1
|
Ferreira T, Azevedo T, Silva J, Faustino-Rocha AI, Oliveira PA. Current views on in vivo models for breast cancer research and related drug development. Expert Opin Drug Discov 2024; 19:189-207. [PMID: 38095187 DOI: 10.1080/17460441.2023.2293152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Animal models play a crucial role in breast cancer research, in particular mice and rats, who develop mammary tumors that closely resemble their human counterparts. These models allow the study of mechanisms behind breast carcinogenesis, as well as the efficacy and safety of new, and potentially more effective and advantageous therapeutic approaches. Understanding the advantages and disadvantages of each model is crucial to select the most appropriate one for the research purpose. AREA COVERED This review provides a concise overview of the animal models available for breast cancer research, discussing the advantages and disadvantages of each one for searching new and more effective approaches to treatments for this type of cancer. EXPERT OPINION Rodent models provide valuable information on the genetic alterations of the disease, the tumor microenvironment, and allow the evaluation of the efficacy of chemotherapeutic agents. However, in vivo models have limitations, and one of them is the fact that they do not fully mimic human diseases. Choosing the most suitable model for the study purpose is crucial for the development of new therapeutic agents that provide better care for breast cancer patients.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Tiago Azevedo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Jessica Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, Évora, Portugal
- Department of Zootechnics, School of Sciences and Technology, Comprehensive Health Research Center, Évora, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Clinical Academic Center of Trás-Os-Montes and Alto Douro, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
2
|
Reyes-Hernández OD, Figueroa-González G, Quintas-Granados LI, Gutiérrez-Ruíz SC, Hernández-Parra H, Romero-Montero A, Del Prado-Audelo ML, Bernal-Chavez SA, Cortés H, Peña-Corona SI, Kiyekbayeva L, Ateşşahin DA, Goloshvili T, Leyva-Gómez G, Sharifi-Rad J. 3,3'-Diindolylmethane and indole-3-carbinol: potential therapeutic molecules for cancer chemoprevention and treatment via regulating cellular signaling pathways. Cancer Cell Int 2023; 23:180. [PMID: 37633886 PMCID: PMC10464192 DOI: 10.1186/s12935-023-03031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023] Open
Abstract
Dietary compounds in cancer prevention have gained significant consideration as a viable method. Indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) are heterocyclic and bioactive chemicals found in cruciferous vegetables like broccoli, cauliflower, cabbage, and brussels sprouts. They are synthesized after glycolysis from the glucosinolate structure. Clinical and preclinical trials have evaluated the pharmacokinetic/pharmacodynamic, effectiveness, antioxidant, cancer-preventing (cervical dysplasia, prostate cancer, breast cancer), and anti-tumor activities of I3C and DIM involved with polyphenolic derivatives created in the digestion showing promising results. However, the exact mechanism by which they exert anti-cancer and apoptosis-inducing properties has yet to be entirely understood. Via this study, we update the existing knowledge of the state of anti-cancer investigation concerning I3C and DIM chemicals. We have also summarized; (i) the recent advancements in the use of I3C/DIM as therapeutic molecules since they represent potentially appealing anti-cancer agents, (ii) the available literature on the I3C and DIM characterization, and the challenges related to pharmacologic properties such as low solubility, and poor bioavailability, (iii) the synthesis and semi-synthetic derivatives, (iv) the mechanism of anti-tumor action in vitro/in vivo, (v) the action in cellular signaling pathways related to the regulation of apoptosis and anoikis as well as the cell cycle progression and cell proliferation such as peroxisome proliferator-activated receptor and PPARγ agonists; SR13668, Akt inhibitor, cyclins regulation, ER-dependent-independent pathways, and their current medical applications, to recognize research opportunities to potentially use these compounds instead chemotherapeutic synthetic drugs.
Collapse
Affiliation(s)
- Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Facultad de Estudios Superiores Zaragoza, UMIEZ, Universidad Nacional Autónoma de México, Ciudad de México, 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Facultad de Estudios Superiores Zaragoza, UMIEZ, Universidad Nacional Autónoma de México, Ciudad de México, 09230, Mexico
| | | | | | - Hector Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - María Luisa Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, C. Puente 222, Ciudad de México, 14380, Mexico
| | - Sergio Alberto Bernal-Chavez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Lashyn Kiyekbayeva
- Pharmaceutical School, Department of Pharmaceutical Technology, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
- Faculties of Pharmacy, Public Health and Nursing, Kazakh-Russian Medical University, Almaty, Kazakhstan
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, Elazıg, 23100, Turkey
| | - Tamar Goloshvili
- Department of Plant Physiology and Genetic Resources, Institute of Botany, Ilia State University, Tbilisi, 0162, Georgia
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | | |
Collapse
|
3
|
Diindolylmethane Derivatives: New Selective Blockers for T-Type Calcium Channels. MEMBRANES 2022; 12:membranes12080749. [PMID: 36005664 PMCID: PMC9412534 DOI: 10.3390/membranes12080749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 01/27/2023]
Abstract
The natural product indole-3-carbinol (I3C) and its major digestive product 3,3′-diindolylmethane (DIM) have shown clinical promise in multiple forms of cancer including breast cancer. In this study, we explored the calcium channel activity of DIM, its synthetic derivative 3,3′-Diindolylmethanone (DIM-one) and related I3C and DIM-one analogs. For the first time, DIM, DIM-one and analog IX were identified as selective blockers for T-type CaV3.3 (IC50s DIM 2.09 µM; DIM-one 9.07 µM) while compound IX inhibited both CaV3.2 (6.68 µM) and CaV3.3 (IC50 = 3.05 µM) using a FLIPR cell-based assay to measure inhibition of T-type calcium channel window current. Further characterization of DIM by electrophysiology revealed it inhibited inward Ca2+ current through CaV3.1 (IC50 = 8.32 µM) and CaV3.3 (IC50 = 9.63 µM), while IX partially blocked CaV3.2 and CaV3.3 inward Ca2+ current. In contrast, DIM-one preferentially blocked CaV3.1 inward Ca2+ current (IC50 = 1.53 µM). The anti-proliferative activities of these compounds revealed that oxidation of the methylene group of DIM shifted the selectivity of DIMs from breast cancer cell line MCF-7 to colon cancer cell line HT-29.
Collapse
|
4
|
Shilpa G, Lakshmi S, Jamsheena V, Lankalapalli RS, Prakash V, Sadasivam A, Priya S. Studies on the mode of action of synthetic diindolylmethane derivatives against triple negative breast cancer cells. Basic Clin Pharmacol Toxicol 2022; 131:224-240. [PMID: 35750657 DOI: 10.1111/bcpt.13767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Diindolylmethane (DIM) is a metabolic product of indole-3-carbinol (I3C), the major phytochemicals present in cruciferous vegetables, which can modulate multiple signalling pathways in cancer. The present study deals with the mechanism of action of two synthetic biaryl conjugates of DIM in triple negative breast cancer cells. Out of twelve DIM derivatives tested, two compounds, DIM-1 and DIM-4, exhibit cytotoxicity with GI50 values of 9.83±0.2195 μM and 8.726±0.5234 μM, respectively, in 2D culture. In 3D culture, DIM-1 and DIM-4 show GI50 values of 24.000±0.7240 μM and 19.230±0.3754 μM, respectively. The non-toxic nature of the compounds was also established by the toxicity studies using the zebrafish model system. The two compounds induced apoptosis and anoikis in the cancer cells, which was confirmed by morphological analysis, nuclear fragmentation, membrane integrity assay, caspase activity measurements, and modulation of pro/anti-apoptotic proteins. The compounds inhibited cell migration and MMP-2 and MMP-9 activities indicating their anti-metastatic property. They also reduced the expression of active Ras, phosphorylated forms of PI3K, Akt and mTOR. Immunofluorescence studies revealed the reduced expression of EGFR and pEGFR in treated cells. To conclude, DIM-1 and DIM-4 induced anti-breast cancer effects by blocking EGF receptor and subsequently inhibiting Ras-mediated PI3K-Akt-mTOR signalling pathway.
Collapse
Affiliation(s)
- Ganesan Shilpa
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad
| | - Sreerenjini Lakshmi
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad
| | - Vellekkatt Jamsheena
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad
| | - Ravi Shankar Lankalapalli
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad
| | - Ved Prakash
- Ecotoxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad
| | - Anbumani Sadasivam
- Ecotoxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad
| | - Sulochana Priya
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad
| |
Collapse
|
5
|
Kal S, Chakraborty S, Karmakar S, Ghosh MK. Wnt/β-catenin signaling and p68 conjointly regulate CHIP in colorectal carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119185. [PMID: 34890713 DOI: 10.1016/j.bbamcr.2021.119185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Emerging evidences suggest abundant expression of Carboxy terminus of Hsc70 Interacting Protein or CHIP (alias STIP1 Homology and U-box Containing Protein 1 or STUB1) in colorectal carcinoma, but the mechanistic detail of this augmented expression pattern is unclear. The signature driver of canonical Wnt pathway, β-catenin, and its co-activator RNA helicase p68, are also overexpressed in colorectal carcinoma. In this study, we describe a novel mechanism of Wnt/β-catenin and p68 mediated transcriptional activation of CHIP gene leading to enhanced proliferation of colorectal carcinoma cells. Bioinformatic analyses reconfirmed an elevated CHIP expression level in colorectal carcinoma datasets. Wnt3A treatment and pharmacological activation of canonical Wnt signaling pathway resulted in increased nuclear translocation of β-catenin, augmenting CHIP expression. Likewise, immunoblotting and Real time PCR following overexpression and knockdown of β-catenin and p68 demonstrated upregulated and downregulated CHIP expression, respectively, at both mRNA and protein levels. p68 along with β-catenin were found to occupy Transcription Factor 4 (TCF4) binding sites on endogenous CHIP promoter and regulate its transcription. After cloning CHIP promoter, the increased and decreased promoter activities of CHIP induced by overexpression and knockdown of either β-catenin or p68 further confirmed transcriptional regulation of CHIP gene by Wnt/β-catenin signaling cascade. Finally, enhanced cellular propagation and migration of colorectal carcinoma cells induced by 'Wnt/β-catenin-p68-CHIP' axis established the significance of this pathway in oncogenesis. To the best of our knowledge, this is the first report elucidating the mechanistic details of transcriptional regulation of CHIP (STUB1) gene expression.
Collapse
Affiliation(s)
- Satadeepa Kal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Shrabastee Chakraborty
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
6
|
Pingaew R, Mandi P, Prachayasittikul V, Thongnum A, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Investigations on Anticancer and Antimalarial Activities of Indole-Sulfonamide Derivatives and In Silico Studies. ACS OMEGA 2021; 6:31854-31868. [PMID: 34870008 PMCID: PMC8638007 DOI: 10.1021/acsomega.1c04552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/10/2021] [Indexed: 05/04/2023]
Abstract
A library of 44 indole-sulfonamide derivatives (1-44) were investigated for their cytotoxic activities against four cancer cell lines (i.e., HuCCA-1, HepG2, A549, and MOLT-3) and antimalarial effect. Most of the studied indoles exhibit anticancer activity against the MOLT-3 cell line, whereas only hydroxyl-containing bisindoles displayed anticancer activities against the other tested cancer cells as well as antimalarial effect. The most promising anticancer compounds were noted to be CF3, Cl, and NO2 derivatives of hydroxyl-bearing bisindoles (30, 31, and 36), while the most promising antimalarial compound was an OCH3 derivative of non-hydroxyl-containing bisindole 11. Five quantitative structure-activity relationship (QSAR) models were successfully constructed, providing acceptable predictive performance (training set: R = 0.6186-0.9488, RMSE = 0.0938-0.2432; validation set: R = 0.4242-0.9252, RMSE = 0.1100-0.2785). QSAR modeling revealed that mass, charge, polarizability, van der Waals volume, and electronegativity are key properties governing activities of the compounds. QSAR models were further applied to guide the rational design of an additional set of 22 compounds (P1-P22) in which their activities were predicted. The prediction revealed a set of promising virtually constructed compounds (P1, P3, P9, P10, and P16) for further synthesis and development as anticancer and antimalarial agents. Molecular docking was also performed to reveal possible modes of bindings and interactions between the studied compounds and target proteins. Taken together, insightful structure-activity relationship information obtained herein would be beneficial for future screening, design, and structural optimization of the related compounds.
Collapse
Affiliation(s)
- Ratchanok Pingaew
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
- . Tel.: +66-2-649-5000 ext 18253. Fax: 662-260-0128
| | - Prasit Mandi
- Department
of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Veda Prachayasittikul
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
- . Tel.: +66-2-441-4376
| | - Anusit Thongnum
- Department
of Physics, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Supaluk Prachayasittikul
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory
of Medicinal Chemistry, Chulabhorn Research Institute, and Program
in Chemical Sciences, Chulabhorn Graduate
Institute, Bangkok 10210, Thailand
- Center of
Excellence on Environmental Health and Toxicology (EHT), Commission
on Higher Education, Ministry of Education, Bangkok 10400, Thailand
| | - Virapong Prachayasittikul
- Department
of Clinical Microbiology and Applied Technology, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
7
|
Song F, Bian Y, Liu J, Li Z, Zhao L, Fang J, Lai Y, Zhou M. Indole Alkaloids, Synthetic Dimers and Hybrids with Potential In Vivo Anticancer Activity. Curr Top Med Chem 2021; 21:377-403. [PMID: 32901583 DOI: 10.2174/1568026620666200908162311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
Indole, a heterocyclic organic compound, is one of the most promising heterocycles found in natural and synthetic sources since its derivatives possess fascinating structural diversity and various therapeutic properties. Indole alkaloids, synthetic dimers and hybrids could act on diverse targets in cancer cells, and consequently, possess potential antiproliferative effects on various cancers both in vitro and in vivo. Vinblastine, midostaurin, and anlotinib as the representative of indole alkaloids, synthetic dimers and hybrids respectively, have already been clinically applied to treat many types of cancers, demonstrating indole alkaloids, synthetic dimers and hybrids are useful scaffolds for the development of novel anticancer agents. Covering articles published between 2010 and 2020, this review emphasizes the recent development of indole alkaloids, synthetic dimers and hybrids with potential in vivo therapeutic application for cancers.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Jing Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Li Zhao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Junman Fang
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Yonghong Lai
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Meng Zhou
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| |
Collapse
|
8
|
Bargathulla I, Aadhil Ashwaq B, Sathiyaraj S, Sultan Nasar A, ElangovanVellaichamy. Pegylated bis-indolyl polyurethane dendrimer: Empty drug carrier with prominent anticancer activity. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Biersack B. 3,3'-Diindolylmethane and its derivatives: nature-inspired strategies tackling drug resistant tumors by regulation of signal transduction, transcription factors and microRNAs. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:867-878. [PMID: 35582221 PMCID: PMC8992569 DOI: 10.20517/cdr.2020.53] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 11/14/2022]
Abstract
Indoles of cruciferous vegetables are promising anti-tumor agents. Studies with indole-3-carbinol and its dimeric product, 3,3'-diindolylmethane (DIM), suggest that these compounds have the ability to deregulate multiple cellular signaling pathways that are essential for tumor growth and spread. These natural compounds are also effective modulators of transcription factors and non-coding RNAs. These effects explain their ability to inhibit tumor spread and to overcome drug resistance. In this work, pertinent literature on the effects of DIM and its synthetic derivatives on resistant tumors and resistance mechanisms in tumors is highlighted.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry 1, University of Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
10
|
Jin X, Ma H, Wang F, Jiang J, Cheng L, Hu S, Zhang G. Generation of indole derivatives by an endophytic fungus Chaetomium sp. through feeding 1,2-dimethylindole. Nat Prod Res 2020; 36:87-95. [PMID: 32380913 DOI: 10.1080/14786419.2020.1762189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Through feeding 1,2-dimethylindole, two new bisindoles, chaetoindolone E and F (1 and 2) and five known indole derivatives (3-7) were isolated from the cultures of an endophytic fungus Chaetomium sp. The structures of these compounds were elucidated based on HR-MS, NMR and single-crystal X-ray crystallography. Compounds 1 and 2 were undescribed before, compounds 3-7 were first reported from natural sources, and NMR spectrums of compounds 4 and 5 were first reported. The cytotoxity of the bisindole compounds (1-3) was also tested.
Collapse
Affiliation(s)
- Xiaoqi Jin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Haoran Ma
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Fuqian Wang
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Jie Jiang
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Lu Cheng
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Song Hu
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Geng Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| |
Collapse
|
11
|
de Alencar MVOB, Islam MT, de Lima RMT, Paz MFCJ, dos Reis AC, da Mata AMOF, Filho JWGDO, Cerqueira GS, Ferreira PMP, e Sousa JMDC, Mubarak MS, Melo-Cavalcante AADC. Phytol as an anticarcinogenic and antitumoral agent: An in vivo study in swiss mice with DMBA-Induced breast cancer. IUBMB Life 2018; 71:200-212. [DOI: 10.1002/iub.1952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City Vietnam
- Faculty of Pharmacy; Ton Duc Thang University; Ho Chi Minh City Vietnam
| | | | | | | | | | | | | | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Biotechnology (RENORBIO); Federal University of Piauí; Teresina Piauí Brazil
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piauí; Teresina Piauí Brazil
- Department of Biophysics and Physiology; Laboratory of Experimental Cancerology, Federal University of Piauí; Teresina Piauí Brazil
| | - João Marcelo de Castro e Sousa
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piauí; Teresina Piauí Brazil
- Department of Biological Sciences; Federal University of Piauí; Picos Piauí Brazil
| | | | - Ana Amélia de Carvalho Melo-Cavalcante
- Postgraduate Program in Biotechnology (RENORBIO); Federal University of Piauí; Teresina Piauí Brazil
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piauí; Teresina Piauí Brazil
| |
Collapse
|
12
|
Zou M, Xu C, Li H, Zhang X, Fan W. 3,3'-Diindolylmethane suppresses ovarian cancer cell viability and metastasis and enhances chemotherapy sensitivity via STAT3 and Akt signaling in vitro and in vivo. Arch Biochem Biophys 2018:S0003-9861(18)30087-0. [PMID: 30040917 DOI: 10.1016/j.abb.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 01/05/2023]
Abstract
Signal transducer and activator of transcription-3 (STAT3) protein is constitutively activated in ovarian cancer. The purpose of this study was to investigate the effects of 3,3'-diindolylmethane (DIM) on the regulation of STAT3 signaling and ovarian cancer cell viability, invasion, and sensitivity to chemotherapy. Ovarian cancer SKOV3 and A2780 cell lines were treated with various concentrations of DIM for different periods of time for assessment of cell viability as well as gene expression before and after knockdown of STAT3 expression using STAT3 shRNA. DIM treatment potently suppressed the viabilities of ovarian cancer cells. Consequently, DIM inhibited xenograft growth in nude mice. In addition, at the gene level, DIM inhibited phosphorylation of STAT3 and AKT proteins and expression of their downstream proteins. Moreover, knockdown of STAT3 expression significantly enhanced DIM antitumor activity and cisplatin sensitivity. Their combination suppressed the protein expression of survivin, Bcl-2, Mcl-1, HIF-1α, VEGF, and MMPs, but activated caspase-3. Taken together, the antitumor activity of DIM is via inhibition of the STAT3 and Akt signaling pathways. The combination of STAT3 knockdown with DIM treatment could be further evaluated as a therapeutic strategy for the treatment of advanced ovarian cancer.
Collapse
Affiliation(s)
- Minghua Zou
- Department of Oncology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| | - Changhua Xu
- Department of Oncology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| | - Hua Li
- Department of Oncology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| | - Xianquan Zhang
- Department of Oncology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| | - Weidong Fan
- Department of Oncology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
13
|
Abstract
The tolerance to adriamycin of cancer as a common and stubborn obstacle occurred during curing breast cancer patients needs to be overcome. In the present study, we explored whether inhibiting the glucose transporter 1 (GLUT1) could restore the activity of adriamycin in breast cancer cell line MCF-7 resistant to adriamycin and the possible underlying mechanisms. Adriamycin-resistant cell line MCF-7/ADR was selected stepwise from the parental MCF-7 cells and the level of GLUT1 was measured. Then, the MCF-7/ADR cells were incubated with adriamycin, WZB117 (a specific GLUT1 inhibitor), or both. The viability, proliferation and apoptosis of cells and the level of glucose and lactate were measured, respectively. Finally, the cytosolic and mitochondrial proteins were isolated and the activity of the adenosine monophosphate-activated protein kinase (AMPK)/phosphorylated AMPK, mammalian target of rapamycin (mTOR)/phosphorylated mTOR, and apoptotic-related protein BCL-2-associated X protein (BAX), Bcl-2 was assayed by western blot. We found that WZB117 resensitized MCF-7/ADR to adriamycin and increased BAX translocated to mitochondria, which through activation of AMPK and inhibition of mTOR in a high probability. Inhibition of the GLUT1 could partially restore the antineoplastic effects of adriamycin in the adriamycin-resistant MCF-7 cell line possibly through activating the AMPK, downregulating the mTOR pathway, and increasing the BAX translocation to mitochondria.
Collapse
|
14
|
Bhowmik A, Chakravarti S, Ghosh A, Shaw R, Bhandary S, Bhattacharyya S, Sen PC, Ghosh MK. Anti-SSTR2 peptide based targeted delivery of potent PLGA encapsulated 3,3'-diindolylmethane nanoparticles through blood brain barrier prevents glioma progression. Oncotarget 2017; 8:65339-65358. [PMID: 29029435 PMCID: PMC5630335 DOI: 10.18632/oncotarget.18689] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/22/2017] [Indexed: 12/27/2022] Open
Abstract
Current therapy for Glioblastoma is insufficient because of the presence of blood brain barrier. It limits the transport of essential drugs to the tumor sites. To overcome this limitation we strategized the delivery of an anticancer compound 3,3’-diindolylmethane by encapsulation in poly (lactic-co-glycolic acid) nanoparticles. These nanoparticles were tagged with a novel peptide against somatostatin receptor 2 (SSTR2), a potential target in glioma. The nanoformulation (27-87nm) had loading and encapsulation efficiency of 7.2% and 70% respectively. It was successfully internalized inside the glioma cells resulting in apoptosis. Furthermore, an in vivo bio-distribution study revealed the selective accumulation of the nanoformulation into rat brain tumor sites by crossing the blood brain barrier. This resulted in abrogation of epidermal growth factor receptor pathway activation in glioma cells. Our novel nanopreparation therefore shows great promise to serve as a template for targeted delivery of other therapeutics in treating GBM.
Collapse
Affiliation(s)
- Arijit Bhowmik
- Signal Transduction in Cancer and Stem Cells Laboratory, Translational Research Unit of Excellence (TRUE), Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700091, India
| | - Sayak Chakravarti
- Signal Transduction in Cancer and Stem Cells Laboratory, Translational Research Unit of Excellence (TRUE), Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700091, India
| | - Aparajita Ghosh
- Division of Molecular Medicine, Bose Institute, Centenary Campus, Kolkata 700054, India
| | - Rajni Shaw
- Signal Transduction in Cancer and Stem Cells Laboratory, Translational Research Unit of Excellence (TRUE), Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700091, India
| | - Suman Bhandary
- Division of Molecular Medicine, Bose Institute, Centenary Campus, Kolkata 700054, India
| | | | - Parimal C Sen
- Division of Molecular Medicine, Bose Institute, Centenary Campus, Kolkata 700054, India
| | - Mrinal K Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Translational Research Unit of Excellence (TRUE), Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700091, India
| |
Collapse
|
15
|
Yadav DK, Bharitkar YP, Hazra A, Pal U, Verma S, Jana S, Singh UP, Maiti NC, Mondal NB, Swarnakar S. Tamarixetin 3-O-β-d-Glucopyranoside from Azadirachta indica Leaves: Gastroprotective Role through Inhibition of Matrix Metalloproteinase-9 Activity in Mice. JOURNAL OF NATURAL PRODUCTS 2017; 80:1347-1353. [PMID: 28493718 DOI: 10.1021/acs.jnatprod.6b00957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Neem (Azadirachta indica) is a well-known medicinal and insecticidal plant. Although previous studies have reported the antiulcer activity of neem leaf extract, the lead compound is still unidentified. The present study reports tamarixetin 3-O-β-d-glucopyranoside (1) from a methanol extract of neem leaves and its gastroprotective activity in an animal model. Compound 1 showed significant protection against indomethacin-induced gastric ulceration in mice in a dose-dependent manner. Moreover, ex vivo and circular dichroism studies confirmed that 1 inhibited the enzyme matrix metalloproteinase-9 (MMP-9) activity with an IC50 value of ca. 50 μM. Molecular docking and dynamics showed the binding of 1 into the pocket of the active site of MMP-9, forming a coordination complex with the catalytic zinc, thus leading to inhibition of MMP-9 activity.
Collapse
Affiliation(s)
| | - Yogesh P Bharitkar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research , Kolkata 700032, WB, India
| | - Abhijit Hazra
- Department of Natural Products, National Institute of Pharmaceutical Education and Research , Kolkata 700032, WB, India
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Alvarado A, Faustino-Rocha AI, Colaço B, Oliveira PA. Experimental mammary carcinogenesis - Rat models. Life Sci 2017; 173:116-134. [PMID: 28188729 DOI: 10.1016/j.lfs.2017.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
Mammary cancer is one of the most common cancers, victimizing more than half a million of women worldwide every year. Despite all the studies in this field, the current therapeutic approaches are not effective and have several devastating effects for patients. In this way, the need to better understand the mammary cancer biopathology and find effective therapies led to the development of several rodent models over years. With this review, the authors intended to provide the readers with an overview of the rat models used to study mammary carcinogenesis, with a special emphasis on chemically-induced models.
Collapse
Affiliation(s)
- Antonieta Alvarado
- Área de Patología, Decanato de Ciencias Veterinarias, Universidad Centroccidental "Lisandro Alvarado", UCLA, Lara, Venezuela; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana I Faustino-Rocha
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, Vila Real, Portugal
| | - Bruno Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Zootechnics, School of Agrarian and Veterinary Sciences, UTAD, Vila Real, Portugal
| | - Paula A Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, Vila Real, Portugal.
| |
Collapse
|
17
|
Ramshini H, Mannini B, Khodayari K, Ebrahim-Habibi A, Moghaddasi AS, Tayebee R, Chiti F. Bis(indolyl)phenylmethane derivatives are effective small molecules for inhibition of amyloid fibril formation by hen lysozyme. Eur J Med Chem 2016; 124:361-371. [DOI: 10.1016/j.ejmech.2016.08.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022]
|
18
|
Thomson CA, Ho E, Strom MB. Chemopreventive properties of 3,3'-diindolylmethane in breast cancer: evidence from experimental and human studies. Nutr Rev 2016; 74:432-43. [PMID: 27261275 DOI: 10.1093/nutrit/nuw010] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diet is a modifiable factor associated with the risk of several cancers, with convincing evidence showing a link between diet and breast cancer. The role of bioactive compounds of food origin, including those found in cruciferous vegetables, is an active area of research in cancer chemoprevention. This review focuses on 3,3'-diindolylmethane (DIM), the major bioactive indole in crucifers. Research of the cancer-preventive activity of DIM has yielded basic mechanistic, animal, and human trial data. Further, this body of evidence is largely supported by observational studies. Bioactive DIM has demonstrated chemopreventive activity in all stages of breast cancer carcinogenesis. This review describes current evidence related to the metabolism and mechanisms of DIM involved in the prevention of breast cancer. Importantly, this review also focuses on current evidence from human observational and intervention trials that have contributed to a greater understanding of exposure estimates that will inform recommendations for DIM intake.
Collapse
Affiliation(s)
- Cynthia A Thomson
- Cynthia A. Thomson is with the Mel & Enid Zuckerman College of Public Health, the University of Arizona Cancer Center, and the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA. Emily Ho is with the Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, and the Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA. Meghan B. Strom is with the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA.
| | - Emily Ho
- Cynthia A. Thomson is with the Mel & Enid Zuckerman College of Public Health, the University of Arizona Cancer Center, and the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA. Emily Ho is with the Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, and the Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA. Meghan B. Strom is with the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
| | - Meghan B Strom
- Cynthia A. Thomson is with the Mel & Enid Zuckerman College of Public Health, the University of Arizona Cancer Center, and the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA. Emily Ho is with the Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, and the Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA. Meghan B. Strom is with the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
19
|
Elliott DM, Nagarkatti M, Nagarkatti PS. 3,39-Diindolylmethane Ameliorates Staphylococcal Enterotoxin B–Induced Acute Lung Injury through Alterations in the Expression of MicroRNA that Target Apoptosis and Cell-Cycle Arrest in Activated T Cells. J Pharmacol Exp Ther 2016; 357:177-87. [PMID: 26818958 PMCID: PMC4809322 DOI: 10.1124/jpet.115.226563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/26/2016] [Indexed: 12/20/2022] Open
Abstract
3,39-Diindolylmethane (DIM), a natural indole found in cruciferous vegetables, has significant anti-cancer and anti-inflammatory properties. In this current study, we investigated the effects of DIM on acute lung injury (ALI) induced by exposure to staphylococcal enterotoxin B (SEB). We found that pretreatment of mice with DIM led to attenuation of SEB-induced inflammation in the lungs, vascular leak, and IFN-g secretion. Additionally, DIM could induce cell-cycle arrest and cell death in SEB-activated T cells in a concentration-dependent manner. Interestingly, microRNA (miRNA) microarray analysis uncovered an altered miRNA profile in lung-infiltrating mononuclear cells after DIM treatment of SEB-exposed mice. Moreover, computational analysis of miRNA gene targets and regulation networks indicated that DIM alters miRNA in the cell death and cell-cycle progression pathways. Specifically, DIM treatment significantly downregulated several miRNA and a correlative increase associated gene targets. Furthermore, overexpression and inhibition studies demonstrated that DIM-induced cell death, at least in part, used miR-222. Collectively, these studies demonstrate for the first time that DIM treatment attenuates SEB-induced ALI and may do so through the induction of microRNAs that promote apoptosis and cell-cycle arrest in SEB-activated T cells.
Collapse
|
20
|
Das N, Datta N, Chatterjee U, Ghosh MK. Estrogen receptor alpha transcriptionally activates casein kinase 2 alpha: A pivotal regulator of promyelocytic leukaemia protein (PML) and AKT in oncogenesis. Cell Signal 2016; 28:675-87. [PMID: 27012497 DOI: 10.1016/j.cellsig.2016.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/17/2016] [Indexed: 01/17/2023]
Abstract
Protein kinase CK2α is frequently upregulated in different cancers. Alteration of CK2α expression and its activity is sufficient to induce dramatic changes in cell fate. It has been established that CK2α induces oncogenesis through modulation of both AKT and PML. CK2α has been found to be overexpressed in breast cancer. In contrary, statistical reports have shown low level of PML. However, the regulation of CK2α gene expression is not fully understood. In the current study, we found that CK2α and activated AKT positively correlate with ERα, whereas PML follows an inverse correlation in human breast cancer tissues. Modulation of ERα signalling leads to recruitment of activated ERα on the ERE sites of CK2α promoter, resulting in CK2α transactivation. Furthermore, the DMBA induced tumours in rat showed elevated level of active CK2α. Consequently it mediates enhancement of AKT activity and PML degradation, resulting in increased cellular proliferation, migration and metastasis. Syngeneic ERα overexpressing stable mouse 4T1 cells produce larger primary tumours and metastatic lung nodules in mice, corroborating our in vitro findings. Hence, our study provides a novel route of ERα dependent CK2α mediated oncogenesis that causes upregulation and consequent AKT activation along with degradation of tumour suppressor PML.
Collapse
Affiliation(s)
- Nilanjana Das
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, West Bengal, India.
| | - Neerajana Datta
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, West Bengal, India.
| | - Uttara Chatterjee
- Division of Pathology, Park Clinic, 4, Gorky Terrace, Kolkata 700017, India.
| | - Mrinal Kanti Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, West Bengal, India.
| |
Collapse
|
21
|
Pal U, Pramanik SK, Bhattacharya B, Banerji B, Maiti NC. Binding interaction of a novel fluorophore with serum albumins: steady state fluorescence perturbation and molecular modeling analysis. SPRINGERPLUS 2015; 4:548. [PMID: 26435894 PMCID: PMC4582037 DOI: 10.1186/s40064-015-1333-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/10/2015] [Indexed: 01/30/2023]
Abstract
Fluorescence emission and anisotropy are widely used to measure the binding parameters and kinetic behavior of reactions that cause a change in the rotational time of a fluorescent molecule. We report here fluorescence emission and anisotropy behavior of a newly synthesized novel
naphthalene base fluorophore (methyl 3-[(6-{[2-(tert-butoxy)-2-oxoethyl] (4-methoxyphenyl)amino}naphthalen-2-yl)formamido]propanoate) in several solution conditions including its binding to human and bovine serum albumin proteins both in their native and denatured states. The fluorescence yield of the compound substantially increased inside hydrophobic protein surface and ~30 nm decrease in Stokes’ shift, compared to aqueous solution, was observed. Shift in fluorescence excitation peak position from the absorption peak of the molecule was ~8 nm in protein solution. This indicated possible alteration of excited state geometry of the compound by the globular fold of albumins. In addition, we measured the steady state fluorescence anisotropy of the molecule to evaluate several thermodynamic parameters and the results suggested the binding was energetically favorable. The measured ΔG° was ~−30 kJ mol−1 and the derived dissociation constant was ~10−6 M. The molecular docking analysis further highlighted the nonspecific association of the compound with the proteins and hydrophobic forces may have a significant role in the binding processes. Under the denatured condition of the protein, the compound lost its binding efficacy and reduction in fluorescence intensity was observed. Thus, the molecule appears as a new fluorescence probe to report the nature of its binding site in terms of increased fluorescence quantum yield and decreased Stokes’ shift. It can also report the changes in the binding site due to global change in protein structure such as unfolding/misfolding often linked to several human disorder. Further it could be useful to detect and study the drug binding site of specific protein of interest.
Collapse
Affiliation(s)
- Uttam Pal
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal India
| | - Sumit Kumar Pramanik
- Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal India
| | - Baisali Bhattacharya
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal India
| | - Biswadip Banerji
- Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal India
| | - Nakul Chandra Maiti
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal India
| |
Collapse
|
22
|
The DEAD box protein p68: a crucial regulator of AKT/FOXO3a signaling axis in oncogenesis. Oncogene 2015; 34:5843-56. [PMID: 25745998 DOI: 10.1038/onc.2015.42] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/12/2014] [Accepted: 12/01/2014] [Indexed: 12/22/2022]
Abstract
Increased abundance of proto-oncogene AKT and reduced expression of tumor suppressor Forkhead box O3 (FOXO3a), the downstream target of AKT, is frequent in carcinogenesis. Mechanistic insights of AKT gene regulation are limited. DEAD box RNA helicase p68 is overexpressed in various cancers and acts as a transcriptional co-activator of several transcription factors, including β-catenin. Here, we report a novel mechanism of p68-mediated transcriptional activation of AKT, and its ensuing effect on FOXO3a, in colon carcinogenesis. Interestingly, we found that the expression of p68 and AKT exhibits strong positive correlation in normal and colon carcinoma patient samples. In addition, p68 increased both AKT messenger RNA (mRNA) and protein, enhanced AKT promoter activity in multiple colon cancer cell lines. Conversely, p68 knockdown led to reduced AKT mRNA and protein, diminished AKT promoter activity. Here, we demonstrated that p68 occupies AKT promoter with β-catenin as well as nuclear factor-κB (NF-κB)and cooperates with these in potentiating AKT transcription. Furthermore, p68 and FOXO3a expression followed inverse correlation in the same set of colon carcinoma samples. We observed that p68 significantly reduced FOXO3a protein level in an AKT-dependent manner. Studies in primary tumors and metastatic lung nodules generated in mice colorectal allograft model, using syngeneic cells stably expressing p68, corroborated our in vitro findings. Hence, a new mechanism of oncogenesis is attributed to p68 by upregulation of AKT and consequent nuclear exclusion and degradation of tumor suppressor FOXO3a.
Collapse
|
23
|
Guturi KKN, Sarkar M, Bhowmik A, Das N, Ghosh MK. DEAD-box protein p68 is regulated by β-catenin/transcription factor 4 to maintain a positive feedback loop in control of breast cancer progression. Breast Cancer Res 2014; 16:496. [PMID: 25499975 PMCID: PMC4308923 DOI: 10.1186/s13058-014-0496-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/04/2014] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Nuclear accumulation of β-catenin is important for cancer development and it is found to overlap with p68 (DDX5) immunoreactivity in most breast cancers, as indicated by both clinical investigations and studies in cell lines. In this study, we aim to investigate the regulation of p68 gene expression through β-catenin/transcription factor 4 (TCF4) signaling in breast cancer. METHODS Formalin-fixed paraffin-embedded sections derived from normal human breast and breast cancer samples were used for immunohistochemical analysis. Protein and mRNA expressions were determined by immunoblotting and quantitative RT-PCR respectively. Promoter activity of p68 was checked using luciferase assay. Occupancy of several factors on the p68 promoter was evaluated using chromatin immunoprecipitation. Finally, a syngeneic mouse model of breast cancer was used to assess physiological significance. RESULTS We demonstrated that β-catenin can directly induce transcription of p68 promoter or indirectly through regulation of c-Myc in both human and mouse breast cancer cells. Moreover, by chromatin immunoprecipitation assay, we have found that both β-catenin and TCF4 occupy the endogenous p68 promoter, which is further enhanced by Wnt signaling. Furthermore, we have also established a positive feedback regulation for the expression of TCF4 by p68. To the best of our knowledge, this is the first report on β-catenin/TCF4-mediated p68 gene regulation, which plays an important role in epithelial to mesenchymal transition, as shown in vitro in breast cancer cell lines and in vivo in an animal breast tumour model. CONCLUSIONS Our findings indicate that Wnt/β-catenin signaling plays an important role in breast cancer progression through p68 upregulation.
Collapse
Affiliation(s)
- Kiran Kumar Naidu Guturi
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S C Mullick Road, Jadavpur, Kolkata, 700032, India.
| | - Moumita Sarkar
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S C Mullick Road, Jadavpur, Kolkata, 700032, India.
| | - Arijit Bhowmik
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S C Mullick Road, Jadavpur, Kolkata, 700032, India.
| | - Nilanjana Das
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S C Mullick Road, Jadavpur, Kolkata, 700032, India.
| | - Mrinal Kanti Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S C Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
24
|
Chatterjee S, Bhattacharjee P, Temburu J, Nandi D, Jaisankar P. Indium trichloride catalyzed sp3 C–H bond functionalization of 2-alkyl azaarenes under microwave irradiation. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.10.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Exosome-mediated delivery of the intrinsic C-terminus domain of PTEN protects it from proteasomal degradation and ablates tumorigenesis. Mol Ther 2014; 23:255-69. [PMID: 25327178 DOI: 10.1038/mt.2014.202] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/11/2014] [Indexed: 12/21/2022] Open
Abstract
PTEN mutation is a frequent feature across a plethora of human cancers, the hot-spot being its C-terminus (PTEN-CT) regulatory domain resulting in a much diminished protein expression. In this study, the presence of C-terminus mutations was confirmed through sequencing of different human tumor samples. The kinase CKII-mediated phosphorylation of PTEN at these sites makes it a loopy structure competing with the E3 ligases for binding to its lipid anchoring C2 domain. Accordingly, it was found that PTEN-CT expressing stable cell lines could inhibit tumorigenesis in syngenic breast tumor models. Therefore, we designed a novel exosome-mediated delivery of the intrinsic PTEN domain, PTEN-CT into different cancer cells and observed reduced proliferation, migration, and colony forming ability. The delivery of exosome containing PTEN-CT to breast tumor mice model was found to result in significant regression in tumor size with the tumor sections showing increased apoptosis. Here, we also report for the first time an active PTEN when its C2 domain is bound by PTEN-CT, probably rendering its anti-tumorigenic activities through the protein phosphatase activity. Therefore, therapeutic interventions that focus on PTEN E3 ligase inhibition through exosome-mediated PTEN-CT delivery can be a probable route in treating cancers with low PTEN expression.
Collapse
|
26
|
Synthesis of novel bisindolylmethane Schiff bases and their antibacterial activity. Molecules 2014; 19:11722-40. [PMID: 25102118 PMCID: PMC6271760 DOI: 10.3390/molecules190811722] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/23/2014] [Accepted: 08/01/2014] [Indexed: 11/26/2022] Open
Abstract
In an effort to develop new antibacterial drugs, some novel bisindolylmethane derivatives containing Schiff base moieties were prepared and screened for their antibacterial activity. The synthesis of the bisindolylmethane Schiff base derivatives 3–26 was carried out in three steps. First, the nitro group of 3,3'-((4-nitrophenyl)-methylene)bis(1H-indole) (1) was reduced to give the amino substituted bisindolylmethane 2 without affecting the unsaturation of the bisindolylmethane moiety using nickel boride in situ generated. Reduction of compound 1 using various catalysts showed that combination of sodium borohydride and nickel acetate provides the highest yield for compound 2. Bisindolylmethane Schiff base derivatives were synthesized by coupling various benzaldehydes with amino substituted bisindolylmethane 2. All synthesized compounds were characterized by various spectroscopic methods. The bisindolylmethane Schiff base derivatives were evaluated against selected Gram-positive and Gram-negative bacterial strains. Derivatives having halogen and nitro substituent display weak to moderate antibacterial activity against Salmonella typhi, S. paratyphi A and S. paratyphi B.
Collapse
|
27
|
Bhattacharya S, Ghosh MK. HAUSP, a novel deubiquitinase for Rb - MDM2 the critical regulator. FEBS J 2014; 281:3061-78. [PMID: 24823443 PMCID: PMC4149788 DOI: 10.1111/febs.12843] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 04/07/2014] [Accepted: 05/09/2014] [Indexed: 01/19/2023]
Abstract
Tumor suppressor retinoblastoma-associated protein (Rb) is an important cell cycle regulator, arresting cells in early G1. It is commonly inactivated in cancers and its level is maintained during the cell cycle. Rb is regulated by various post-translational modifications such as phosphorylation, acetylation, ubiquitination and so on. Several E3 ligases including murine double minute 2 (MDM2) promote the degradation of Rb. This study focuses on the role of HAUSP (herpes virus associated ubiquitin specific protease) on Rb. Here, we show that HAUSP colocalizes and interacts with Rb to stabilize it from proteasomal degradation by removing wild-type and K48-linked ubiquitin chains in human embryonic kidney 293 (HEK293) cells. HAUSP deubiquitinates Rb in vivo and in vitro, leading to an increased cell population in the G1 phase. Hence, HAUSP is a novel deubiquitinase for Rb. Immunohistochemistry, western blotting and cell-based assays show that HAUSP is overexpressed in glioma and contributes towards glioma progression. However, HAUSP activity on Rb is abrogated in glioma (cancer), where these two proteins show an inverse relationship. MDM2 (a known substrate of HAUSP) serves as a better target for HAUSP-mediated deubiquitination in cancer cells, facilitating degradation of Rb and oncogenic progression. This novel regulatory axis is proteasome mediated, p53 independent, and the level of MDM2 is critical. The shift in equilibrium by differential deubiquitination in regulation of Rb explains a subtle difference existing between normal and cancer cells. This leads to speculation about a new possibility for distinguishing cancer cells from normal cells at the molecular level, which may be investigated for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Seemana Bhattacharya
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, Jadavpur, Kolkata, -700 032, India
| | | |
Collapse
|
28
|
Joiner DM, Less KD, Van Wieren EM, Zhang YW, Hess D, Williams BO. Accelerated and increased joint damage in young mice with global inactivation of mitogen-inducible gene 6 after ligament and meniscus injury. Arthritis Res Ther 2014; 16:R81. [PMID: 24670222 PMCID: PMC4060238 DOI: 10.1186/ar4522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 03/13/2014] [Indexed: 12/11/2022] Open
Abstract
Introduction Ligament and meniscal damage can cause joint disease. Arthritic joints contain increased amounts of epidermal growth factor receptor (EGFR) protein, and polymorphisms in EGFR are associated with arthritis risk. The role of endogenous EGFR regulation during joint disease due to ligament and meniscal trauma is unknown. Mitogen-inducible gene 6 (MIG-6) can reduce EGFR phosphorylation and downstream signaling. We examined the effect of EGFR modulation by MIG-6 on joint disease development after ligament and meniscus injury. Methods Knee ligament transection and meniscus removal were performed surgically on mice homozygous for a global inactivating mutation in MIG-6 (Mig-6−/−) and in wild-type (WT) animals. Results Two weeks after surgery, Mig-6−/−mice had bone erosion as well as greater fibrous tissue area and serum RANKL concentration than WT mice. Four weeks after surgery, Mig-6−/−mice had less cartilage and increased cell proliferation relative to contralateral control and WT knees. Increased apoptotic cells and growth outside the articulating region occurred in Mig-6−/−mice. Tibia trabecular bone mineral density (BMD) and the number of trabeculae were lower in surgically treated knees relative to the respective control knees for both groups. BMD, as well as trabecular thickness and number, were lower in surgically treated knees from Mig-6−/−mice relative to WT surgically treated knees. Phosphorylated EGFR staining in surgically treated knees decreased for WT mice and increased for Mig-6−/−mice. Fewer inflammatory cells were present in the knees of WT mice. Conclusion Mig-6−/−mice have rapid and increased joint damage after ligament and meniscal trauma. Mig-6 modification could lessen degenerative disease development after this type of injury.
Collapse
|
29
|
Qu C, Zhang W, Zheng G, Zhang Z, Yin J, He Z. Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol Cell Biochem 2013; 386:63-71. [PMID: 24096736 DOI: 10.1007/s11010-013-1845-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/26/2013] [Indexed: 11/26/2022]
Abstract
Breast cancer is the most frequently diagnosed tumor type and the primary leading cause of cancer deaths in women worldwide and multidrug resistance is the major obstacle for breast cancer treatment improvement. Emerging evidence suggests that metformin, the most widely used antidiabetic drug, resensitizes and cooperates with some anticancer drugs to exert anticancer effect. However, there are no data regarding the reversal effect of metformin on chemoresistance in breast cancer. In the present study, we investigated the resistance reversal effect of metformin on acquired multidrug-resistant breast cancer cells MCF-7/5-Fu derived from MCF-7 breast cancer cells and innate multidrug-resistant MDA-MB-231 breast cancer cells, and we found that metformin resensitized MCF7/5-FU and MDA-MB-231 to 5-fluorouracil (5-FU), adriamycin, and paclitaxel. We also observed that metformin reversed epithelial-mesenchymal transition (EMT) phenotype and decreased the invasive capacity of MCF7/5-FU and MDA-MB-231 cells. However, there were no significant changes upon metformin-treated MCF7 cells. Moreover, we found metformin treatment activated AMPK signal pathway in MCF7/5-FU and MDA-MB-231 cells and compound C, the AMPK inhibitor, could partly abolish the resensitization and EMT reversal effect of metformin. To the best of our knowledge, we are the first to report that metformin can resensitize multidrug-resistant breast cancer cells due to activating AMPK signal pathway. Our study will help elucidate the mechanism of chemoresistance and establish new strategies of chemotherapy for human breast cancer.
Collapse
Affiliation(s)
- Chen Qu
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Banerji B, Pramanik SK, Pal U, Maiti NC. Potent anticancer activity of cystine-based dipeptides and their interaction with serum albumins. Chem Cent J 2013; 7:91. [PMID: 23705891 PMCID: PMC3680302 DOI: 10.1186/1752-153x-7-91] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 05/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cancer is a severe threat to the human society. In the scientific community worldwide cancer remains a big challenge as there are no remedies as of now. Cancer is quite complicated as it involves multiple signalling pathways and it may be caused by genetic disorders. Various natural products and synthetic molecules have been designed to prevent cell proliferation. Peptide-based anticancer drugs, however, are not explored properly. Though peptides have their inherent proteolytic instability, they could act as anticancer agents. RESULTS In this present communication a suitably protected cystine based dipeptide and its deprotected form have been synthesized. Potent anticancer activities were confirmed by MTT assay (a laboratory test and a standard colorimetric assay, which measures changes in colour, for measuring cellular proliferation and phase contrast images. The IC50 value, a measure of the effectiveness of a compound in inhibiting biological or biochemical function, of these compounds ranges in the sub-micromolar level. The binding interactions with serum albumins (HSA and BSA) were performed with all these molecules and all of them show very strong binding at sub-micromolar concentration. CONCLUSIONS This study suggested that the cystine-based dipeptides were potential anticancer agents. These peptides also showed very good binding with major carrier proteins of blood, the serum albumins. We are currently working on determining the detailed mechanism of anticancer activity of these molecules.
Collapse
Affiliation(s)
- Biswadip Banerji
- Department of Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S,C, Mullick Road, Kolkata 700032, India.
| | | | | | | |
Collapse
|