remodeling.
Collapse
Affiliation(s)
- Norbert Kartner
- University of Toronto , 124 Edward Street, Toronto, Ontario M5G 1G6 , Canada
| | | |
Collapse
|
23
|
Makaryan V, Rosenthal EA, Bolyard AA, Kelley ML, Below JE, Bamshad MJ, Bofferding KM, Smith JD, Buckingham K, Boxer LA, Skokowa J, Welte K, Nickerson DA, Jarvik GP, Dale DC. TCIRG1-associated congenital neutropenia. Hum Mutat 2014; 35:824-7. [PMID: 24753205 DOI: 10.1002/humu.22563] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/28/2014] [Indexed: 11/12/2022]
Abstract
Severe congenital neutropenia (SCN) is a rare hematopoietic disorder, with estimated incidence of 1 in 200,000 individuals of European descent, many cases of which are inherited in an autosomal dominant pattern. Despite the fact that several causal genes have been identified, the genetic basis for >30% of cases remains unknown. We report a five-generation family segregating a novel single nucleotide variant (SNV) in TCIRG1. There is perfect cosegregation of the SNV with congenital neutropenia in this family; all 11 affected, but none of the unaffected, individuals carry this novel SNV. Western blot analysis show reduced levels of TCIRG1 protein in affected individuals, compared to healthy controls. Two unrelated patients with SCN, identified by independent investigators, are heterozygous for different, rare, highly conserved, coding variants in TCIRG1.
Collapse
Affiliation(s)
- Vahagn Makaryan
- Department of Medicine, Divisions of GIM, University of Washington, Seattle, Washington
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yang S, Hao L, McConnell M, Zhou X, Wang M, Zhang Y, Mountz JD, Reddy M, Eleazer PD, Li YP, Chen W. Inhibition of Rgs10 Expression Prevents Immune Cell Infiltration in Bacteria-induced Inflammatory Lesions and Osteoclast-mediated Bone Destruction. Bone Res 2013; 1:267-281. [PMID: 24761229 DOI: 10.4248/br201303005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regulator of G-protein Signaling 10 (Rgs10) plays an important function in osteoclast differentiation. However, the role of Rgs10 in immune cells and inflammatory responses, which activate osteoclasts in inflammatory lesions, such as bacteria-induced periodontal disease lesions, remains largely unknown. In this study, we used an adeno-associated virus (AAV-) mediated RNAi (AAV-shRNA-Rgs10) knockdown approach to study Rgs10's function in immune cells and osteoclasts in bacteria-induced inflammatory lesions in a mouse model of periodontal disease. We found that AAV-shRNA-Rgs10 mediated Rgs10 knockdown impaired osteoclastogenesis and osteoclast-mediated bone resorption, in vitro and in vivo. Interestingly, local injection of AAV-shRNA-Rgs10 into the periodontal tissues in the bacteria-induced inflammatory lesion greatly decreased the number of dendritic cells, T-cells and osteoclasts, and protected the periodontal tissues from local inflammatory damage and bone destruction. Importantly, AAV-mediated Rgs10 knockdown also reduced local expression of osteoclast markers and pro-inflammatory cytokines. Our results demonstrate that AAV-shRNA-Rgs10 knockdown in periodontal disease tissues can prevent bone resorption and inflammation simultaneously. Our data indicate that Rgs10 may regulate dendritic cell proliferation and maturation, as well as the subsequent stimulation of T-cell proliferation and maturation, and osteoclast differentiation and activation. Our study suggests that AAV-shRNA-Rgs10 can be useful as a therapeutic treatment of periodontal disease.
Collapse
Affiliation(s)
- Sen Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew McConnell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xuedong Zhou
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Sichuan, P. R. China
| | - Min Wang
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Sichuan, P. R. China
| | - Yan Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John D Mountz
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Reddy
- Department of Periodontology, University of Alabama at Birmingham School of Dentistry, Birmingham, Alabama, USA
| | - Paul D Eleazer
- Department of Endodontics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
25
|
Aminov RI. Role of archaea in human disease. Front Cell Infect Microbiol 2013; 3:42. [PMID: 23964350 PMCID: PMC3741462 DOI: 10.3389/fcimb.2013.00042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/26/2013] [Indexed: 01/18/2023] Open
Affiliation(s)
- Rustam I Aminov
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of West Indies at Mona Kingston, Jamaica.
| |
Collapse
|