1
|
Ukmar‐Godec T, Yu T, de Opakua AI, Pantoja CF, Munari F, Zweckstetter M. Conformational diversity of human HP1α. Protein Sci 2024; 33:e5079. [PMID: 38895997 PMCID: PMC11187854 DOI: 10.1002/pro.5079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Heterochromatin protein 1 alpha (HP1α) is an evolutionarily conserved protein that binds chromatin and is important for gene silencing. The protein comprises 191 residues arranged into three disordered regions and two structured domains, the chromo and chromoshadow domain, which associates into a homodimer. While high-resolution structures of the isolated domains of HP1 proteins are known, the structural properties of full-length HP1α remain largely unknown. Using a combination of NMR spectroscopy and structure predictions by AlphaFold2 we provide evidence that the chromo and chromoshadow domain of HP1α engage in direct contacts resulting in a compact chromo/chromoshadow domain arrangement. We further show that HP1β and HP1γ have increased interdomain dynamics when compared to HP1α which may contribute to the distinct roles of different Hp1 isoforms in gene silencing and activation.
Collapse
Affiliation(s)
- Tina Ukmar‐Godec
- German Center for Neurodegenerative Diseases (DZNE)Translational Structural BiologyGöttingenGermany
| | - Taekyung Yu
- German Center for Neurodegenerative Diseases (DZNE)Translational Structural BiologyGöttingenGermany
| | - Alain Ibanez de Opakua
- German Center for Neurodegenerative Diseases (DZNE)Translational Structural BiologyGöttingenGermany
| | - Christian F. Pantoja
- German Center for Neurodegenerative Diseases (DZNE)Translational Structural BiologyGöttingenGermany
| | | | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE)Translational Structural BiologyGöttingenGermany
- Department of NMR‐based Structural BiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| |
Collapse
|
2
|
Phan TM, Kim YC, Debelouchina GT, Mittal J. Interplay between charge distribution and DNA in shaping HP1 paralog phase separation and localization. eLife 2024; 12:RP90820. [PMID: 38592759 PMCID: PMC11003746 DOI: 10.7554/elife.90820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1β, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1β and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.
Collapse
Affiliation(s)
- Tien M Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
| | - Young C Kim
- Center for Materials Physics and Technology, Naval Research LaboratoryWashingtonUnited States
| | - Galia T Debelouchina
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
- Department of Chemistry, Texas A&M UniversityCollege StationUnited States
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
3
|
Phan TM, Kim YC, Debelouchina GT, Mittal J. Interplay between charge distribution and DNA in shaping HP1 paralog phase separation and localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542535. [PMID: 37398008 PMCID: PMC10312469 DOI: 10.1101/2023.05.28.542535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1β, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1β and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.
Collapse
Affiliation(s)
- Tien M. Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Young C. Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC, USA
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
- Department of Chemistry, Texas A&M University, College Station, TX, USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Rahban M, Zolghadri S, Salehi N, Ahmad F, Haertlé T, Rezaei-Ghaleh N, Sawyer L, Saboury AA. Thermal stability enhancement: Fundamental concepts of protein engineering strategies to manipulate the flexible structure. Int J Biol Macromol 2022; 214:642-654. [DOI: 10.1016/j.ijbiomac.2022.06.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/28/2023]
|
5
|
Latham AP, Zhang B. On the stability and layered organization of protein-DNA condensates. Biophys J 2022; 121:1727-1737. [PMID: 35364104 PMCID: PMC9117872 DOI: 10.1016/j.bpj.2022.03.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Multi-component phase separation is emerging as a key mechanism for the formation of biological condensates that play essential roles in signal sensing and transcriptional regulation. The molecular factors that dictate these condensates' stability and spatial organization are not fully understood, and it remains challenging to predict their microstructures. Using a near-atomistic, chemically accurate force field, we studied the phase behavior of chromatin regulators that are crucial for heterochromatin organization and their interactions with DNA. Our computed phase diagrams recapitulated previous experimental findings on different proteins. They revealed a strong dependence of condensate stability on the protein-DNA mixing ratio as a result of balancing protein-protein interactions and charge neutralization. Notably, a layered organization was observed in condensates formed by mixing HP1, histone H1, and DNA. This layered organization may be of biological relevance, as it enables cooperative DNA packaging between the two chromatin regulators: histone H1 softens the DNA to facilitate the compaction induced by HP1 droplets. Our study supports near-atomistic models as a valuable tool for characterizing the structure and stability of biological condensates.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
6
|
Russo L, Salzano G, Corvino A, Bistaffa E, Moda F, Celauro L, D'Abrosca G, Isernia C, Milardi D, Giachin G, Malgieri G, Legname G, Fattorusso R. Structural and dynamical determinants of a β-sheet-enriched intermediate involved in amyloid fibrillar assembly of human prion protein. Chem Sci 2022; 13:10406-10427. [PMID: 36277622 PMCID: PMC9473526 DOI: 10.1039/d2sc00345g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
The conformational conversion of the cellular prion protein (PrPC) into a misfolded, aggregated and infectious scrapie isoform is associated with prion disease pathology and neurodegeneration. Despite the significant number of experimental and theoretical studies the molecular mechanism regulating this structural transition is still poorly understood. Here, via Nuclear Magnetic Resonance (NMR) methodologies we investigate at the atomic level the mechanism of the human HuPrP(90–231) thermal unfolding and characterize the conformational equilibrium between its native structure and a β-enriched intermediate state, named β-PrPI. By comparing the folding mechanisms of metal-free and Cu2+-bound HuPrP(23–231) and HuPrP(90–231) we show that the coupling between the N- and C-terminal domains, through transient electrostatic interactions, is the key molecular process in tuning long-range correlated μs–ms dynamics that in turn modulate the folding process. Moreover, via thioflavin T (ThT)-fluorescence fibrillization assays we show that β-PrPI is involved in the initial stages of PrP fibrillation, overall providing a clear molecular description of the initial phases of prion misfolding. Finally, we show by using Real-Time Quaking-Induced Conversion (RT-QuIC) that the β-PrPI acts as a seed for the formation of amyloid aggregates with a seeding activity comparable to that of human infectious prions. The N-ter domain in HuPrP regulates the folding mechanism by tuning the long-range μs–ms dynamics. Removal of the N-ter domain triggers the formation of a stable β-enriched intermediate state inducing amyloid aggregates with HuPrPSc seeding activity.![]()
Collapse
Affiliation(s)
- Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Giulia Salzano
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Andrea Corvino
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | - Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Danilo Milardi
- Institute of Crystallography, National Research Council, Catania, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences (DiSC), University of Padua, Padova, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- ELETTRA Laboratory, Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
7
|
Latham AP, Zhang B. Consistent Force Field Captures Homologue-Resolved HP1 Phase Separation. J Chem Theory Comput 2021; 17:3134-3144. [PMID: 33826337 PMCID: PMC8119372 DOI: 10.1021/acs.jctc.0c01220] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many proteins have been shown to function via liquid-liquid phase separation. Computational modeling could offer much needed structural details of protein condensates and reveal the set of molecular interactions that dictate their stability. However, the presence of both ordered and disordered domains in these proteins places a high demand on the model accuracy. Here, we present an algorithm to derive a coarse-grained force field, MOFF, which can model both ordered and disordered proteins with consistent accuracy. It combines maximum entropy biasing, least-squares fitting, and basic principles of energy landscape theory to ensure that MOFF recreates experimental radii of gyration while predicting the folded structures for globular proteins with lower energy. The theta temperature determined from MOFF separates ordered and disordered proteins at 300 K and exhibits a strikingly linear relationship with amino acid sequence composition. We further applied MOFF to study the phase behavior of HP1, an essential protein for post-translational modification and spatial organization of chromatin. The force field successfully resolved the structural difference of two HP1 homologues despite their high sequence similarity. We carried out large-scale simulations with hundreds of proteins to determine the critical temperature of phase separation and uncover multivalent interactions that stabilize higher-order assemblies. In all, our work makes significant methodological strides to connect theories of ordered and disordered proteins and provides a powerful tool for studying liquid-liquid phase separation with near-atomistic details.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Rezaei-Ghaleh N, Parigi G, Zweckstetter M. Reorientational Dynamics of Amyloid-β from NMR Spin Relaxation and Molecular Simulation. J Phys Chem Lett 2019; 10:3369-3375. [PMID: 31181936 PMCID: PMC6598774 DOI: 10.1021/acs.jpclett.9b01050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Amyloid-β (Aβ) aggregation is a hallmark of Alzheimer's disease. As an intrinsically disordered protein, Aβ undergoes extensive dynamics on multiple length and time scales. Access to a comprehensive picture of the reorientational dynamics in Aβ requires therefore the combination of complementary techniques. Here, we integrate 15N spin relaxation rates at three magnetic fields with microseconds-long molecular dynamics simulation, ensemble-based hydrodynamic calculations, and previously published nanosecond fluorescence correlation spectroscopy to investigate the reorientational dynamics of Aβ1-40 (Aβ40) at single-residue resolution. The integrative analysis shows that librational and dihedral angle fluctuations occurring at fast and intermediate time scales are not sufficient to decorrelate orientational memory in Aβ40. Instead, slow segmental motions occurring at ∼5 ns are detected throughout the Aβ40 sequence and reach up to ∼10 ns for selected residues. We propose that the modulation of time scales of reorientational dynamics with respect to intra- and intermolecular diffusion plays an important role in disease-related Aβ aggregation.
Collapse
Affiliation(s)
- Nasrollah Rezaei-Ghaleh
- Department
of Neurology, University Medical Center
Goettingen, 37075 Goettingen, Germany
- Department
for NMR-Based Structural Biology, Max Planck
Institute for Biophysical Chemistry, 37077 Goettingen, Germany
- E-mail:
| | - Giacomo Parigi
- Magnetic
Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Markus Zweckstetter
- Department
of Neurology, University Medical Center
Goettingen, 37075 Goettingen, Germany
- Department
for NMR-Based Structural Biology, Max Planck
Institute for Biophysical Chemistry, 37077 Goettingen, Germany
- Research
Group for Structural Biology in Dementia, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
9
|
Berry S, Rosa S, Howard M, Bühler M, Dean C. Disruption of an RNA-binding hinge region abolishes LHP1-mediated epigenetic repression. Genes Dev 2017; 31:2115-2120. [PMID: 29212661 PMCID: PMC5749160 DOI: 10.1101/gad.305227.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/07/2017] [Indexed: 12/24/2022]
Abstract
In this study, Berry et al. investigated the functions of the different domains of LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) in Arabidopsis. They show that LHP1 binds RNA in vitro through the intrinsically disordered hinge region and show that both the hinge region and H3K27me3 recognition facilitate LHP1 localization and H3K27me3 maintenance. Epigenetic maintenance of gene repression is essential for development. Polycomb complexes are central to this memory, but many aspects of the underlying mechanism remain unclear. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) binds Polycomb-deposited H3K27me3 and is required for repression of many Polycomb target genes in Arabidopsis. Here we show that LHP1 binds RNA in vitro through the intrinsically disordered hinge region. By independently perturbing the RNA-binding hinge region and H3K27me3 (trimethylation of histone H3 at Lys27) recognition, we found that both facilitate LHP1 localization and H3K27me3 maintenance. Disruption of the RNA-binding hinge region also prevented formation of subnuclear foci, structures potentially important for epigenetic repression.
Collapse
Affiliation(s)
- Scott Berry
- John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Stefanie Rosa
- Institute of Biochemistry and Biology, University of Potsdam, DE-14476 Potsdam-Golm, Germany
| | | | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | |
Collapse
|
10
|
Munari F, Bortot A, Assfalg M, D'Onofrio M. Alzheimer's disease-associated ubiquitin mutant Ubb +1: Properties of the carboxy-terminal domain and its influence on biomolecular interactions. Int J Biol Macromol 2017; 108:24-31. [PMID: 29175520 DOI: 10.1016/j.ijbiomac.2017.11.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 12/19/2022]
Abstract
Ubb+1, a ubiquitin (Ub) mutant protein originating from misreading of the Ub B gene, is found accumulated in brain tissues of Alzheimer's disease patients. The mutant attracts strong interest due to its possible participation in the molecular events leading to neurodegeneration. Ubb+1 is composed of the globular domain of Ub, linked to a 19-residue C-terminal peptide. Based on NMR relaxation and solvent accessibility measurements we obtained new insight into the molecular properties of Ubb+1. We further determined the thermal stability of Ubb+1 in the monomeric form, and in Lys48- and Lys63-linked dimers. Finally, we explored the influence of the C-terminal fragment on the interactions of Ubb+1 with an isolated UBA2 domain and with membrane mimics. Our data indicate that the C-terminal fragment of Ubb+1 is overall highly flexible, except for a short stretch which appears less solvent-exposed. While influencing the hydrodynamic properties of the globular domain, the fragment does not establish long-lived interactions with the globular domain. It results that the structure and stability of Ub are minimally perturbed by the peptide extension. However, binding to UBA2 and to membrane mimics are both affected, exemplifying possible changes in biomolecular recognition experienced by the disease-associated Ubb+1 compared to the wild-type protein.
Collapse
Affiliation(s)
- Francesca Munari
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Andrea Bortot
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | | |
Collapse
|
11
|
Chen PC, Hologne M, Walker O. Computing the Rotational Diffusion of Biomolecules via Molecular Dynamics Simulation and Quaternion Orientations. J Phys Chem B 2017; 121:1812-1823. [DOI: 10.1021/acs.jpcb.6b11703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Po-chia Chen
- Université de Lyon, CNRS, Université Claude Bernard Lyon1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Maggy Hologne
- Université de Lyon, CNRS, Université Claude Bernard Lyon1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Olivier Walker
- Université de Lyon, CNRS, Université Claude Bernard Lyon1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| |
Collapse
|
12
|
Soci UPR, Fernandes T, Barauna VG, Hashimoto NY, de Fátima Alves Mota G, Rosa KT, Irigoyen MC, Philips MI, de Oliveira EM. Epigenetic control of exercise training-induced cardiac hypertrophy by miR-208. Clin Sci (Lond) 2016; 130:2005-2015. [DOI: 10.1042/cs20160480] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Aerobic exercise-induced cardiac hypertrophy (CH) is a physiological response involving accurate orchestration of gene and protein expression of contractile and metabolic components. The microRNAs: miR-208a, miR-208b and miR-499 are each encoded by a myosin gene and thus are also known as ‘MyomiRs’, regulating several mRNA targets that in turn regulate CH and metabolic pathways. To understand the role of myomiRs in the fine-tuning of cardiac myosin heavy chain (MHC) isoform expression by exercise training-induced physiological hypertrophy, Wistar rats were subjected to two different swim training protocols. We observed that high-volume swim training (T2), improved cardiac diastolic function, induced CH and decreased the expression of miR-208a and miR-208b. Consequently, the increased expression of their targets, sex determining region y-related transcription factor 6 (Sox6), Med13, Purβ, specificity proteins (Sp)/Krüppel-like transcription factor 3 (SP3) and HP1β (heterochromatin protein 1β) was more prominent in T2, thus converging to modulate cardiac metabolic and contractile adaptation by exercise training, with an improvement in the α-MHC/β-MHC ratio, bypassing the increase in PPARβ and histone deacetylase (HDAC) class I and II regulation. Altogether, we conclude that high-volume swim training finely assures physiological cardiac remodelling by epigenetic regulation of myomiRs, because inhibition of miR-208a and miR-208b increases the expression of their target proteins and stimulates the interaction among metabolic, contractile and epigenetic genes.
Collapse
Affiliation(s)
- Ursula Paula Renó Soci
- Department of Biodynamics of Human Movement, Laboratory of Biochemistry and Molecular Biology, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, CEP 05508-030, Brazil
| | - Tiago Fernandes
- Department of Biodynamics of Human Movement, Laboratory of Biochemistry and Molecular Biology, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, CEP 05508-030, Brazil
| | - Valerio Garrone Barauna
- Department of Physiological Sciences, Biomedical Center, Federal University of Espírito Santo, Vitoria, CEP 29075-910, Brazil
| | - Nara Yumi Hashimoto
- Department of Biodynamics of Human Movement, Laboratory of Biochemistry and Molecular Biology, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, CEP 05508-030, Brazil
| | - Gloria de Fátima Alves Mota
- Department of Biodynamics of Human Movement, Laboratory of Biochemistry and Molecular Biology, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, CEP 05508-030, Brazil
| | - Kaleizu Teodoro Rosa
- Department of Biodynamics of Human Movement, Laboratory of Biochemistry and Molecular Biology, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, CEP 05508-030, Brazil
- Department of Physiological Sciences, Biomedical Center, Federal University of Espírito Santo, Vitoria, CEP 29075-910, Brazil
- Heart Institute (InCor), Laboratory of Hypertension, Medical School, University of Sao Paulo, Sao Paulo, CEP 05403-900, Brazil
- Keck Graduate Institute, Center for Rare Disease Therapies, Laboratory of Stem Cells, Claremont, CA 91711, U.S.A
| | - Maria Claudia Irigoyen
- Department of Biodynamics of Human Movement, Laboratory of Biochemistry and Molecular Biology, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, CEP 05508-030, Brazil
- Department of Physiological Sciences, Biomedical Center, Federal University of Espírito Santo, Vitoria, CEP 29075-910, Brazil
- Heart Institute (InCor), Laboratory of Hypertension, Medical School, University of Sao Paulo, Sao Paulo, CEP 05403-900, Brazil
- Keck Graduate Institute, Center for Rare Disease Therapies, Laboratory of Stem Cells, Claremont, CA 91711, U.S.A
| | - Michael Ian Philips
- Keck Graduate Institute, Center for Rare Disease Therapies, Laboratory of Stem Cells, Claremont, CA 91711, U.S.A
| | - Edilamar Menezes de Oliveira
- Department of Biodynamics of Human Movement, Laboratory of Biochemistry and Molecular Biology, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, CEP 05508-030, Brazil
| |
Collapse
|
13
|
Hiragami-Hamada K, Soeroes S, Nikolov M, Wilkins B, Kreuz S, Chen C, De La Rosa-Velázquez IA, Zenn HM, Kost N, Pohl W, Chernev A, Schwarzer D, Jenuwein T, Lorincz M, Zimmermann B, Walla PJ, Neumann H, Baubec T, Urlaub H, Fischle W. Dynamic and flexible H3K9me3 bridging via HP1β dimerization establishes a plastic state of condensed chromatin. Nat Commun 2016; 7:11310. [PMID: 27090491 PMCID: PMC4838890 DOI: 10.1038/ncomms11310] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/13/2016] [Indexed: 12/12/2022] Open
Abstract
Histone H3 trimethylation of lysine 9 (H3K9me3) and proteins of the heterochromatin protein 1 (HP1) family are hallmarks of heterochromatin, a state of compacted DNA essential for genome stability and long-term transcriptional silencing. The mechanisms by which H3K9me3 and HP1 contribute to chromatin condensation have been speculative and controversial. Here we demonstrate that human HP1β is a prototypic HP1 protein exemplifying most basal chromatin binding and effects. These are caused by dimeric and dynamic interaction with highly enriched H3K9me3 and are modulated by various electrostatic interfaces. HP1β bridges condensed chromatin, which we postulate stabilizes the compacted state. In agreement, HP1β genome-wide localization follows H3K9me3-enrichment and artificial bridging of chromatin fibres is sufficient for maintaining cellular heterochromatic conformation. Overall, our findings define a fundamental mechanism for chromatin higher order structural changes caused by HP1 proteins, which might contribute to the plastic nature of condensed chromatin. Heterochromatin protein 1 (HP1), including HP1 α, β and γ, is a family of non-histone chromatin factors thought to be involved in chromatin organization. Here, the authors show that dimeric HP1β interacts dynamically with H3K9me3, a hallmark of heterochromatin, and bridges condensed chromatin.
Collapse
Affiliation(s)
- Kyoko Hiragami-Hamada
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany
| | - Szabolcs Soeroes
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany
| | - Miroslav Nikolov
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany.,Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany
| | - Bryan Wilkins
- Applied Synthetic Biology, Institute for Microbiology and Genetics, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Sarah Kreuz
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany
| | - Carol Chen
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Inti A De La Rosa-Velázquez
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Hans Michael Zenn
- Biaffin GmbH &Co KG, Heinrich-Plett Strasse 40, 34132 Kassel, Germany
| | - Nils Kost
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany
| | - Wiebke Pohl
- Biomolecular Spectroscopy and Single-Molecule Detection, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany
| | - Aleksandar Chernev
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Thomas Jenuwein
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Matthew Lorincz
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | - Peter Jomo Walla
- Biomolecular Spectroscopy and Single-Molecule Detection, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany.,Department of Biophysical Chemistry, Technische Universität Braunschweig, Hans-Sommerstr. 10, 38106 Braunschweig, Germany
| | - Heinz Neumann
- Applied Synthetic Biology, Institute for Microbiology and Genetics, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Tuncay Baubec
- Department of Molecular Mechanisms of Disease, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany
| |
Collapse
|
14
|
Velez G, Lin M, Christensen T, Faubion WA, Lomberk G, Urrutia R. Evidence supporting a critical contribution of intrinsically disordered regions to the biochemical behavior of full-length human HP1γ. J Mol Model 2015; 22:12. [PMID: 26680990 PMCID: PMC4683166 DOI: 10.1007/s00894-015-2874-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 11/22/2015] [Indexed: 12/16/2022]
Abstract
HP1γ, a non-histone chromatin protein, has elicited significant attention because of its role in gene silencing, elongation, splicing, DNA repair, cell growth, differentiation, and many other cancer-associated processes, including therapy resistance. These characteristics make it an ideal target for developing small drugs for both mechanistic experimentation and potential therapies. While high-resolution structures of the two globular regions of HP1γ, the chromo- and chromoshadow domains, have been solved, little is currently known about the conformational behavior of the full-length protein. Consequently, in the current study, we use threading, homology-based molecular modeling, molecular mechanics calculations, and molecular dynamics simulations to develop models that allow us to infer properties of full-length HP1γ at an atomic resolution level. HP1γ appears as an elongated molecule in which three Intrinsically Disordered Regions (IDRs, 1, 2, and 3) endow this protein with dynamic flexibility, intermolecular recognition properties, and the ability to integrate signals from various intracellular pathways. Our modeling also suggests that the dynamic flexibility imparted to HP1γ by the three IDRs is important for linking nucleosomes with PXVXL motif-containing proteins, in a chromatin environment. The importance of the IDRs in intermolecular recognition is illustrated by the building and study of both IDR2 HP1γ−importin-α and IDR1 and IDR2 HP1γ−DNA complexes. The ability of the three IDRs for integrating cell signals is demonstrated by combined linear motif analyses and molecular dynamics simulations showing that posttranslational modifications can generate a histone mimetic sequence within the IDR2 of HP1γ, which when bound by the chromodomain can lead to an autoinhibited state. Combined, these data underscore the importance of IDRs 1, 2, and 3 in defining the structural and dynamic properties of HP1γ, discoveries that have both mechanistic and potentially biomedical relevance.
Collapse
Affiliation(s)
- Gabriel Velez
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Guggenheim 10, Rochester, MN, 55905, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biophysics, Mayo Clinic, Rochester, MN, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Marisa Lin
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Guggenheim 10, Rochester, MN, 55905, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biophysics, Mayo Clinic, Rochester, MN, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Trace Christensen
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Guggenheim 10, Rochester, MN, 55905, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biophysics, Mayo Clinic, Rochester, MN, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - William A Faubion
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Guggenheim 10, Rochester, MN, 55905, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biophysics, Mayo Clinic, Rochester, MN, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gwen Lomberk
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Guggenheim 10, Rochester, MN, 55905, USA. .,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biophysics, Mayo Clinic, Rochester, MN, USA. .,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Raul Urrutia
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Guggenheim 10, Rochester, MN, 55905, USA. .,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biophysics, Mayo Clinic, Rochester, MN, USA. .,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Affiliation(s)
- Manuel M. Müller
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
16
|
Parigi G, Rezaei-Ghaleh N, Giachetti A, Becker S, Fernandez C, Blackledge M, Griesinger C, Zweckstetter M, Luchinat C. Long-range correlated dynamics in intrinsically disordered proteins. J Am Chem Soc 2014; 136:16201-9. [PMID: 25331250 DOI: 10.1021/ja506820r] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Intrinsically disordered proteins (IDPs) are involved in a wide variety of physiological and pathological processes and are best described by ensembles of rapidly interconverting conformers. Using fast field cycling relaxation measurements we here show that the IDP α-synuclein as well as a variety of other IDPs undergoes slow reorientations at time scales comparable to folded proteins. The slow motions are not perturbed by mutations in α-synuclein, which are related to genetic forms of Parkinson's disease, and do not depend on secondary and tertiary structural propensities. Ensemble-based hydrodynamic calculations suggest that the time scale of the underlying correlated motion is largely determined by hydrodynamic coupling between locally rigid segments. Our study indicates that long-range correlated dynamics are an intrinsic property of IDPs and offers a general physical mechanism of correlated motions in highly flexible biomolecular systems.
Collapse
Affiliation(s)
- Giacomo Parigi
- Department of Chemistry "Ugo Schiff" and CERM, University of Florence , via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chapman MA, Zhang J, Banerjee I, Guo LT, Zhang Z, Shelton GD, Ouyang K, Lieber RL, Chen J. Disruption of both nesprin 1 and desmin results in nuclear anchorage defects and fibrosis in skeletal muscle. Hum Mol Genet 2014; 23:5879-92. [PMID: 24943590 DOI: 10.1093/hmg/ddu310] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proper localization and anchorage of nuclei within skeletal muscle is critical for cellular function. Alterations in nuclear anchoring proteins modify a number of cellular functions including mechanotransduction, nuclear localization, chromatin positioning/compaction and overall organ function. In skeletal muscle, nesprin 1 and desmin are thought to link the nucleus to the cytoskeletal network. Thus, we hypothesize that both of these factors play a key role in skeletal muscle function. To examine this question, we utilized global ablation murine models of nesprin 1, desmin or both nesprin 1 and desmin. Herein, we have created the nesprin-desmin double-knockout (DKO) mouse, eliminating a major fraction of nuclear-cytoskeletal connections and enabling understanding of the importance of nuclear anchorage in skeletal muscle. Globally, DKO mice are marked by decreased lifespan, body weight and muscle strength. With regard to skeletal muscle, DKO myonuclear anchorage was dramatically decreased compared with wild-type, nesprin 1(-/-) and desmin(-/-) mice. Additionally, nuclear-cytoskeletal strain transmission was decreased in DKO skeletal muscle. Finally, loss of nuclear anchorage in DKO mice coincided with a fibrotic response as indicated by increased collagen and extracellular matrix deposition and increased passive mechanical properties of muscle bundles. Overall, our data demonstrate that nesprin 1 and desmin serve redundant roles in nuclear anchorage and that the loss of nuclear anchorage in skeletal muscle results in a pathological response characterized by increased tissue fibrosis and mechanical stiffness.
Collapse
Affiliation(s)
| | | | | | - Ling T Guo
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zhiwei Zhang
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Road, Changsha, Hunan 410011, P.R. China and
| | - G Diane Shelton
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kunfu Ouyang
- Department of Medicine, School of Chemical Biology and Biotechnology, Peking University, Shenzhen 518055, P.R. China
| | - Richard L Lieber
- Department of Bioengineering and Department of Orthopaedic Surgery, University of California San Diego, and Department of Veteran's Affairs, 9500 Gilman Drive, La Jolla, CA 92093-0863, USA
| | | |
Collapse
|
18
|
Nishibuchi G, Nakayama JI. Biochemical and structural properties of heterochromatin protein 1: understanding its role in chromatin assembly. J Biochem 2014; 156:11-20. [DOI: 10.1093/jb/mvu032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
19
|
Canzio D, Larson A, Narlikar GJ. Mechanisms of functional promiscuity by HP1 proteins. Trends Cell Biol 2014; 24:377-86. [PMID: 24618358 DOI: 10.1016/j.tcb.2014.01.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 01/03/2023]
Abstract
Heterochromatin protein 1 (HP1) proteins were originally identified as critical components in heterochromatin-mediated gene silencing and are now recognized to play essential roles in several other processes including gene activation. Several eukaryotes possess more than one HP1 paralog. Despite high sequence conservation, the HP1 paralogs achieve diverse functions. Further, in many cases, the same HP1 paralog is implicated in multiple functions. Recent biochemical studies have revealed interesting paralog-specific biophysical differences and unanticipated conformational versatility in HP1 proteins that may account for this functional promiscuity. Here we review these findings and describe a molecular framework that aims to link the conformational flexibility of HP1 proteins observed in vitro with their functional promiscuity observed in vivo.
Collapse
Affiliation(s)
- Daniele Canzio
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Adam Larson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Munari F, Gajda MJ, Hiragami-Hamada K, Fischle W, Zweckstetter M. Characterization of the effects of phosphorylation by CK2 on the structure and binding properties of human HP1β. FEBS Lett 2014; 588:1094-9. [PMID: 24561199 DOI: 10.1016/j.febslet.2014.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/31/2014] [Accepted: 02/08/2014] [Indexed: 10/25/2022]
Abstract
Proteins of the Heterochromatin Protein 1 (HP1) family are regulators of chromatin structure and genome function in eukaryotes. Post-translational modifications expand the repertoire of the chemical diversity of HP1 proteins and regulate their activity. Here, we investigated the effect of phosphorylation by Casein kinase 2 (CK2) on the structure, dynamics and binding activity of human HP1β. We show that Ser89 in the hinge region is the most effective substrate, followed by Ser175 at the C-terminal tail. Phosphorylation at these sites results in localized conformational changes in HP1β that do not compromise the ability of the protein to bind chromatin.
Collapse
Affiliation(s)
- Francesca Munari
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Michal Jan Gajda
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kyoko Hiragami-Hamada
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center, Göttingen, Germany.
| |
Collapse
|
21
|
Rezaei-Ghaleh N, Klama F, Munari F, Zweckstetter M. Vorhersage der Rotationskorrelationszeit in dynamischen Mehrdomänenproteinen und supramolekularen Komplexen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Rezaei-Ghaleh N, Klama F, Munari F, Zweckstetter M. Predicting the Rotational Tumbling of Dynamic Multidomain Proteins and Supramolecular Complexes. Angew Chem Int Ed Engl 2013; 52:11410-4. [DOI: 10.1002/anie.201305094] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Indexed: 01/10/2023]
|