1
|
Li Z, Sun L, Wang Y, Liu B, Xin F. Construction of a Novel Vanillin-Induced Autoregulating Bidirectional Transport System in a Vanillin-Producing E. coli Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14809-14820. [PMID: 38899780 DOI: 10.1021/acs.jafc.4c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Vanillin is one of the world's most extensively used flavoring agents with high application value. However, the yield of vanillin biosynthesis remains limited due to the low efficiency of substrate uptake and the inhibitory effect on cell growth caused by vanillin. Here, we screened high-efficiency ferulic acid importer TodX and vanillin exporters PP_0178 and PP_0179 by overexpressing genes encoding candidate transporters in a vanillin-producing engineered Escherichia coli strain VA and further constructed an autoregulatory bidirectional transport system by coexpressing TodX and PP_0178/PP_0179 with a vanillin self-inducible promoter ADH7. Compared with strain VA, strain VA-TodX-PP_0179 can efficiently transport ferulic acid across the cell membrane and convert it to vanillin, which significantly increases the substrate utilization rate efficiency (14.86%) and vanillin titer (51.07%). This study demonstrated that the autoregulatory bidirectional transport system significantly enhances the substrate uptake efficiency while alleviating the vanillin toxicity issue, providing a promising viable route for vanillin biosynthesis.
Collapse
Affiliation(s)
- Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Lina Sun
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Bolin Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| |
Collapse
|
2
|
Tomoiaga RB, Ágoston G, Boros K, Nagy LC, Toşa MI, Paizs C, Bencze LC. The Biocatalytic Potential of Aromatic Ammonia-Lyase from Loktanella atrilutea. Chembiochem 2024; 25:e202400011. [PMID: 38415939 DOI: 10.1002/cbic.202400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Characterization of the aromatic ammonia-lyase from Loktanella atrilutea (LaAAL) revealed reduced activity towards canonical AAL substrates: l-Phe, l-Tyr, and l-His, contrasted by its pronounced efficiency towards 3,4-dimethoxy-l-phenylalanine. Assessing the optimal conditions, LaAAL exhibited maximal activity at pH 9.5 in the ammonia elimination reaction route, distinct from the typical pH ranges of most PALs and TALs. Within the exploration of the ammonia source for the opposite, synthetically valuable ammonia addition reaction, the stability of LaAAL exhibited a positive correlation with the ammonia concentration, with the highest stability in 4 M ammonium carbamate of unadjusted pH of ~9.5. While the enzyme activity increased with rising temperatures yet, the highest operational stability and highest stationary conversions of LaAAL were observed at 30 °C. The substrate scope analysis highlighted the catalytic adaptability of LaAAL in the hydroamination of diverse cinnamic acids, especially of meta-substituted and di-/multi-substituted analogues, with structural modelling exposing steric clashes between the substrates' ortho-substituents and catalytic site residues. LaAAL showed a predilection for ammonia elimination, while classifying as a tyrosine ammonia-lyase (TAL) among the natural AAL classes. However, its distinctive attributes, such as genomic context, unique substrate specificity and catalytic fingerprint, suggest a potential natural role beyond those of known AAL classes.
Collapse
Affiliation(s)
- R B Tomoiaga
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş Bolyai University, Arany János Str. 11, RO-400028, Cluj-Napoca, Romania
| | - G Ágoston
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş Bolyai University, Arany János Str. 11, RO-400028, Cluj-Napoca, Romania
| | - K Boros
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş Bolyai University, Arany János Str. 11, RO-400028, Cluj-Napoca, Romania
| | - L C Nagy
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş Bolyai University, Arany János Str. 11, RO-400028, Cluj-Napoca, Romania
| | - M I Toşa
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş Bolyai University, Arany János Str. 11, RO-400028, Cluj-Napoca, Romania
| | - C Paizs
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş Bolyai University, Arany János Str. 11, RO-400028, Cluj-Napoca, Romania
| | - L C Bencze
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş Bolyai University, Arany János Str. 11, RO-400028, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Nieves-Morión M, Camargo S, Bardi S, Ruiz MT, Flores E, Foster RA. Heterologous expression of genes from a cyanobacterial endosymbiont highlights substrate exchanges with its diatom host. PNAS NEXUS 2023; 2:pgad194. [PMID: 37383020 PMCID: PMC10299089 DOI: 10.1093/pnasnexus/pgad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
A few genera of diatoms are widespread and thrive in low-nutrient waters of the open ocean due to their close association with N2-fixing, filamentous heterocyst-forming cyanobacteria. In one of these symbioses, the symbiont, Richelia euintracellularis, has penetrated the cell envelope of the host, Hemiaulus hauckii, and lives inside the host cytoplasm. How the partners interact, including how the symbiont sustains high rates of N2 fixation, is unstudied. Since R. euintracellularis has evaded isolation, heterologous expression of genes in model laboratory organisms was performed to identify the function of proteins from the endosymbiont. Gene complementation of a cyanobacterial invertase mutant and expression of the protein in Escherichia coli showed that R. euintracellularis HH01 possesses a neutral invertase that splits sucrose producing glucose and fructose. Several solute-binding proteins (SBPs) of ABC transporters encoded in the genome of R. euintracellularis HH01 were expressed in E. coli, and their substrates were characterized. The selected SBPs directly linked the host as the source of several substrates, e.g. sugars (sucrose and galactose), amino acids (glutamate and phenylalanine), and a polyamine (spermidine), to support the cyanobacterial symbiont. Finally, transcripts of genes encoding the invertase and SBPs were consistently detected in wild populations of H. hauckii collected from multiple stations and depths in the western tropical North Atlantic. Our results support the idea that the diatom host provides the endosymbiotic cyanobacterium with organic carbon to fuel N2 fixation. This knowledge is key to understanding the physiology of the globally significant H. hauckii-R. euintracellularis symbiosis.
Collapse
Affiliation(s)
- Mercedes Nieves-Morión
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm SE-106 91, Sweden
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville E-41092, Spain
| | - Sergio Camargo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville E-41092, Spain
| | - Sepehr Bardi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm SE-106 91, Sweden
| | - María Teresa Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville E-41092, Spain
| | | | | |
Collapse
|
4
|
Lignin Valorization: Production of High Value-Added Compounds by Engineered Microorganisms. Catalysts 2023. [DOI: 10.3390/catal13030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Lignin is the second most abundant polymer in nature, which is also widely generated during biomass fractionation in lignocellulose biorefineries. At present, most of technical lignin is simply burnt for energy supply although it represents the richest natural source of aromatics, and thus it is a promising feedstock for generation of value-added compounds. Lignin is heterogeneous in composition and recalcitrant to degradation, with this substantially hampering its use. Notably, microbes have evolved particular enzymes and specialized metabolic pathways to degrade this polymer and metabolize its various aromatic components. In recent years, novel pathways have been designed allowing to establish engineered microbial cell factories able to efficiently funnel the lignin degradation products into few metabolic intermediates, representing suitable starting points for the synthesis of a variety of valuable molecules. This review focuses on recent success cases (at the laboratory/pilot scale) based on systems metabolic engineering studies aimed at generating value-added and specialty chemicals, with much emphasis on the production of cis,cis-muconic acid, a building block of recognized industrial value for the synthesis of plastic materials. The upgrade of this global waste stream promises a sustainable product portfolio, which will become an industrial reality when economic issues related to process scale up will be tackled.
Collapse
|
5
|
Brown B, Wilkins M, Saha R. Rhodopseudomonas palustris: A biotechnology chassis. Biotechnol Adv 2022; 60:108001. [PMID: 35680002 DOI: 10.1016/j.biotechadv.2022.108001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Rhodopseudomonas palustris is an attractive option for biotechnical applications and industrial engineering due to its metabolic versatility and its ability to catabolize a wide variety of feedstocks and convert them to several high-value products. Given its adaptable metabolism, R. palustris has been studied and applied in an extensive variety of applications such as examining metabolic tradeoffs for environmental perturbations, biodegradation of aromatic compounds, environmental remediation, biofuel production, agricultural biostimulation, and bioelectricity production. This review provides a holistic summary of the commercial applications for R. palustris as a biotechnology chassis and suggests future perspectives for research and engineering.
Collapse
Affiliation(s)
- Brandi Brown
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mark Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
6
|
Liu H, Liu ZH, Zhang RK, Yuan JS, Li BZ, Yuan YJ. Bacterial conversion routes for lignin valorization. Biotechnol Adv 2022; 60:108000. [DOI: 10.1016/j.biotechadv.2022.108000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
|
7
|
Mutanda I, Sun J, Jiang J, Zhu D. Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications. Biotechnol Adv 2022; 59:107952. [PMID: 35398204 DOI: 10.1016/j.biotechadv.2022.107952] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
|
8
|
Gautom T, Dheeman D, Levy C, Butterfield T, Alvarez Gonzalez G, Le Roy P, Caiger L, Fisher K, Johannissen L, Dixon N. Structural basis of terephthalate recognition by solute binding protein TphC. Nat Commun 2021; 12:6244. [PMID: 34716322 PMCID: PMC8556258 DOI: 10.1038/s41467-021-26508-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/06/2021] [Indexed: 11/08/2022] Open
Abstract
Biological degradation of Polyethylene terephthalate (PET) plastic and assimilation of the corresponding monomers ethylene glycol and terephthalate (TPA) into central metabolism offers an attractive route for bio-based molecular recycling and bioremediation applications. A key step is the cellular uptake of the non-permeable TPA into bacterial cells which has been shown to be dependent upon the presence of the key tphC gene. However, little is known from a biochemical and structural perspective about the encoded solute binding protein, TphC. Here, we report the biochemical and structural characterisation of TphC in both open and TPA-bound closed conformations. This analysis demonstrates the narrow ligand specificity of TphC towards aromatic para-substituted dicarboxylates, such as TPA and closely related analogues. Further phylogenetic and genomic context analysis of the tph genes reveals homologous operons as a genetic resource for future biotechnological and metabolic engineering efforts towards circular plastic bio-economy solutions.
Collapse
Affiliation(s)
- Trishnamoni Gautom
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
- Royal School of Bio-Sciences, Royal Global University, Guwahati, Assam, India
| | - Dharmendra Dheeman
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Colin Levy
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Thomas Butterfield
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Guadalupe Alvarez Gonzalez
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Philip Le Roy
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Lewis Caiger
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Karl Fisher
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Linus Johannissen
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB) and Department of Chemistry, The University of Manchester, Manchester, UK.
| |
Collapse
|
9
|
Bisson C, Salmon RC, West L, Rafferty JB, Hitchcock A, Thomas GH, Kelly DJ. The structural basis for high-affinity uptake of lignin-derived aromatic compounds by proteobacterial TRAP transporters. FEBS J 2021; 289:436-456. [PMID: 34375507 DOI: 10.1111/febs.16156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
The organic polymer lignin is a component of plant cell walls, which like (hemi)-cellulose is highly abundant in nature and relatively resistant to degradation. However, extracellular enzymes released by natural microbial consortia can cleave the β-aryl ether linkages in lignin, releasing monoaromatic phenylpropanoids that can be further catabolised by diverse species of bacteria. Biodegradation of lignin is therefore important in global carbon cycling, and its natural abundance also makes it an attractive biotechnological feedstock for the industrial production of commodity chemicals. Whilst the pathways for degradation of lignin-derived aromatics have been extensively characterised, much less is understood about how they are recognised and taken up from the environment. The purple phototrophic bacterium Rhodopseudomonas palustris can grow on a range of phenylpropanoid monomers and is a model organism for studying their uptake and breakdown. R. palustris encodes a tripartite ATP-independent periplasmic (TRAP) transporter (TarPQM) linked to genes encoding phenylpropanoid-degrading enzymes. The periplasmic solute-binding protein component of this transporter, TarP, has previously been shown to bind aromatic substrates. Here, we determine the high-resolution crystal structure of TarP from R. palustris as well as the structures of homologous proteins from the salt marsh bacterium Sagittula stellata and the halophile Chromohalobacter salexigens, which also grow on lignin-derived aromatics. In combination with tryptophan fluorescence ligand-binding assays, our ligand-bound co-crystal structures reveal the molecular basis for high-affinity recognition of phenylpropanoids by these TRAP transporters, which have potential for improving uptake of these compounds for biotechnological transformations of lignin.
Collapse
Affiliation(s)
- Claudine Bisson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| | - Robert C Salmon
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| | - Laura West
- Department of Biology, University of York, UK
| | - John B Rafferty
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| | | | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| |
Collapse
|
10
|
Schäfer L, Meinert-Berning C, Kobus S, Höppner A, Smits SHJ, Steinbüchel A. Crystal structure of the sugar acid-binding protein CxaP from a TRAP transporter in Advenella mimigardefordensis strain DPN7 T. FEBS J 2021; 288:4905-4917. [PMID: 33630388 DOI: 10.1111/febs.15789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/01/2022]
Abstract
Recently, CxaP, a sugar acid substrate binding protein (SBP) from Advenella mimigardefordensis strain DPN7T , was identified as part of a novel sugar uptake strategy. In the present study, the protein was successfully crystallized. Although several SBP structures of tripartite ATP-independent periplasmic transporters have already been solved, this is the first structure of an SBP accepting multiple sugar acid ligands. Protein crystals were obtained with bound d-xylonic acid, d-fuconic acid d-galactonic and d-gluconic acid, respectively. The protein shows the typical structure of an SBP of a tripartite ATP-independent periplasmic transporter consisting of two domains linked by a hinge and spanned by a long α-helix. By analysis of the structure, the substrate binding site of the protein was identified. The carboxylic group of the sugar acids interacts with Arg175, whereas the coordination of the hydroxylic groups at positions C2 and C3 is most probably realized by Arg154 and Asn151. Furthermore, it was observed that 2-keto-3-deoxy-d-gluconic acid is bound in protein crystals that were crystallized without the addition of any ligand, indicating that this molecule is prebound to the protein and is displaced by the other ligands if they are available. DATABASE: Structural data of CxaP complexes are available in the worldwide Protein Data Bank (https://www.rcsb.org) under the accession codes 7BBR (2-keto-3-deoxy-d-gluconic acid), 7BCR (d-galactonic acid), 7BCN (d-xylonic acid), 7BCO (d-fuconic acid) and 7BCP (d-gluconic acid).
Collapse
Affiliation(s)
- Lukas Schäfer
- Institute of Molecular Microbiology and Biotechnology, Westfälische Wilhelms University Münster, Münster, Germany
| | - Christina Meinert-Berning
- Institute of Molecular Microbiology and Biotechnology, Westfälische Wilhelms University Münster, Münster, Germany
| | - Stefanie Kobus
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Astrid Höppner
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexander Steinbüchel
- Institute of Molecular Microbiology and Biotechnology, Westfälische Wilhelms University Münster, Münster, Germany.,Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Wada A, Prates ÉT, Hirano R, Werner AZ, Kamimura N, Jacobson DA, Beckham GT, Masai E. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics. Metab Eng 2021; 64:167-179. [PMID: 33549838 DOI: 10.1016/j.ymben.2021.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 01/30/2021] [Indexed: 11/18/2022]
Abstract
Pseudomonas putida KT2440 (hereafter KT2440) is a well-studied platform bacterium for the production of industrially valuable chemicals from heterogeneous mixtures of aromatic compounds obtained from lignin depolymerization. KT2440 can grow on lignin-related monomers, such as ferulate (FA), 4-coumarate (4CA), vanillate (VA), 4-hydroxybenzoate (4HBA), and protocatechuate (PCA). Genes associated with their catabolism are known, but knowledge about the uptake systems remains limited. In this work, we studied the KT2440 transporters of lignin-related monomers and their substrate selectivity. Based on the inhibition by protonophores, we focused on five genes encoding aromatic acid/H+ symporter family transporters categorized into major facilitator superfamily that uses the proton motive force. The mutants of PP_1376 (pcaK) and PP_3349 (hcnK) exhibited significantly reduced growth on PCA/4HBA and FA/4CA, respectively, while no change was observed on VA for any of the five gene mutants. At pH 9.0, the conversion of these compounds by hcnK mutant (FA/4CA) and vanK mutant (VA) was dramatically reduced, revealing that these transporters are crucial for the uptake of the anionic substrates at high pH. Uptake assays using 14C-labeled substrates in Escherichia coli and biosensor-based assays confirmed that PcaK, HcnK, and VanK have ability to take up PCA, FA/4CA, and VA/PCA, respectively. Additionally, analyses of the predicted protein structures suggest that the size and hydropathic properties of the substrate-binding sites of these transporters determine their substrate preferences. Overall, this study reveals that at physiological pH, PcaK and HcnK have a major role in the uptake of PCA/4HBA and FA/4CA, respectively, and VanK is a VA/PCA transporter. This information can contribute to the engineering of strains for the efficient conversion of lignin-related monomers to value-added chemicals.
Collapse
Affiliation(s)
- Ayumu Wada
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Érica T Prates
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ryo Hirano
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Allison Z Werner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Daniel A Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan.
| |
Collapse
|
12
|
Stephens S, Mahadevan R, Allen DG. Engineering Photosynthetic Bioprocesses for Sustainable Chemical Production: A Review. Front Bioeng Biotechnol 2021; 8:610723. [PMID: 33490053 PMCID: PMC7820810 DOI: 10.3389/fbioe.2020.610723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Microbial production of chemicals using renewable feedstocks such as glucose has emerged as a green alternative to conventional chemical production processes that rely primarily on petroleum-based feedstocks. The carbon footprint of such processes can further be reduced by using engineered cells that harness solar energy to consume feedstocks traditionally considered to be wastes as their carbon sources. Photosynthetic bacteria utilize sophisticated photosystems to capture the energy from photons to generate reduction potential with such rapidity and abundance that cells often cannot use it fast enough and much of it is lost as heat and light. Engineering photosynthetic organisms could enable us to take advantage of this energy surplus by redirecting it toward the synthesis of commercially important products such as biofuels, bioplastics, commodity chemicals, and terpenoids. In this work, we review photosynthetic pathways in aerobic and anaerobic bacteria to better understand how these organisms have naturally evolved to harness solar energy. We also discuss more recent attempts at engineering both the photosystems and downstream reactions that transfer reducing power to improve target chemical production. Further, we discuss different methods for the optimization of photosynthetic bioprocess including the immobilization of cells and the optimization of light delivery. We anticipate this review will serve as an important resource for future efforts to engineer and harness photosynthetic bacteria for chemical production.
Collapse
Affiliation(s)
- Sheida Stephens
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - D Grant Allen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Comparative Proteomics of Marinobacter sp. TT1 Reveals Corexit Impacts on Hydrocarbon Metabolism, Chemotactic Motility, and Biofilm Formation. Microorganisms 2020; 9:microorganisms9010003. [PMID: 33374976 PMCID: PMC7822026 DOI: 10.3390/microorganisms9010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
The application of chemical dispersants during marine oil spills can affect the community composition and activity of marine microorganisms. Several studies have indicated that certain marine hydrocarbon-degrading bacteria, such as Marinobacter spp., can be inhibited by chemical dispersants, resulting in lower abundances and/or reduced biodegradation rates. However, a major knowledge gap exists regarding the mechanisms underlying these physiological effects. Here, we performed comparative proteomics of the Deepwater Horizon isolate Marinobacter sp. TT1 grown under different conditions. Strain TT1 received different carbon sources (pyruvate vs. n-hexadecane) with and without added dispersant (Corexit EC9500A). Additional treatments contained crude oil in the form of a water-accommodated fraction (WAF) or chemically-enhanced WAF (CEWAF; with Corexit). For the first time, we identified the proteins associated with alkane metabolism and alginate biosynthesis in strain TT1, report on its potential for aromatic hydrocarbon biodegradation and present a protein-based proposed metabolism of Corexit components as carbon substrates. Our findings revealed that Corexit exposure affects hydrocarbon metabolism, chemotactic motility, biofilm formation, and induces solvent tolerance mechanisms, like efflux pumps, in strain TT1. This study provides novel insights into dispersant impacts on microbial hydrocarbon degraders that should be taken into consideration for future oil spill response actions.
Collapse
|
14
|
Rhodopseudomonas palustris CGA009 polyhydroxybutyrate production from a lignin aromatic and quantification via flow cytometry. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Sanz D, García JL, Díaz E. Expanding the current knowledge and biotechnological applications of the oxygen-independent ortho-phthalate degradation pathway. Environ Microbiol 2020; 22:3478-3493. [PMID: 32510798 DOI: 10.1111/1462-2920.15119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022]
Abstract
ortho-Phthalate derives from industrially produced phthalate esters, which are massively used as plasticizers and constitute major emerging environmental pollutants. The pht pathway for the anaerobic bacterial biodegradation of o-phthalate involves its activation to phthaloyl-CoA followed by decarboxylation to benzoyl-CoA. Here, we have explored further the pht peripheral pathway in denitrifying bacteria and shown that it requires also an active transport system for o-phthalate uptake that belongs to the poorly characterized class of TAXI-TRAP transporters. The construction of a fully functional pht cassette combining both catabolic and transport genes allowed to expand the o-phthalate degradation ecological trait to heterologous hosts. Unexpectedly, the pht cassette also allowed the aerobic conversion of o-phthalate to benzoyl-CoA when coupled to a functional box central pathway. Hence, the pht pathway may constitute an evolutionary acquisition for o-phthalate degradation by bacteria that thrive either in anoxic environments or in environments that face oxygen limitations and that rely on benzoyl-CoA, rather than on catecholic central intermediates, for the aerobic catabolism of aromatic compounds. Finally, the recombinant pht cassette was used both to screen for functional aerobic box pathways in bacteria and to engineer recombinant biocatalysts for o-phthalate bioconversion into sustainable bioplastics, e.g., polyhydroxybutyrate, in plastic recycling industrial processes.
Collapse
Affiliation(s)
- David Sanz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - José L García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| |
Collapse
|
16
|
Abstract
Lignin is an abundant aromatic polymer found in plant secondary cell walls. In recent years, lignin has attracted renewed interest as a feedstock for bio-based chemicals via catalytic and biological approaches and has emerged as a target for genetic engineering to improve lignocellulose digestibility by altering its composition. In lignin biosynthesis and microbial conversion, small phenolic lignin precursors or degradation products cross membrane bilayers through an unidentified translocation mechanism prior to incorporation into lignin polymers (synthesis) or catabolism (bioconversion), with both passive and transporter-assisted mechanisms postulated. To test the passive permeation potential of these phenolics, we performed molecular dynamics simulations for 69 monomeric and dimeric lignin-related phenolics with 3 model membranes to determine the membrane partitioning and permeability coefficients for each compound. The results support an accessible passive permeation mechanism for most compounds, including monolignols, dimeric phenolics, and the flavonoid, tricin. Computed lignin partition coefficients are consistent with concentration enrichment near lipid carbonyl groups, and permeability coefficients are sufficient to keep pace with cellular metabolism. Interactions between methoxy and hydroxy groups are found to reduce membrane partitioning and improve permeability. Only carboxylate-modified or glycosylated lignin phenolics are predicted to require transporters for membrane translocation. Overall, the results suggest that most lignin-related compounds can passively traverse plant and microbial membranes on timescales commensurate with required biological activities, with any potential transport regulation mechanism in lignin synthesis, catabolism, or bioconversion requiring compound functionalization.
Collapse
|
17
|
Brink DP, Ravi K, Lidén G, Gorwa-Grauslund MF. Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database. Appl Microbiol Biotechnol 2019; 103:3979-4002. [PMID: 30963208 PMCID: PMC6486533 DOI: 10.1007/s00253-019-09692-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 12/18/2022]
Abstract
Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database ( www.elignindatabase.com ), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings.
Collapse
Affiliation(s)
- Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden.
| | - Krithika Ravi
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Marie F Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
18
|
Kasai D, Iwasaki T, Nagai K, Araki N, Nishi T, Fukuda M. 2,3-Dihydroxybenzoate meta-Cleavage Pathway is Involved in o-Phthalate Utilization in Pseudomonas sp. strain PTH10. Sci Rep 2019; 9:1253. [PMID: 30718753 PMCID: PMC6362003 DOI: 10.1038/s41598-018-38077-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/18/2018] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas sp. strain PTH10 can utilize o-phthalate which is a key intermediate in the bacterial degradation of some polycyclic aromatic hydrocarbons. In this strain, o-phthalate is degraded to 2,3-dihydroxybenzoate and further metabolized via the 2,3-dihydroxybenzoate meta-cleavage pathway. Here, the opa genes which are involved in the o-phthalate catabolism were identified. Based on the enzymatic activity of the opa gene products, opaAaAbAcAd, opaB, opaC, and opaD were found to code for o-phthalate 2,3-dioxygenase, dihydrodiol dehydrogenase, 2,3-dihydroxybenzoate 3,4-dioxygenase, and 3-carboxy-2-hydroxymuconate-6-semialdehyde decarboxylase, respectively. Collectively, these enzymes are thought to catalyze the conversion of o-phthalate to 2-hydroxymuconate-6-semialdehyde. Deletion mutants of the above opa genes indicated that their products were required for the utilization of o-phthalate. Transcriptional analysis showed that the opa genes were organized in the same transcriptional unit. Quantitative analysis of opaAa, opaB, opaC, opaD, opaE, and opaN revealed that, except for opaB and opaC, all other genes were transcriptionally induced during growth on o-phthalate. The constitutive expression of opaB and opaC, and the transcriptional induction of opaD located downstream of opaB, suggest several possible internal promoters are existence in the opa cluster. Together, these results strongly suggest that the opa genes are involved in a novel o-phthalate catabolic pathway in strain PTH10.
Collapse
Affiliation(s)
- Daisuke Kasai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.
| | | | - Kazuki Nagai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Naoto Araki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | | | - Masao Fukuda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.,Department of Biological Chemistry, Chubu University, Kasugai, Aichi, 487-8501, Japan
| |
Collapse
|
19
|
Rosa LT, Dix SR, Rafferty JB, Kelly DJ. A New Mechanism for High-Affinity Uptake of C4-Dicarboxylates in Bacteria Revealed by the Structure of Rhodopseudomonas palustris MatC (RPA3494), a Periplasmic Binding Protein of the Tripartite Tricarboxylate Transporter (TTT) Family. J Mol Biol 2018; 431:351-367. [PMID: 30471256 DOI: 10.1016/j.jmb.2018.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022]
Abstract
C4-dicarboxylates play a central role in cellular physiology as key metabolic intermediates. Under aerobic conditions, they participate in the citric acid cycle, while in anaerobic bacteria, they are important in energy-conserving fermentation and respiration processes. Ten different families of secondary transporters have been described to participate in C4-dicarboxylate movement across biological membranes, but only one of these utilizes an extracytoplasmic solute binding protein to achieve high-affinity uptake. Here, we identify the MatBAC system from the photosynthetic bacterium Rhodopseudomonas palustris as the first member of the tripartite tricarboxylate transport family to be involved in C4-dicarboxylate transport. Tryptophan fluorescence spectroscopy showed that MatC, the periplasmic binding protein from this system, binds to l- and d-malate with Kd values of 27 and 21 nM, respectively, the highest reported affinity to date for these C4-dicarboxylates, and to succinate (Kd = 110 nM) and fumarate (Kd = 400 nM). The 2.1-Å crystal structure of MatC with bound malate shows a high level of substrate coordination, with participation of two water molecules that bridge hydrogen bonds between the ligand proximal carboxylic group and the main chain of two conserved loops in the protein structure. The substrate coordination in MatC correlates with the binding data and explains the protein's selectivity for different substrates and respective binding affinities. Our results reveal a new function in C4-dicarboxylate transport by members of the poorly characterized tripartite tricarboxylate transport family, which are widely distributed in bacterial genomes but for which details of structure-function relationships and transport mechanisms have been lacking.
Collapse
Affiliation(s)
- Leonardo T Rosa
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Samuel R Dix
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - John B Rafferty
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
20
|
Functional Redundancy in the Hydroxycinnamate Catabolism Pathways of the Salt Marsh Bacterium Sagittula stellata E-37. Appl Environ Microbiol 2018; 84:AEM.02027-18. [PMID: 30242006 DOI: 10.1128/aem.02027-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/18/2018] [Indexed: 11/20/2022] Open
Abstract
The hydroxycinnamates (HCAs) ferulate and p-coumarate are among the most abundant constituents of lignin, and their degradation by bacteria is an essential step in the remineralization of vascular plant material. Here, we investigate the catabolism of these two HCAs by the marine bacterium Sagittula stellata E-37, a member of the roseobacter lineage with lignolytic potential. Bacterial degradation of HCAs is often initiated by the activity of a hydroxycinnamoyl-coenzyme A (hydroxycinnamoyl-CoA) synthase. Genome analysis of S. stellata revealed the presence of two feruloyl-CoA (fcs) synthase homologs, an unusual occurrence among characterized HCA degraders. In order to elucidate the role of these homologs in HCA catabolism, fcs-1 and fcs-2 were disrupted using insertional mutagenesis, yielding both single and double fcs mutants. Growth on p-coumarate was abolished in the fcs double mutant, whereas maximum cell yield on ferulate was only 2% of that of the wild type. Interestingly, the single mutants demonstrated opposing phenotypes, where the fcs-1 mutant showed impaired growth (extended lag and ∼60% of wild-type rate) on p-coumarate, and the fcs-2 mutant showed impaired growth (extended lag and ∼20% of wild-type rate) on ferulate, pointing to distinct but overlapping roles of the encoded fcs homologs, with fcs-1 primarily dedicated to p-coumarate utilization and fcs-2 playing a dominant role in ferulate utilization. Finally, a tripartite ATP-independent periplasmic (TRAP) family transporter was found to be required for growth on both HCAs. These findings provide evidence for functional redundancy in the degradation of HCAs in S. stellata E-37 and offer important insight into the genetic complexity of aromatic compound degradation in bacteria.IMPORTANCE Hydroxycinnamates (HCAs) are essential components of lignin and are involved in various plant functions, including defense. In nature, microbial degradation of HCAs is influential to global carbon cycling. HCA degradation pathways are also of industrial relevance, as microbial transformation of the HCA, ferulate, can generate vanillin, a valuable flavoring compound. Yet, surprisingly little is known of the genetics underlying bacterial HCA degradation. Here, we make comparisons to previously characterized bacterial HCA degraders and use a genetic approach to characterize genes involved in catabolism and uptake of HCAs in the environmentally relevant marine bacterium Sagittula stellata We provide evidence of overlapping substrate specificity between HCA degradation pathways and uptake proteins. We conclude that S. stellata is uniquely poised to utilize HCAs found in the complex mixtures of plant-derived compounds in nature. This strategy may be common among marine bacteria residing in lignin-rich coastal waters and has potential relevance to biotechnology sectors.
Collapse
|
21
|
Meyer F, Netzer J, Meinert C, Voigt B, Riedel K, Steinbüchel A. A proteomic analysis of ferulic acid metabolism in Amycolatopsis sp. ATCC 39116. Appl Microbiol Biotechnol 2018; 102:6119-6142. [DOI: 10.1007/s00253-018-9061-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 10/16/2022]
|
22
|
Wu W, Liu F, Singh S. Toward engineering E. coli with an autoregulatory system for lignin valorization. Proc Natl Acad Sci U S A 2018; 115:2970-2975. [PMID: 29500185 PMCID: PMC5866589 DOI: 10.1073/pnas.1720129115] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Efficient lignin valorization could add more than 10-fold the value gained from burning it for energy and is critical for economic viability of future biorefineries. However, lignin-derived aromatics from biomass pretreatment are known to be potent fermentation inhibitors in microbial production of fuels and other value-added chemicals. In addition, isopropyl-β-d-1-thiogalactopyranoside and other inducers are routinely added into fermentation broth to induce the expression of pathway enzymes, which further adds to the overall process cost. An autoregulatory system that can diminish the aromatics' toxicity as well as be substrate-inducible can be the key for successful integration of lignin valorization into future lignocellulosic biorefineries. Toward that goal, in this study an autoregulatory system is demonstrated that alleviates the toxicity issue and eliminates the cost of an external inducer. Specifically, this system is composed of a catechol biosynthesis pathway coexpressed with an active aromatic transporter CouP under induction by a vanillin self-inducible promoter, ADH7, to effectively convert the lignin-derived aromatics into value-added chemicals using Escherichia coli as a host. The constructed autoregulatory system can efficiently transport vanillin across the cell membrane and convert it to catechol. Compared with the system without CouP expression, the expression of catechol biosynthesis pathway with transporter CouP significantly improved the catechol yields about 30% and 40% under promoter pTrc and ADH7, respectively. This study demonstrated an aromatic-induced autoregulatory system that enabled conversion of lignin-derived aromatics into catechol without the addition of any costly, external inducers, providing a promising and economically viable route for lignin valorization.
Collapse
Affiliation(s)
- Weihua Wu
- Biomass Science & Conversion Technologies Department, Sandia National Laboratories, Livermore, CA 94550
| | - Fang Liu
- Biomass Science & Conversion Technologies Department, Sandia National Laboratories, Livermore, CA 94550
| | - Seema Singh
- Biomass Science & Conversion Technologies Department, Sandia National Laboratories, Livermore, CA 94550;
- Joint BioEnergy Institute, Emeryville, CA 94608
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
23
|
Rosa LT, Bianconi ME, Thomas GH, Kelly DJ. Tripartite ATP-Independent Periplasmic (TRAP) Transporters and Tripartite Tricarboxylate Transporters (TTT): From Uptake to Pathogenicity. Front Cell Infect Microbiol 2018; 8:33. [PMID: 29479520 PMCID: PMC5812351 DOI: 10.3389/fcimb.2018.00033] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/25/2018] [Indexed: 11/18/2022] Open
Abstract
The ability to efficiently scavenge nutrients in the host is essential for the viability of any pathogen. All catabolic pathways must begin with the transport of substrate from the environment through the cytoplasmic membrane, a role executed by membrane transporters. Although several classes of cytoplasmic membrane transporters are described, high-affinity uptake of substrates occurs through Solute Binding-Protein (SBP) dependent systems. Three families of SBP dependant transporters are known; the primary ATP-binding cassette (ABC) transporters, and the secondary Tripartite ATP-independent periplasmic (TRAP) transporters and Tripartite Tricarboxylate Transporters (TTT). Far less well understood than the ABC family, the TRAP transporters are found to be abundant among bacteria from marine environments, and the TTT transporters are the most abundant family of proteins in many species of β-proteobacteria. In this review, recent knowledge about these families is covered, with emphasis on their physiological and structural mechanisms, relating to several examples of relevant uptake systems in pathogenicity and colonization, using the SiaPQM sialic acid uptake system from Haemophilus influenzae and the TctCBA citrate uptake system of Salmonella typhimurium as the prototypes for the TRAP and TTT transporters, respectively. High-throughput analysis of SBPs has recently expanded considerably the range of putative substrates known for TRAP transporters, while the repertoire for the TTT family has yet to be fully explored but both types of systems most commonly transport carboxylates. Specialized spectroscopic techniques and site-directed mutagenesis have enriched our knowledge of the way TRAP binding proteins capture their substrate, while structural comparisons show conserved regions for substrate coordination in both families. Genomic and protein sequence analyses show TTT SBP genes are strikingly overrepresented in some bacteria, especially in the β-proteobacteria and some α-proteobacteria. The reasons for this are not clear but might be related to a role for these proteins in signaling rather than transport.
Collapse
Affiliation(s)
- Leonardo T Rosa
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Matheus E Bianconi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Gavin H Thomas
- Department of Biology, University of York, York, United Kingdom
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
24
|
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E. Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:679-705. [PMID: 29052962 DOI: 10.1111/1758-2229.12597] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 05/21/2023]
Abstract
Lignin is the most abundant phenolic polymer; thus, its decomposition by microorganisms is fundamental to carbon cycling on earth. Lignin breakdown is initiated by depolymerization catalysed by extracellular oxidoreductases secreted by white-rot basidiomycetous fungi. On the other hand, bacteria play a predominant role in the mineralization of lignin-derived heterogeneous low-molecular-weight aromatic compounds. The outline of bacterial catabolic pathways for lignin-derived bi- and monoaryls are typically composed of the following sequential steps: (i) funnelling of a wide variety of lignin-derived aromatics into vanillate and syringate, (ii) O demethylation of vanillate and syringate to form catecholic derivatives and (iii) aromatic ring-cleavage of the catecholic derivatives to produce tricarboxylic acid cycle intermediates. Knowledge regarding bacterial catabolic systems for lignin-derived aromatic compounds is not only important for understanding the terrestrial carbon cycle but also valuable for promoting the shift to a low-carbon economy via biological lignin valorisation. This review summarizes recent progress in bacterial catabolic systems for lignin-derived aromatic compounds, including newly identified catabolic pathways and genes for decomposition of lignin-derived biaryls, transcriptional regulation and substrate uptake systems. Recent omics approaches on catabolism of lignin-derived aromatic compounds are also described.
Collapse
Affiliation(s)
- Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kenji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kosuke Mori
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Takuma Araki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Masaya Fujita
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Yudai Higuchi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
25
|
Rosa LT, Dix SR, Rafferty JB, Kelly DJ. Structural basis for high-affinity adipate binding to AdpC (RPA4515), an orphan periplasmic-binding protein from the tripartite tricarboxylate transporter (TTT) family in Rhodopseudomonas palustris. FEBS J 2017; 284:4262-4277. [PMID: 29082669 DOI: 10.1111/febs.14304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/27/2017] [Accepted: 10/19/2017] [Indexed: 01/24/2023]
Abstract
The tripartite tricarboxylate transporter (TTT) family is a poorly characterised group of prokaryotic secondary solute transport systems, which employ a periplasmic substrate-binding protein (SBP) for initial ligand recognition. The substrates of only a small number of TTT systems are known and very few SBP structures have been solved, so the mechanisms of SBP-ligand interactions in this family are not well understood. The SBP RPA4515 (AdpC) from Rhodopseudomonas palustris was found by differential scanning fluorescence and isothermal titration calorimetry to bind aliphatic dicarboxylates of a chain length of six to nine carbons, with KD values in the μm range. The highest affinity was found for the C6-dicarboxylate adipate (1,6-hexanedioate). Crystal structures of AdpC, either adipate or 2-oxoadipate bound, revealed a lack of positively charged amino acids in the binding pocket and showed that water molecules are involved in bridging hydrogen bonds to the substrate, a conserved feature in the TTT SBP family that is distinct from other types of SBP. In AdpC, both of the ligand carboxylate groups and a linear chain conformation are needed for coordination in the binding pocket. RT-PCR showed that adpC expression is upregulated by low environmental adipate concentrations, suggesting adipate is a physiologically relevant substrate but as adpC is not genetically linked to any TTT membrane transport genes, the role of AdpC may be in signalling rather than transport. Our data expand the known ligands for TTT systems and identify a novel high-affinity binding protein for adipate, an important industrial chemical intermediate and food additive. DATABASES Protein structure co-ordinates are available in the PDB under the accession numbers 5OEI and 5OKU.
Collapse
Affiliation(s)
- Leonardo T Rosa
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | - Samuel R Dix
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | - John B Rafferty
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| |
Collapse
|
26
|
Zerbs S, Korajczyk PJ, Noirot PH, Collart FR. Transport capabilities of environmental Pseudomonads for sulfur compounds. Protein Sci 2017; 26:784-795. [PMID: 28127814 DOI: 10.1002/pro.3124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 11/11/2022]
Abstract
Sulfur is an essential element in plant rhizospheres and microbial activity plays a key role in increasing the biological availability of sulfur in soil environments. To better understand the mechanisms facilitating the exchange of sulfur-containing molecules in soil, we profiled the binding specificities of eight previously uncharacterized ABC transporter solute-binding proteins from plant-associated Pseudomonads. A high-throughput screening procedure indicated eighteen significant organosulfur binding ligands, with at least one high-quality screening hit for each protein target. Calorimetric and spectroscopic methods were used to validate the best ligand assignments and catalog the thermodynamic properties of the protein-ligand interactions. Two novel high-affinity ligand-binding activities were identified and quantified in this set of solute-binding proteins. Bacteria were cultured in minimal media with screening library components supplied as the sole sulfur sources, demonstrating that these organosulfur compounds can be metabolized and confirming the relevance of ligand assignments. These results expand the set of experimentally validated ligands amenable to transport by this ABC transporter family and demonstrate the complex range of protein-ligand interactions that can be accomplished by solute-binding proteins. Characterizing new nutrient import pathways provides insight into Pseudomonad metabolic capabilities which can be used to further interrogate bacterial survival and participation in soil and rhizosphere communities.
Collapse
Affiliation(s)
- Sarah Zerbs
- Biosciences Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, Illinois, 60439
| | - Peter J Korajczyk
- Biosciences Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, Illinois, 60439
| | - Philippe H Noirot
- Biosciences Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, Illinois, 60439
| | - Frank R Collart
- Biosciences Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, Illinois, 60439
| |
Collapse
|
27
|
Biological valorization of low molecular weight lignin. Biotechnol Adv 2016; 34:1318-1346. [DOI: 10.1016/j.biotechadv.2016.10.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
|
28
|
Shankaran KS, Ganai SA, K P A, P B, Mahadevan V. In silico and In vitro evaluation of the anti-inflammatory potential of Centratherum punctatum Cass-A. J Biomol Struct Dyn 2016; 35:765-780. [PMID: 26984043 DOI: 10.1080/07391102.2016.1160840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Centratherum punctatum Cass., a herb belonging to the family Asteraceae has been traditionally used as a curative against diverse disorders like inflammation, tumor, depression, and hypertension. Though the medicinal properties of this plant have been attributed to the presence of flavonoids, glucosides, alkaloids, Vitamin C, etc., the molecular constituents of this plant and of the flavonoids that contribute to its medicinal activity have not been explored yet. This work attempts to evaluate the potential of Centratherum punctatum extract as an anti-inflammatory agent. Ethanolic extracts of Centratherum punctatum analyzed by High Performance Thin Layer Chromatography (HPTLC) and Liquid Chromatography-Mass Spectrometry (LC-MS/MS) identified the presence of the flavones kaempferol, glycoside Isorhamnetin-3-O-rutinoside, and kaempferol-3-glucoside. The plant extract exhibited anti-oxidant property as confirmed by DPPH assay and IC50 value of 271.6 μg/mL during inhibition of protein denaturation, 186.8 μg/mL during RBC membrane stabilization, and 278.2 μg/mL for proteinase inhibition. Membrane stabilizing functions of flavones and flavones glycosides validated the anti-inflammatory potential of the extract. In silico evaluation using a rigorous molecular docking protocol with receptors of Cox2, TNF-α, Interleukin 1β convertase, and Histamine H1 predicted high binding affinity of the isoflavones and isoflavone glycosides of Centratherum punctatum Cass. The interactions have also been shown to compare well with that of known drugs valdecoxib through Gln178, His342, and Gly340, desloratadine (through Lys191 and Thr194) and belnacasin (through Asp288 and Gly287) proven to function through the anti-inflammatory pathway. This work establishes the anti-inflammatory potential of Centratherum punctatum Cass. extract as an alternative to existing therapeutic approach to inflammation through a systematic in silico approach supplementing the findings.
Collapse
Affiliation(s)
| | - Shabir Ahmad Ganai
- a School of Chemical & Biotechnology , SASTRA University , Thanjavur , India.,c Centre for Nanotechnology & Advanced Biomaterials(CeNTAB), School of Chemical & Biotechnology , SASTRA University , Thanjavur , India
| | - Arun K P
- b Centre for Advanced Research in Indian System of Medicine , SASTRA University , Thanjavur , India
| | - Brindha P
- b Centre for Advanced Research in Indian System of Medicine , SASTRA University , Thanjavur , India
| | - Vijayalakshmi Mahadevan
- a School of Chemical & Biotechnology , SASTRA University , Thanjavur , India.,c Centre for Nanotechnology & Advanced Biomaterials(CeNTAB), School of Chemical & Biotechnology , SASTRA University , Thanjavur , India
| |
Collapse
|
29
|
Santiago R, Malvar RA, Barros-Rios J, Samayoa LF, Butrón A. Hydroxycinnamate Synthesis and Association with Mediterranean Corn Borer Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:539-51. [PMID: 26690311 DOI: 10.1021/acs.jafc.5b04862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Previous results suggest a relationship between maize hydroxycinnamate concentration in the pith tissues and resistance to stem tunneling by Mediterranean corn borer (MCB, Sesamia nonagrioides Lef.) larvae. This study performs a more precise experiment, mapping an F2 derived from the cross between two inbreds with contrasting levels for hydroxycinnamates EP125 × PB130. We aimed to co-localize genomic regions involved in hydroxycinnamate synthesis and resistance to MCB and to highlight the particular route for each hydroxycinnamate component in relation to the better known phenylpropanoid pathway. Seven quantitative trait loci (QTLs) for p-coumarate, two QTLs for ferulate, and seven QTLs for total diferulates explained 81.7, 26.9, and 57.8% of the genotypic variance, respectively. In relation to borer resistance, alleles for increased hydroxycinnamate content (affecting one or more hydroxycinnamate compounds) could be associated with favorable effects on stem resistance to MCB, particularly the putative role of p-coumarate in borer resistance.
Collapse
Affiliation(s)
- Rogelio Santiago
- Agrobiologı́a Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la Misión Biológica de Galicia (CSIC); Departamento Biologı́a Vegetal y Ciencias del Suelo, Facultad de Biologı́a, Universidad de Vigo , Campus As Lagoas Marcosende, 36310 Vigo, Spain
| | - Rosa Ana Malvar
- Misión Biológica de Galicia (CSIC) , Apartado 28, 36080 Pontevedra, Spain
| | - Jaime Barros-Rios
- Department of Biological Sciences, University of North Texas , 1155 Union Circle #305220, Denton, Texas 76203, United States
| | | | - Ana Butrón
- Misión Biológica de Galicia (CSIC) , Apartado 28, 36080 Pontevedra, Spain
| |
Collapse
|
30
|
Pulido NO, Silva DA, Tellez LA, Pérez-Hernández G, García-Hernández E, Sosa-Peinado A, Fernández-Velasco DA. On the molecular basis of the high affinity binding of basic amino acids to LAOBP, a periplasmic binding protein fromSalmonella typhimurium. J Mol Recognit 2015; 28:108-16. [DOI: 10.1002/jmr.2434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/20/2014] [Accepted: 09/15/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Nancy O. Pulido
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; México DF Mexico
| | - Daniel-Adriano Silva
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; México DF Mexico
- Biochemistry Department; University of Washington; Seattle WA USA
| | - Luis A. Tellez
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; México DF Mexico
- Department of Psychiatry; Yale University School of Medicine; New Haven CT USA
| | - Gerardo Pérez-Hernández
- Departamento de Ciencias Naturales; Universidad Autónoma Metropolitana- Cuajimalpa; México DF Mexico
| | - Enrique García-Hernández
- Instituto de Química; Universidad Nacional Autónoma de México; Circuito Exterior, Ciudad Universitaria México 04510 DF Mexico
| | - Alejandro Sosa-Peinado
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; México DF Mexico
| | - D. Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; México DF Mexico
| |
Collapse
|
31
|
Deangelis KM, Sharma D, Varney R, Simmons B, Isern NG, Markilllie LM, Nicora C, Norbeck AD, Taylor RC, Aldrich JT, Robinson EW. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Front Microbiol 2013; 4:280. [PMID: 24065962 PMCID: PMC3777014 DOI: 10.3389/fmicb.2013.00280] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/29/2013] [Indexed: 01/05/2023] Open
Abstract
Lignocellulosic biofuels are promising as sustainable alternative fuels, but lignin inhibits access of enzymes to cellulose, and by-products of lignin degradation can be toxic to cells. The fast growth, high efficiency and specificity of enzymes employed in the anaerobic litter deconstruction carried out by tropical soil bacteria make these organisms useful templates for improving biofuel production. The facultative anaerobe Enterobacter lignolyticus SCF1 was initially cultivated from Cloud Forest soils in the Luquillo Experimental Forest in Puerto Rico, based on anaerobic growth on lignin as sole carbon source. The source of the isolate was tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, where bacteria using oxygen-independent enzymes likely play an important role in decomposition. We have used transcriptomics and proteomics to examine the observed increased growth of SCF1 grown on media amended with lignin compared to unamended growth. Proteomics suggested accelerated xylose uptake and metabolism under lignin-amended growth, with up-regulation of proteins involved in lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase (GST) proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. This suggested the use of lignin as terminal electron acceptor. We detected significant lignin degradation over time by absorbance, and also used metabolomics to demonstrate moderately significant decreased xylose concentrations as well as increased metabolic products acetate and formate in stationary phase in lignin-amended compared to unamended growth conditions. Our data show the advantages of a multi-omics approach toward providing insights as to how lignin may be used in nature by microorganisms coping with poor carbon availability.
Collapse
Affiliation(s)
- Kristen M Deangelis
- Department of Microbiology, University of Massachusetts Amherst Amherst, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|