1
|
Challita EJ, Rohilla P, Bhamla MS. Fluid Ejections in Nature. Annu Rev Chem Biomol Eng 2024; 15:187-217. [PMID: 38669514 PMCID: PMC11269045 DOI: 10.1146/annurev-chembioeng-100722-113148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
From microscopic fungi to colossal whales, fluid ejections are universal and intricate phenomena in biology, serving vital functions such as animal excretion, venom spraying, prey hunting, spore dispersal, and plant guttation. This review delves into the complex fluid physics of ejections across various scales, exploring both muscle-powered active systems and passive mechanisms driven by gravity or osmosis. It introduces a framework using dimensionless numbers to delineate transitions from dripping to jetting and elucidate the governing forces. Highlighting the understudied area of complex fluid ejections, this review not only rationalizes the biophysics involved but also uncovers potential engineering applications in soft robotics, additive manufacturing, and drug delivery. By bridging biomechanics, the physics of living systems, and fluid dynamics, this review offers valuable insights into the diverse world of fluid ejections and paves the way for future bioinspired research across the spectrum of life.
Collapse
Affiliation(s)
- Elio J Challita
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA;
| | - Pankaj Rohilla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA;
| | - M Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA;
| |
Collapse
|
2
|
Challita EJ, Rohilla P, Bhamla MS. Fluid ejections in nature. ARXIV 2024:arXiv:2403.02359v1. [PMID: 38495571 PMCID: PMC10942486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
From microscopic fungi to colossal whales, fluidic ejections are a universal and intricate phenomenon in biology, serving vital functions such as animal excretion, venom spraying, prey hunting, spore dispersal, and plant guttation. This review delves into the complex fluid physics of ejections across various scales, exploring both muscle-powered active systems and passive mechanisms driven by gravity or osmosis. We introduce a framework using dimensionless numbers to delineate transitions from dripping to jetting and elucidate the governing forces. Highlighting the understudied area of complex fluid ejections, this work not only rationalizes the biophysics involved but also uncovers potential engineering applications in soft robotics, additive manufacturing, and drug delivery. By bridging biomechanics, the physics of living systems, and fluid dynamics, this review offers valuable insights into the diverse world of fluid ejections and paves the way for future bioinspired research across the spectrum of life.
Collapse
Affiliation(s)
- Elio J Challita
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive NW, Atlanta, GA, 30318, USA
| | - Pankaj Rohilla
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332, USA
| | - M Saad Bhamla
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive NW, Atlanta, GA, 30318, USA
| |
Collapse
|
3
|
Bleckmann H. The incomparable fascination of comparative physiology: 40 years with animals in the field and laboratory. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:211-226. [PMID: 37987801 PMCID: PMC10995018 DOI: 10.1007/s00359-023-01681-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
This paper is not meant to be a review article. Instead, it gives an overview of the major research projects that the author, together with his students, colleagues and collaborators, has worked on. Although the main focus of the author's work has always been the fish lateral line, this paper is mainly about all the other research projects he did or that were done in his laboratory. These include studies on fishing spiders, weakly electric fish, seals, water rats, bottom dwelling sharks, freshwater rays, venomous snakes, birds of prey, fire loving beetles and backswimmers. The reasons for this diversity of research projects? Simple. The authors's lifelong enthusiasm for animals, and nature's ingenuity in inventing new biological solutions. Indeed, this most certainly was a principal reason why Karl von Frisch and Alfred Kühn founded the Zeitschrift für vergleichende Physiologie (now Journal of Comparative Physiology A) 100 years ago.
Collapse
Affiliation(s)
- Horst Bleckmann
- Institute of Zoology, University of Bonn, Poppelsdorfer Schloss, Bonn, Germany.
| |
Collapse
|
4
|
Antonowicz A, Wojtas K, Makowski Ł, Orciuch W, Kozłowski M. Particle Image Velocimetry of 3D-Printed Anatomical Blood Vascular Models Affected by Atherosclerosis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16031055. [PMID: 36770062 PMCID: PMC9920660 DOI: 10.3390/ma16031055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 05/25/2023]
Abstract
Improvements in the diagnosis and treatment of cardiovascular diseases facilitate a better understanding of the ongoing process. The study of biomedical fluid dynamics using non-intrusive visualizing methods on a micro-scale has become possible using a proper 3D printing process. The computed tomography scan of a patient with atherosclerosis was processed, and a 3D-printed artery with an inlet diameter of 4.2 mm was developed and measured using three different constant flow rates. To mimic blood, a solution of glycerin and water was used. The procedure to obtain a proper 3D-printed model using low-force stereolithography technology with high-quality optical access usable for PIV was described and discussed. The paper presents the results of PIV as multi-stitched, color-coded vector maps from the axis cross section along the whole 3D-printed model. The obtained data allowed a resolution of 100 × 100 µm per single vector to be achieved. Furthermore, the results of the stitched 16 base images of the artery and the 3D-printed model prepared were included. The results of this study show that 3D prints allow for the creation of the desired geometry and can be used to investigate severe pathologies of the human circulatory system. The strengths and weaknesses of this methodology were discussed and compared to other techniques used to obtain transparent objects.
Collapse
Affiliation(s)
- Arkadiusz Antonowicz
- Eurotek International Ltd., Skrzetuskiego 6, 02-726 Warsaw, Poland
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Krzysztof Wojtas
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Łukasz Makowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Wojciech Orciuch
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Michał Kozłowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Ziołowa 47, 40-635 Katowice, Poland
| |
Collapse
|
5
|
Physiological constraints dictate toxin spatial heterogeneity in snake venom glands. BMC Biol 2022; 20:148. [PMID: 35761243 PMCID: PMC9238143 DOI: 10.1186/s12915-022-01350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background Venoms are ecological innovations that have evolved numerous times, on each occasion accompanied by the co-evolution of specialised morphological and behavioural characters for venom production and delivery. The close evolutionary interdependence between these characters is exemplified by animals that control the composition of their secreted venom. This ability depends in part on the production of different toxins in different locations of the venom gland, which was recently documented in venomous snakes. Here, we test the hypothesis that the distinct spatial distributions of toxins in snake venom glands are an adaptation that enables the secretion of venoms with distinct ecological functions. Results We show that the main defensive and predatory peptide toxins are produced in distinct regions of the venom glands of the black-necked spitting cobra (Naja nigricollis), but these distributions likely reflect developmental effects. Indeed, we detected no significant differences in venom collected via defensive ‘spitting’ or predatory ‘biting’ events from the same specimens representing multiple lineages of spitting cobra. We also found the same spatial distribution of toxins in a non-spitting cobra and show that heterogeneous toxin distribution is a feature shared with a viper with primarily predatory venom. Conclusions Our findings suggest that heterogeneous distributions of toxins are not an adaptation to controlling venom composition in snakes. Instead, it likely reflects physiological constraints on toxin production by the venom glands, opening avenues for future research on the mechanisms of functional differentiation of populations of protein-secreting cells within adaptive contexts. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01350-y.
Collapse
|
6
|
Avella I, Barajas-Ledesma E, Casewell NR, Harrison RA, Rowley PD, Crittenden E, Wüster W, Castiglia R, Holland C, van der Meijden A. Unexpected lack of specialisation in the flow properties of spitting cobra venom. J Exp Biol 2021; 224:238100. [PMID: 33827968 DOI: 10.1242/jeb.229229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Venom spitting is a defence mechanism based on airborne venom delivery used by a number of different African and Asian elapid snake species ('spitting cobras'; Naja spp. and Hemachatus spp.). Adaptations underpinning venom spitting have been studied extensively at both behavioural and morphological level in cobras, but the role of the physical properties of venom itself in its effective projection remains largely unstudied. We hereby provide the first comparative study of the physical properties of venom in spitting and non-spitting cobras. We measured the viscosity, protein concentration and pH of the venom of 13 cobra species of the genus Naja from Africa and Asia, alongside the spitting elapid Hemachatus haemachatus and the non-spitting viper Bitis arietans By using published microCT scans, we calculated the pressure required to eject venom through the fangs of a spitting and a non-spitting cobra. Despite the differences in the modes of venom delivery, we found no significant differences between spitters and non-spitters in the rheological and physical properties of the studied venoms. Furthermore, all analysed venoms showed a Newtonian flow behaviour, in contrast to previous reports. Although our results imply that the evolution of venom spitting did not significantly affect venom viscosity, our models of fang pressure suggests that the pressure requirements to eject venom are lower in spitting cobras than in non-spitting cobras.
Collapse
Affiliation(s)
- Ignazio Avella
- CIBIO/InBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, 4485-661 Vairão, Portugal
| | - Edgar Barajas-Ledesma
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Robert A Harrison
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Paul D Rowley
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Edouard Crittenden
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Wolfgang Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Riccardo Castiglia
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Università di Roma 'La Sapienza', 00185 Rome, Italy
| | - Chris Holland
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Arie van der Meijden
- CIBIO/InBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, 4485-661 Vairão, Portugal
| |
Collapse
|
7
|
Smith NM, Ebrahimi H, Ghosh R, Dickerson AK. High-speed microjets issue from bursting oil gland reservoirs of citrus fruit. Proc Natl Acad Sci U S A 2018; 115:E5887-E5895. [PMID: 29891663 PMCID: PMC6042112 DOI: 10.1073/pnas.1720809115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The rupture of oil gland reservoirs housed near the outer surface of the citrus exocarp is a common experience to the discerning citrus consumer and bartenders the world over. These reservoirs often rupture outwardly in response to bending the peel, which compresses the soft material surrounding the reservoirs, the albedo, increasing fluid pressure in the reservoir. Ultimately, fluid pressure exceeds the failure strength of the outermost membrane, the flavedo. The ensuing high-velocity discharge of oil and exhaustive emptying of oil gland reservoirs creates a method for jetting small quantities of the aromatic oil. We compare this jetting behavior across five citrus hybrids through high-speed videography. The jetting oil undergoes an extreme acceleration to reach velocities in excess of 10 m/s. Through material characterization and finite element simulations, we rationalize the combination of tuned material properties and geometries enabling the internal reservoir pressures that produce explosive dispersal, finding the composite structure of the citrus peel is critical for microjet production.
Collapse
Affiliation(s)
- Nicholas M Smith
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816
| | - Hossein Ebrahimi
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816
| | - Andrew K Dickerson
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816
| |
Collapse
|
8
|
|
9
|
Panagides N, Jackson TNW, Ikonomopoulou MP, Arbuckle K, Pretzler R, Yang DC, Ali SA, Koludarov I, Dobson J, Sanker B, Asselin A, Santana RC, Hendrikx I, van der Ploeg H, Tai-A-Pin J, van den Bergh R, Kerkkamp HMI, Vonk FJ, Naude A, Strydom MA, Jacobsz L, Dunstan N, Jaeger M, Hodgson WC, Miles J, Fry BG. How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity as a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting. Toxins (Basel) 2017; 9:E103. [PMID: 28335411 PMCID: PMC5371858 DOI: 10.3390/toxins9030103] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/19/2017] [Accepted: 03/05/2017] [Indexed: 11/30/2022] Open
Abstract
The cytotoxicity of the venom of 25 species of Old World elapid snake was tested and compared with the morphological and behavioural adaptations of hooding and spitting. We determined that, contrary to previous assumptions, the venoms of spitting species are not consistently more cytotoxic than those of closely related non-spitting species. While this correlation between spitting and non-spitting was found among African cobras, it was not present among Asian cobras. On the other hand, a consistent positive correlation was observed between cytotoxicity and utilisation of the defensive hooding display that cobras are famous for. Hooding and spitting are widely regarded as defensive adaptations, but it has hitherto been uncertain whether cytotoxicity serves a defensive purpose or is somehow useful in prey subjugation. The results of this study suggest that cytotoxicity evolved primarily as a defensive innovation and that it has co-evolved twice alongside hooding behavior: once in the Hemachatus + Naja and again independently in the king cobras (Ophiophagus). There was a significant increase of cytotoxicity in the Asian Naja linked to the evolution of bold aposematic hood markings, reinforcing the link between hooding and the evolution of defensive cytotoxic venoms. In parallel, lineages with increased cytotoxicity but lacking bold hood patterns evolved aposematic markers in the form of high contrast body banding. The results also indicate that, secondary to the evolution of venom rich in cytotoxins, spitting has evolved three times independently: once within the African Naja, once within the Asian Naja, and once in the Hemachatus genus. The evolution of cytotoxic venom thus appears to facilitate the evolution of defensive spitting behaviour. In contrast, a secondary loss of cytotoxicity and reduction of the hood occurred in the water cobra Naja annulata, which possesses streamlined neurotoxic venom similar to that of other aquatic elapid snakes (e.g., hydrophiine sea snakes). The results of this study make an important contribution to our growing understanding of the selection pressures shaping the evolution of snake venom and its constituent toxins. The data also aid in elucidating the relationship between these selection pressures and the medical impact of human snakebite in the developing world, as cytotoxic cobras cause considerable morbidity including loss-of-function injuries that result in economic and social burdens in the tropics of Asia and sub-Saharan Africa.
Collapse
Affiliation(s)
- Nadya Panagides
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Timothy N W Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Maria P Ikonomopoulou
- QIMR Berghofer Institute of Medical Research, Herston, QLD 4049, Australia.
- School of Medicine, The University of Queensland, Herston, QLD 4002, Australia.
| | - Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK.
| | - Rudolf Pretzler
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Daryl C Yang
- Monash Venom Group, Department of Pharmacology, Monash University, Clayton VIC 3800, Australia.
| | - Syed A Ali
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
- HEJ Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| | - Ivan Koludarov
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - James Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Brittany Sanker
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Angelique Asselin
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Renan C Santana
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Iwan Hendrikx
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Harold van der Ploeg
- Working Group Adder Research Netherlands, RAVON, 6525 ED Nijmegen, The Netherlands.
| | - Jeremie Tai-A-Pin
- Working Group Venomous Bites Netherlands, RAVON, 6525 ED Nijmegen, The Netherlands.
| | | | - Harald M I Kerkkamp
- Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands.
| | - Arno Naude
- Snakebite Assist, Pretoria ZA-0001, South Africa.
| | - Morné A Strydom
- Department Pharmacology, University of Pretoria, Pretoria ZA-0001, South Africa.
- SYNEXUS Clinical Research SA Pty Ltd., Pretoria ZA-0001, South Africa.
| | - Louis Jacobsz
- Zoology Department, University of Pretoria, Pretoria ZA-0001, South Africa.
| | - Nathan Dunstan
- Venom Supplies, Tanunda, South Australia 5352, Australia.
| | - Marc Jaeger
- Planet Exotica, 5 Avenue des Fleurs de la Paix, 17204 Royan, France.
| | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Monash University, Clayton VIC 3800, Australia.
| | - John Miles
- QIMR Berghofer Institute of Medical Research, Herston, QLD 4049, Australia.
- School of Medicine, The University of Queensland, Herston, QLD 4002, Australia.
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|