1
|
Fowler DK, Stewart S, Seredick S, Eisen JS, Stankunas K, Washbourne P. A MultiSite Gateway Toolkit for Rapid Cloning of Vertebrate Expression Constructs with Diverse Research Applications. PLoS One 2016; 11:e0159277. [PMID: 27500400 PMCID: PMC4976983 DOI: 10.1371/journal.pone.0159277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
Recombination-based cloning is a quick and efficient way to generate expression vectors. Recent advancements have provided powerful recombinant DNA methods for molecular manipulations. Here, we describe a novel collection of three-fragment MultiSite Gateway cloning system-compatible vectors providing expanded molecular tools for vertebrate research. The components of this toolkit encompass a broad range of uses such as fluorescent imaging, dual gene expression, RNA interference, tandem affinity purification, chemically-inducible dimerization and lentiviral production. We demonstrate examples highlighting the utility of this toolkit for producing multi-component vertebrate expression vectors with diverse primary research applications. The vectors presented here are compatible with other Gateway toolkits and collections, facilitating the rapid generation of a broad range of innovative DNA constructs for biological research.
Collapse
Affiliation(s)
- Daniel K. Fowler
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Scott Stewart
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Steve Seredick
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Judith S. Eisen
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Kryn Stankunas
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Philip Washbourne
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
2
|
Lindström NO, Carragher NO, Hohenstein P. The PI3K pathway balances self-renewal and differentiation of nephron progenitor cells through β-catenin signaling. Stem Cell Reports 2015; 4:551-60. [PMID: 25754203 PMCID: PMC4400645 DOI: 10.1016/j.stemcr.2015.01.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 11/24/2022] Open
Abstract
Nephron progenitor cells differentiate to form nephrons during embryonic kidney development. In contrast, self-renewal maintains progenitor numbers and premature depletion leads to impaired kidney function. Here we analyze the PI3K pathway as a point of convergence for the multiple pathways that are known to control self-renewal in the kidney. We demonstrate that a reduction in PI3K signaling triggers premature differentiation of the progenitors and activates a differentiation program that precedes the mesenchymal-to-epithelial transition through ectopic activation of the β-catenin pathway. Therefore, the combined output of PI3K and other pathways fine-tunes the balance between self-renewal and differentiation in nephron progenitors. Nephron progenitor cells require PI3K signaling for self-renewal Reduced PI3K activity enhances β-catenin-induced differentiation Nephron progenitor cells can differentiate prior to completion of epithelialization
Collapse
Affiliation(s)
- Nils Olof Lindström
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, UK.
| | - Neil Oliver Carragher
- Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, UK
| | - Peter Hohenstein
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK.
| |
Collapse
|
3
|
Lindström NO, Lawrence ML, Burn SF, Johansson JA, Bakker ERM, Ridgway RA, Chang CH, Karolak MJ, Oxburgh L, Headon DJ, Sansom OJ, Smits R, Davies JA, Hohenstein P. Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron. eLife 2015; 3:e04000. [PMID: 25647637 PMCID: PMC4337611 DOI: 10.7554/elife.04000] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 12/28/2014] [Indexed: 12/13/2022] Open
Abstract
The different segments of the nephron and glomerulus in the kidney balance the processes of water homeostasis, solute recovery, blood filtration, and metabolite excretion. When segment function is disrupted, a range of pathological features are presented. Little is known about nephron patterning during embryogenesis. In this study, we demonstrate that the early nephron is patterned by a gradient in β-catenin activity along the axis of the nephron tubule. By modifying β-catenin activity, we force cells within nephrons to differentiate according to the imposed β-catenin activity level, thereby causing spatial shifts in nephron segments. The β-catenin signalling gradient interacts with the BMP pathway which, through PTEN/PI3K/AKT signalling, antagonises β-catenin activity and promotes segment identities associated with low β-catenin activity. β-catenin activity and PI3K signalling also integrate with Notch signalling to control segmentation: modulating β-catenin activity or PI3K rescues segment identities normally lost by inhibition of Notch. Our data therefore identifies a molecular network for nephron patterning.
Collapse
Affiliation(s)
- Nils O Lindström
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Melanie L Lawrence
- Centre for Integrated Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sally F Burn
- Department of Genetics and Development, Columbia University, New York, United States
| | - Jeanette A Johansson
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Elvira RM Bakker
- Laboratory of Gastroenterology and Hepatology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
| | - Rachel A Ridgway
- Department of Invasion and Metastasis, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - C-Hong Chang
- Centre for Integrated Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Michele J Karolak
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, United States
| | - Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, United States
| | - Denis J Headon
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Owen J Sansom
- Beatston Institute for Cancer Research, Glasgow, United Kingdom
| | - Ron Smits
- Laboratory of Gastroenterology and Hepatology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
| | - Jamie A Davies
- Centre for Integrated Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Hohenstein
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Abstract
Synthetic biology employs rational engineering principles to build biological systems from the libraries of standard, well characterized biological parts. Biological systems designed and built by synthetic biologists fulfill a plethora of useful purposes, ranging from better healthcare and energy production to biomanufacturing. Recent advancements in the synthesis, assembly and "booting-up" of synthetic genomes and in low and high-throughput genome engineering have paved the way for engineering on the genome-wide scale. One of the key goals of genome engineering is the construction of minimal genomes consisting solely of essential genes (genes indispensable for survival of living organisms). Besides serving as a toolbox to understand the universal principles of life, the cell encoded by minimal genome could be used to build a stringently controlled "cell factory" with a desired phenotype. This review provides an update on recent advances in the genome-scale engineering with particular emphasis on the engineering of minimal genomes. Furthermore, it presents an ongoing discussion to the scientific community for better suitability of minimal or robust cells for industrial applications.
Collapse
Affiliation(s)
- Mario Juhas
- a Department of Pathology , University of Cambridge , Cambridge , UK
| |
Collapse
|