1
|
Zhang J, Yao Z. Immune cell trafficking: a novel perspective on the gut-skin axis. Inflamm Regen 2024; 44:21. [PMID: 38654394 DOI: 10.1186/s41232-024-00334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Immune cell trafficking, an essential mechanism for maintaining immunological homeostasis and mounting effective responses to infections, operates under a stringent regulatory framework. Recent advances have shed light on the perturbation of cell migration patterns, highlighting how such disturbances can propagate inflammatory diseases from their origin to distal organs. This review collates and discusses current evidence that demonstrates atypical communication between the gut and skin, which are conventionally viewed as distinct immunological spheres, in the milieu of inflammation. We focus on the aberrant, reciprocal translocation of immune cells along the gut-skin axis as a pivotal factor linking intestinal and dermatological inflammatory conditions. Recognizing that the translation of these findings into clinical practices is nascent, we suggest that therapeutic strategies aimed at modulating the axis may offer substantial benefits in mitigating the widespread impact of inflammatory diseases.
Collapse
Affiliation(s)
- Jiayan Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Gordon H, Wichmann K, Lewis A, Sanders T, Wildemann M, Hoti I, Hornsby E, Kok KB, Silver A, Lindsay JO, Stagg AJ. Human Intestinal Dendritic Cells Can Overcome Retinoic Acid Signaling to Generate Proinflammatory CD4 T Cells with Both Gut and Skin Homing Properties. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:96-106. [PMID: 37955427 DOI: 10.4049/jimmunol.2300340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 11/14/2023]
Abstract
Retinoic acid, produced by intestinal dendritic cells (DCs), promotes T cell trafficking to the intestinal mucosa by upregulating α4β7 integrin and inhibiting the generation of cutaneous leukocyte Ag (CLA) required for skin entry. In the present study, we report that activation of human naive CD4 T cells in an APC-free system generates cells expressing α4β7 alone; in contrast, activation by intestinal DCs that produce retinoic acid and induce high levels of α4β7 also results in CLA expression, generating CLA+α4β7+ "dual tropic" cells, with both gut and skin trafficking potential, that also express high levels of α4β1 integrin. DC generation of CLA+α4β7+ T cells is associated with upregulation of FUT7, a fucosyltransferase involved in CLA generation; requires cell contact; and is enhanced by IL-12/IL-23. The blood CD4+ T cell population contains CLA+α4β7+ cells, which are significantly enriched for cells capable of IFN-γ, IL-17, and TNF-α production compared with conventional CLA-α4β7+ cells. Dual tropic lymphocytes are increased in intestinal tissue from patients with Crohn's disease, and single-cell RNA-sequencing analysis identifies a transcriptionally distinct cluster of FUT7-expressing cells present only in inflamed tissue; expression of genes associated with cell proliferation suggests that these cells are undergoing local activation. The expression of multiple trafficking molecules by CLA+α4β7+ T cells can enable their recruitment by alternative pathways to both skin and gut; they may contribute to both intestinal and cutaneous manifestations of inflammatory bowel disease.
Collapse
Affiliation(s)
- Hannah Gordon
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| | - Katherine Wichmann
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| | - Amy Lewis
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| | - Theodore Sanders
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| | - Martha Wildemann
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| | - Inva Hoti
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| | - Eve Hornsby
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| | - K Bel Kok
- Department of Gastroenterology, Barts Health NHS Trust, London, United Kingdom
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| | - James O Lindsay
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
- Department of Gastroenterology, Barts Health NHS Trust, London, United Kingdom
| | - Andrew J Stagg
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and dentistry, Barts and The London Medical School, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
3
|
Watanabe PDS, Trevizan AR, Silva-Filho SE, Góis MB, Garcia JL, Cuman RKN, Breithaupt-Faloppa AC, Sant`Ana DDMG, Nogueira de Melo GDA. Immunocompetent host develops mild intestinal inflammation in acute infection with Toxoplasma gondii. PLoS One 2018; 13:e0190155. [PMID: 29324806 PMCID: PMC5764246 DOI: 10.1371/journal.pone.0190155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is the causative agent of toxoplasmosis, common zoonosis among vertebrates and high incidence worldwide. During the infection, the parasite needs to transpose the intestinal barrier to spread throughout the body, which may be a trigger for an inflammatory reaction. This work evaluated the inflammatory alterations of early T. gondii infection in peripheral blood cells, in the mesenteric microcirculation, and small intestinal tissue by measurement of MPO (myeloperoxidase) activity and NO (nitric oxide) level in rats. Animals were randomly assigned into control group (CG) that received saline orally and groups infected with 5,000 oocysts for 6 (G6), 12 (G12), 24 (G24), 48 (G48) and 72 hours (G72). Blood samples were collected for total and differential leukocyte count. Intravital microscopy was performed in the mesentery to evaluate rolling and adhesion of leukocytes. After euthanasia, 0.5cm of the duodenum, jejunum and ileum were collected for the determination of MPO activity, NO level and PCR to identify the parasite DNA and also the mesentery were collected to perform immunohistochemistry on frozen sections to quantify adhesion molecules ICAM-1, PECAM-1 and P-Selectin. The parasite DNA was identified in all infected groups and there was an increase in leukocytes in the peripheral blood and in expression of ICAM-1 and PECAM-1 in G6 and G12, however, the expression of P-selectin was reduced in G12. Leukocytes are in rolling process during the first 12 hours and they are adhered at 24 hours post-infection. The activity of MPO increased in the duodenum at 12 hours, and NO increased in the jejunum in G72 and ileum in G24, G48 and G72. Our study demonstrated that T. gondii initiates the infection precociously (at 6 hours) leading to a systemic activation of innate immune response resulting in mild inflammation in a less susceptible experimental model.
Collapse
Affiliation(s)
- Paulo da Silva Watanabe
- Biosciences and Physiopathology Program, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Aline Rosa Trevizan
- Biosciences and Physiopathology Program, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | - Marcelo Biondaro Góis
- Biosciences and Physiopathology Program, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Chan JMS, Cheung MSH, Gibbs RGJ, Bhakoo KK. MRI detection of endothelial cell inflammation using targeted superparamagnetic particles of iron oxide (SPIO). Clin Transl Med 2017; 6:1. [PMID: 28044245 PMCID: PMC5206220 DOI: 10.1186/s40169-016-0134-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/21/2016] [Indexed: 01/10/2023] Open
Abstract
Background There is currently no clinical imaging technique available to assess the degree of inflammation associated with atherosclerotic plaques. This study aims to develop targeted superparamagnetic particles of iron oxide (SPIO) as a magnetic resonance imaging (MRI) probe for detecting inflamed endothelial cells. Methods The in vitro study consists of the characterisation and detection of inflammatory markers on activated endothelial cells by immunocytochemistry and MRI using biotinylated anti-P-selectin and anti-VCAM-1 (vascular cell adhesion molecule 1) antibody and streptavidin conjugated SPIO. Results Established an in vitro cellular model of endothelial inflammation induced with TNF-α (tumor necrosis factor alpha). Inflammation of endothelial cells was confirmed with both immunocytochemistry and MRI. These results revealed both a temporal and dose dependent expression of the inflammatory markers, P-selectin and VCAM-1, on exposure to TNF-α. Conclusion This study has demonstrated the development of an in vitro model to characterise and detect inflamed endothelial cells by immunocytochemistry and MRI. This will allow the future development of contrast agents and protocols for imaging vascular inflammation in atherosclerosis. This work may form the basis for a translational study to provide clinicians with a novel tool for the in vivo assessment of atherosclerosis.
Collapse
Affiliation(s)
- Joyce M S Chan
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China. .,Regional Vascular Unit, St Mary's Hospital, Imperial College Healthcare NHS Trust, Imperial College London, London, UK. .,Translational Molecular Imaging Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, Helios, 138667, Singapore.
| | - Maggie S H Cheung
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Richard G J Gibbs
- Regional Vascular Unit, St Mary's Hospital, Imperial College Healthcare NHS Trust, Imperial College London, London, UK
| | - Kishore K Bhakoo
- Translational Molecular Imaging Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, Helios, 138667, Singapore
| |
Collapse
|
5
|
Pink M, Ratsch BA, Mardahl M, Durek P, Polansky JK, Karl M, Baumgrass R, Wallner S, Cadenas C, Gianmoena K, Floess S, Chen W, Nordstroem K, Tierling S, Olek S, Walter J, Hamann A, Syrbe U. Imprinting of Skin/Inflammation Homing in CD4+ T Cells Is Controlled by DNA Methylation within the Fucosyltransferase 7 Gene. THE JOURNAL OF IMMUNOLOGY 2016; 197:3406-3414. [PMID: 27591321 DOI: 10.4049/jimmunol.1502434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 08/08/2016] [Indexed: 11/19/2022]
Abstract
E- and P-selectin ligands (E- and P-ligs) guide effector memory T cells into skin and inflamed regions, mediate the inflammatory recruitment of leukocytes, and contribute to the localization of hematopoietic precursor cells. A better understanding of their molecular regulation is therefore of significant interest with regard to therapeutic approaches targeting these pathways. In this study, we examined the transcriptional regulation of fucosyltransferase 7 (FUT7), an enzyme crucial for generation of the glycosylated E- and P-ligs. We found that high expression of the coding gene fut7 in murine CD4+ T cells correlates with DNA demethylation within a minimal promoter in skin/inflammation-seeking effector memory T cells. Retinoic acid, a known inducer of the gut-homing phenotype, abrogated the activation-induced demethylation of this region, which contains a cAMP responsive element. Methylation of the promoter or mutation of the cAMP responsive element abolished promoter activity and the binding of CREB, confirming the importance of this region and of its demethylation for fut7 transcription in T cells. Furthermore, studies on human CD4+ effector memory T cells confirmed demethylation within FUT7 corresponding to high FUT7 expression. Monocytes showed an even more extensive demethylation of the FUT7 gene whereas hepatocytes, which lack selectin ligand expression, exhibited extensive methylation. In conclusion, we show that DNA demethylation within the fut7 gene controls selectin ligand expression in mice and humans, including the inducible topographic commitment of T cells for skin and inflamed sites.
Collapse
Affiliation(s)
- Matthias Pink
- Experimental Rheumatology, German Rheumatism Research Center, 10117 Berlin, Germany
| | - Boris A Ratsch
- Experimental Rheumatology, German Rheumatism Research Center, 10117 Berlin, Germany
| | - Maibritt Mardahl
- Experimental Rheumatology, German Rheumatism Research Center, 10117 Berlin, Germany
| | - Pawel Durek
- Experimental Rheumatology, German Rheumatism Research Center, 10117 Berlin, Germany
| | - Julia K Polansky
- Experimental Rheumatology, German Rheumatism Research Center, 10117 Berlin, Germany
| | - Martin Karl
- Signal Transduction, German Rheumatism Research Center, 10117 Berlin, Germany
| | - Ria Baumgrass
- Signal Transduction, German Rheumatism Research Center, 10117 Berlin, Germany
| | - Stefan Wallner
- Institute of Clinical and Laboratory Medicine, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Cristina Cadenas
- Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
| | - Kathrin Gianmoena
- Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholz Center for Infection Research, 38124 Braunschweig, Germany
| | - Wei Chen
- Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Karl Nordstroem
- Laboratory of Epigenetics, Saarland University, 66123 Saarbrücken, Germany
| | - Sascha Tierling
- Laboratory of Epigenetics, Saarland University, 66123 Saarbrücken, Germany
| | - Sven Olek
- Epiontis GmbH, 12489 Berlin, Germany; and
| | - Jörn Walter
- Laboratory of Epigenetics, Saarland University, 66123 Saarbrücken, Germany
| | - Alf Hamann
- Experimental Rheumatology, German Rheumatism Research Center, 10117 Berlin, Germany
| | - Uta Syrbe
- Medical Clinic for Gastroenterology, Infectious Diseases, and Rheumatology, Charité University Hospital, 12200 Berlin, Germany
| |
Collapse
|