1
|
Censi ST, Mariani-Costantini R, Granzotto A, Tomassini V, Sensi SL. Endogenous retroviruses in multiple sclerosis: A network-based etiopathogenic model. Ageing Res Rev 2024; 99:102392. [PMID: 38925481 DOI: 10.1016/j.arr.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The present perspective article proposes an etiopathological model for multiple sclerosis pathogenesis and progression associated with the activation of human endogenous retroviruses. We reviewed preclinical, clinical, epidemiological, and evolutionary evidence indicating how the complex, multi-level interplay of genetic traits and environmental factors contributes to multiple sclerosis. We propose that endogenous retroviruses transactivation acts as a critical node in disease development. We also discuss the rationale for combined anti-retroviral therapy in multiple sclerosis as a disease-modifying therapeutic strategy. Finally, we propose that the immuno-pathogenic process triggered by endogenous retrovirus activation can be extended to aging and aging-related neurodegeneration. In this regard, endogenous retroviruses can be envisioned to act as epigenetic noise, favoring the proliferation of disorganized cellular subpopulations and accelerating system-specific "aging". Since inflammation and aging are two sides of the same coin (plastic dis-adaptation to external stimuli with system-specific degree of freedom), the two conditions may be epiphenomenal products of increased epigenomic entropy. Inflammation accelerates organ-specific aging, disrupting communication throughout critical systems of the body and producing symptoms. Overlapping neurological symptoms and syndromes may emerge from the activity of shared molecular networks that respond to endogenous retroviruses' reactivation.
Collapse
Affiliation(s)
- Stefano T Censi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy.
| | - Renato Mariani-Costantini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Alberto Granzotto
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Valentina Tomassini
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
2
|
Adler GL, Le K, Fu Y, Kim WS. Human Endogenous Retroviruses in Neurodegenerative Diseases. Genes (Basel) 2024; 15:745. [PMID: 38927681 PMCID: PMC11202925 DOI: 10.3390/genes15060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are DNA transposable elements that have integrated into the human genome via an ancestral germline infection. The potential importance of HERVs is underscored by the fact that they comprise approximately 8% of the human genome. HERVs have been implicated in the pathogenesis of neurodegenerative diseases, a group of CNS diseases characterized by a progressive loss of structure and function of neurons, resulting in cell death and multiple physiological dysfunctions. Much evidence indicates that HERVs are initiators or drivers of neurodegenerative processes in multiple sclerosis and amyotrophic lateral sclerosis, and clinical trials have been designed to target HERVs. In recent years, the role of HERVs has been explored in other major neurodegenerative diseases, including frontotemporal dementia, Alzheimer's disease and Parkinson's disease, with some interesting discoveries. This review summarizes and evaluates the past and current research on HERVs in neurodegenerative diseases. It discusses the potential role of HERVs in disease manifestation and neurodegeneration. It critically reviews antiretroviral strategies used in the therapeutic intervention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gabrielle L. Adler
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kelvin Le
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - YuHong Fu
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Ilse V, Scholz R, Wermann M, Naumann M, Staege MS, Roßner S, Cynis H. Immunogenicity of the Envelope Surface Unit of Human Endogenous Retrovirus K18 in Mice. Int J Mol Sci 2022; 23:ijms23158330. [PMID: 35955468 PMCID: PMC9369184 DOI: 10.3390/ijms23158330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The triggers for the development of multiple sclerosis (MS) have not been fully understood to date. One hypothesis proposes a viral etiology. Interestingly, viral proteins from human endogenous retroviruses (HERVs) may play a role in the pathogenesis of MS. Allelic variants of the HERV-K18 env gene represent a genetic risk factor for MS, and the envelope protein is considered to be an Epstein–Barr virus-trans-activated superantigen. To further specify a possible role for HERV-K18 in MS, the present study examined the immunogenicity of the purified surface unit (SU). HERV-K18(SU) induced envelope-specific plasma IgG in immunized mice and triggered proliferation of T cells isolated from these mice. It did not trigger phenotypic changes in a mouse model of experimental autoimmune encephalomyelitis. Further studies are needed to investigate the underlying mechanisms of HERV-K18 interaction with immune system regulators in more detail.
Collapse
Affiliation(s)
- Victoria Ilse
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.I.); (R.S.); (M.W.); (M.N.)
| | - Rebekka Scholz
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.I.); (R.S.); (M.W.); (M.N.)
| | - Michael Wermann
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.I.); (R.S.); (M.W.); (M.N.)
| | - Marcel Naumann
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.I.); (R.S.); (M.W.); (M.N.)
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany;
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstraße 19, 04103 Leipzig, Germany;
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.I.); (R.S.); (M.W.); (M.N.)
- Correspondence: ; Tel.: +49-345-13142835; Fax: +49-345-13142801
| |
Collapse
|
4
|
Latifi T, Zebardast A, Marashi SM. The role of human endogenous retroviruses (HERVs) in Multiple Sclerosis and the plausible interplay between HERVs, Epstein-Barr virus infection, and vitamin D. Mult Scler Relat Disord 2022; 57:103318. [PMID: 35158423 DOI: 10.1016/j.msard.2021.103318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022]
Abstract
Multiple Sclerosis (MS) is one of the chronic inflammatory diseases with neurological disability in the central nervous system (CNS). Although the exact cause of MS is still largely unknown, both genetic and environmental factors are thought to play a role in disease risk. Human Endogenous Retroviruses (HERVs) are endogenous viral elements of the human genome whose expression is associated with MS. HERVs are normally silenced or expressed at low levels, although their expression is higher in MS than in the healthy population. Several studies highlighted the plausible interaction between HERVs and other MS risk factors, including viral infection like Epstein-Barr viruses and vitamin D deficiency which may lead to high expression of HERVs in these patients. Understanding how HERVs act in this scenario can improve our understanding towards MS etiology and may lead to the development of antiretroviral therapies in these patients. Here in this review, we try to examine the different HERVs expression implicated in MS and their association with EBV infection and vitamin D status.
Collapse
Affiliation(s)
- Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Gröger V, Emmer A, Staege MS, Cynis H. Endogenous Retroviruses in Nervous System Disorders. Pharmaceuticals (Basel) 2021; 14:ph14010070. [PMID: 33467098 PMCID: PMC7829834 DOI: 10.3390/ph14010070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retroviruses (HERV) have been implicated in the pathogenesis of several nervous system disorders including multiple sclerosis and amyotrophic lateral sclerosis. The toxicity of HERV-derived RNAs and proteins for neuronal cells has been demonstrated. The involvement of HERV in the pathogenesis of currently incurable diseases might offer new treatment strategies based on the inhibition of HERV activities by small molecules or therapeutic antibodies.
Collapse
Affiliation(s)
- Victoria Gröger
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany;
| | - Alexander Emmer
- Department of Neurology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence: (M.S.S.); (H.C.); Tel.: +49-345-557-7280 (M.S.S.); +49-345-13142835 (H.C.)
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany;
- Correspondence: (M.S.S.); (H.C.); Tel.: +49-345-557-7280 (M.S.S.); +49-345-13142835 (H.C.)
| |
Collapse
|
6
|
Gröger V, Wieland L, Naumann M, Meinecke AC, Meinhardt B, Rossner S, Ihling C, Emmer A, Staege MS, Cynis H. Formation of HERV-K and HERV-Fc1 Envelope Family Members is Suppressed on Transcriptional and Translational Level. Int J Mol Sci 2020; 21:ijms21217855. [PMID: 33113941 PMCID: PMC7660216 DOI: 10.3390/ijms21217855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
The human genome comprises 8% sequences of retroviral origin, so-called human endogenous retroviruses (HERVs). Most of these proviral sequences are defective, but some possess open reading frames. They can lead to the formation of viral transcripts, when activated by intrinsic and extrinsic factors. HERVs are thought to play a pathological role in inflammatory diseases and cancer. Since the consequences of activated proviral sequences in the human body are largely unexplored, selected envelope proteins of human endogenous retroviruses associated with inflammatory diseases, namely HERV-K18, HERV-K113, and HERV-Fc1, were investigated in the present study. A formation of glycosylated envelope proteins was demonstrated in different mammalian cell lines. Nevertheless, protein maturation seemed to be incomplete as no transport to the plasma membrane was observed. Instead, the proteins remained in the ER where they induced the expression of genes involved in unfolded protein response, such as HSPA5 and sXBP1. Furthermore, low expression levels of native envelope proteins were increased by codon optimization. Cell-free expression systems showed that both the transcriptional and translational level is affected. By generating different codon-optimized variants of HERV-K113 envelope, the influence of single rare t-RNA pools in certain cell lines was demonstrated. The mRNA secondary structure also appears to play an important role in the translation of the tested viral envelope proteins. In summary, the formation of certain HERV proteins is basically possible. However, their complete maturation and thus full biologic activity seems to depend on additional factors that might be disease-specific and await elucidation in the future.
Collapse
Affiliation(s)
- Victoria Gröger
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.G.); (M.N.); (A.-C.M.)
| | - Lisa Wieland
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany; (L.W.); (B.M.); (A.E.)
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
| | - Marcel Naumann
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.G.); (M.N.); (A.-C.M.)
| | - Ann-Christin Meinecke
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.G.); (M.N.); (A.-C.M.)
| | - Beate Meinhardt
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany; (L.W.); (B.M.); (A.E.)
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
| | - Steffen Rossner
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstraße 19, 04103 Leipzig, Germany;
| | - Christian Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120 Halle, Germany;
| | - Alexander Emmer
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany; (L.W.); (B.M.); (A.E.)
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
- Correspondence: (M.S.S.); (H.C.); Tel.: +49-345-5577280 (M.S.S.); +49-345-13142835 (H.C.); Fax: +49-345-5577275 (M.S.S.); +49-345-13142801 (H.C.)
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany; (V.G.); (M.N.); (A.-C.M.)
- Correspondence: (M.S.S.); (H.C.); Tel.: +49-345-5577280 (M.S.S.); +49-345-13142835 (H.C.); Fax: +49-345-5577275 (M.S.S.); +49-345-13142801 (H.C.)
| |
Collapse
|
7
|
Bahrami S, Gryz EA, Graversen JH, Troldborg A, Stengaard Pedersen K, Laska MJ. Immunomodulating peptides derived from different human endogenous retroviruses (HERVs) show dissimilar impact on pathogenesis of a multiple sclerosis animal disease model. Clin Immunol 2018; 191:37-43. [PMID: 29567431 DOI: 10.1016/j.clim.2018.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 02/07/2023]
Abstract
Retroviruses including Human Endogenous Retroviruses (HERVs), contain a conserved region with highly immunomodulatory functions in the transmembrane proteins in envelope gene (env) named immunosuppressive domain (ISU). In this report, we demonstrate that Env59-GP3 peptide holds therapeutic potential in a mouse model of myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). The results show that this specific HERV-H derived ISU peptide, but not peptide derived from another env gene HERV-K, decreased the development of EAE in C57BL/6 mice, accompanied by reduced demyelination and inhibition of inflammatory cells. Moreover, here we tested the effect of peptides on macrophages differentiation. The treatment with Env59-GPS peptide modulate the pro-inflammatory M1 profile and anti-inflammatory M2 macrophages, being shown by inhibiting inflammatory M1 hallmark genes/cytokines expression and enhancing expression of M2 associated markers. These results demonstrate that Env59-GP3 ISU peptide has therapeutic potential in EAE possibly through inducing the polarization of M2 macrophages and inhibiting inflammatory responses.
Collapse
Affiliation(s)
- Shervin Bahrami
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | | | | | - Anne Troldborg
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Rheumatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Kristian Stengaard Pedersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Rheumatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Magdalena Janina Laska
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Rheumatology, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| |
Collapse
|
8
|
Gröger V, Cynis H. Human Endogenous Retroviruses and Their Putative Role in the Development of Autoimmune Disorders Such as Multiple Sclerosis. Front Microbiol 2018; 9:265. [PMID: 29515547 PMCID: PMC5826199 DOI: 10.3389/fmicb.2018.00265] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of retroviral germ line infections of human ancestors and make up ~8% of the human genome. Under physiological conditions, these elements are frequently inactive or non-functional due to deactivating mutations and epigenetic control. However, they can be reactivated under certain pathological conditions and produce viral transcripts and proteins. Several disorders, like multiple sclerosis or amyotrophic lateral sclerosis are associated with increased HERV expression. Although their detailed contribution to individual diseases has yet to be elucidated, an increasing number of studies in vitro and in vivo suggest HERVs as potent modulators of the immune system. They are able to affect the transcription of other immune-related genes, interact with pattern recognition receptors, and influence the positive and negative selection of developing thymocytes. Interestingly, HERV envelope proteins can both stimulate and suppress immune responses based on different mechanisms. In the light of HERV proteins becoming an emerging drug target for autoimmune-related disorders and cancer, we will provide an overview on recent findings of the complex interactions between HERVs and the human immune system with a focus on autoimmunity.
Collapse
Affiliation(s)
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| |
Collapse
|
9
|
Cruz-Muñoz ME, Fuentes-Pananá EM. Beta and Gamma Human Herpesviruses: Agonistic and Antagonistic Interactions with the Host Immune System. Front Microbiol 2018; 8:2521. [PMID: 29354096 PMCID: PMC5760548 DOI: 10.3389/fmicb.2017.02521] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses are the most abundant and diverse biological entities in the planet. Historically, our main interest in viruses has focused on their pathogenic role, recognized by pandemics that have decimated the world population. However, viral infections have also played a major role in the evolution of cellular organisms, both through interchanging of genes with novel functions and shaping the immune system. Examples abound of infections that seriously compromise the host integrity, but evidence of plant and insect viruses mutualistic relationships have recently surfaced in which infected hosts are better suited for survival, arguing that virus-host interactions are initially parasitic but become mutualistic over years of co-evolution. A similar mutual help scenario has emerged with commensal gut bacteria. EBV is a herpesvirus that shares more than a hundred million years of co-evolution with humans, today successfully infecting close to 100% of the adult world population. Infection is usually acquired early in childhood persisting for the host lifetime mostly without apparent clinical symptoms. Disturbance of this homeostasis is rare and results in several diseases, of which the best understood are infectious mononucleosis and several EBV-associated cancers. Less understood are recently found inborn errors of the immune system that result in primary immunodeficiencies with an increased predisposition almost exclusive to EBV-associated diseases. Puzzling to these scenarios of broken homeostasis is the co-existence of immunosuppression, inflammation, autoimmunity and cancer. Homologous to EBV, HCMV, HHV-6 and HHV-7 are herpesviruses that also latently infect most individuals. Several lines of evidence support a mutualistic equilibrium between HCMV/EBV and hosts, that when altered trigger diseases in which the immune system plays a critical role. Interestingly, these beta and gamma herpesviruses persistently infect all immune lineages and early precursor cells. In this review, we will discuss the evidence of the benefits that infection of immune cells with these herpesviruses brings to the host. Also, the circumstances in which this positive relationship is broken, predisposing the host to diseases characterized by an abnormal function of the host immune system.
Collapse
Affiliation(s)
- Mario E Cruz-Muñoz
- Laboratorio de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ezequiel M Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
10
|
HIV-1 Infection of Primary CD4 + T Cells Regulates the Expression of Specific Human Endogenous Retrovirus HERV-K (HML-2) Elements. J Virol 2017; 92:JVI.01507-17. [PMID: 29046457 DOI: 10.1128/jvi.01507-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/14/2017] [Indexed: 11/20/2022] Open
Abstract
Endogenous retroviruses (ERVs) occupy extensive regions of the human genome. Although many of these retroviral elements have lost their ability to replicate, those whose insertion took place more recently, such as the HML-2 group of HERV-K elements, still retain intact open reading frames and the capacity to produce certain viral RNA and/or proteins. Transcription of these ERVs is, however, tightly regulated by dedicated epigenetic control mechanisms. Nonetheless, it has been reported that some pathological states, such as viral infections and certain cancers, coincide with ERV expression, suggesting that transcriptional reawakening is possible. HML-2 elements are reportedly induced during HIV-1 infection, but the conserved nature of these elements has, until recently, rendered their expression profiling problematic. Here, we provide comprehensive HERV-K HML-2 expression profiles specific for productively HIV-1-infected primary human CD4+ T cells. We combined enrichment of HIV-1 infected cells using a reporter virus expressing a surface reporter for gentle and efficient purification with long-read single-molecule real-time sequencing. We show that three HML-2 proviruses-6q25.1, 8q24.3, and 19q13.42-are upregulated on average between 3- and 5-fold in HIV-1-infected CD4+ T cells. One provirus, HML-2 12q24.33, in contrast, was repressed in the presence of active HIV replication. In conclusion, this report identifies the HERV-K HML-2 loci whose expression profiles differ upon HIV-1 infection in primary human CD4+ T cells. These data will help pave the way for further studies on the influence of endogenous retroviruses on HIV-1 replication.IMPORTANCE Endogenous retroviruses inhabit big portions of our genome. Moreover, although they are mainly inert, some of the evolutionarily younger members maintain the ability to express both RNA and proteins. We have developed an approach using long-read single-molecule real-time (SMRT) sequencing that produces long reads that allow us to obtain detailed and accurate HERV-K HML-2 expression profiles. We applied this approach to study HERV-K expression in the presence or absence of productive HIV-1 infection of primary human CD4+ T cells. In addition to using SMRT sequencing, our strategy also includes the magnetic selection of the infected cells so that levels of background expression due to uninfected cells are kept at a minimum. The results presented here provide a blueprint for in-depth studies of the interactions of the authentic upregulated HERV-K HML-2 elements and HIV-1.
Collapse
|
11
|
Morandi E, Tanasescu R, Tarlinton RE, Constantinescu CS, Zhang W, Tench C, Gran B. The association between human endogenous retroviruses and multiple sclerosis: A systematic review and meta-analysis. PLoS One 2017; 12:e0172415. [PMID: 28207850 PMCID: PMC5313176 DOI: 10.1371/journal.pone.0172415] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 02/03/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The interaction between genetic and environmental factors is crucial to multiple sclerosis (MS) pathogenesis. Human Endogenous Retroviruses (HERVs) are endogenous viral elements of the human genome whose expression is associated with MS. OBJECTIVE To perform a systematic review and meta-analysis and to assess qualitative and quantitative evidence on the expression of HERV families in MS patients. METHODS Medline, Embase and the Cochrane Library were searched for published studies on the association of HERVs and MS. Meta-analysis was performed on the HERV-W family. Odds Ratio (OR) and 95% confidence interval (CI) were calculated for association. RESULTS 43 reports were extracted (25 related to HERV-W, 13 to HERV-H, 9 to HERV-K, 5 to HRES-1 and 1 to HER-15 family). The analysis showed an association between expression of all HERV families and MS. For HERV-W, adequate data was available for meta-analysis. Results from meta-analyses of HERV-W were OR = 22.66 (95%CI 6.32 to 81.20) from 4 studies investigating MSRV/HERV-W (MS-associated retrovirus) envelope mRNA in peripheral blood mononuclear cells, OR = 44.11 (95%CI 12.95 to 150.30) from 6 studies of MSRV/HERV-W polymerase mRNA in serum/plasma and OR = 6.00 (95%CI 3.35 to 10.74) from 4 studies of MSRV/HERV-W polymerase mRNA in CSF. CONCLUSIONS This systematic review and meta-analysis shows an association between expression of HERVs, and in particular the HERV-W family, and MS.
Collapse
Affiliation(s)
- Elena Morandi
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, Nottingham, United Kingdom
| | - Radu Tanasescu
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, Nottingham, United Kingdom
- Division of Clinical Neurosciences, University of Medicine and Pharmacy Carol Davila, Department of Neurology, Colentina Hospital, Bucharest, Romania
| | - Rachael E. Tarlinton
- University of Nottingham School of Veterinary Medicine and Science, Nottingham, United Kingdom
| | - Cris S. Constantinescu
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, Nottingham, United Kingdom
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Weiya Zhang
- Division of Rheumatology, Orthopaedics and Dermatology, University of Nottingham School of Medicine, Nottingham, United Kingdom
| | - Christopher Tench
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, Nottingham, United Kingdom
| | - Bruno Gran
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, Nottingham, United Kingdom
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| |
Collapse
|
12
|
Nexø BA, Jensen SB, Nissen KK, Hansen B, Laska MJ. Two endogenous retroviral loci appear to contribute to Multiple Sclerosis. BMC Neurol 2016; 16:57. [PMID: 27130045 PMCID: PMC4851805 DOI: 10.1186/s12883-016-0580-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/26/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Two endogenous retroviral loci seem to be involved in the human disease Multiple sclerosis (MS). RESULTS The two retroviral loci synergize in and contribute to MS (shown by ANOVA). Synergy probably means recombination or complementation of the activated viruses. Similar observations may be true for Type 1 Diabetes and Rheumatoid arthritis. In MS the genes also synergize with the immune system; this could well be a common phenomenon. CONCLUSION We formulate various theories about the role of the viruses. Also, the concept is developing that some forms of autoimmunity should be treatable with antiretrovirals. In the case of MS, this idea is gradually gaining weight.
Collapse
Affiliation(s)
- Bjørn A Nexø
- Aarhus University, Biomedicine, Bartholin Building, Wilhelm Meyers Alle 4, DK-8000, Aarhus C, Denmark.
| | - Sara B Jensen
- Aarhus University, Biomedicine, Bartholin Building, Wilhelm Meyers Alle 4, DK-8000, Aarhus C, Denmark
| | - Kari K Nissen
- Aarhus University, Biomedicine, Bartholin Building, Wilhelm Meyers Alle 4, DK-8000, Aarhus C, Denmark.,Present address: VIA University College, DK-8200, Aarhus, Denmark
| | - Bettina Hansen
- Aarhus University, Biomedicine, Bartholin Building, Wilhelm Meyers Alle 4, DK-8000, Aarhus C, Denmark
| | - Magdalena J Laska
- Department of Clinical Medicine, Aarhus University, DK-8000, Aarhus C, Denmark.,Department of Rheumatology, Aarhus University Hospital, DK-8000, Aarhus C, Denmark
| |
Collapse
|
13
|
Morandi E, Tarlinton RE, Gran B. Multiple Sclerosis between Genetics and Infections: Human Endogenous Retroviruses in Monocytes and Macrophages. Front Immunol 2015; 6:647. [PMID: 26734011 PMCID: PMC4689809 DOI: 10.3389/fimmu.2015.00647] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/11/2015] [Indexed: 01/02/2023] Open
Abstract
The etiology of multiple sclerosis (MS) is still unknown, but there is strong evidence that genetic predisposition associated with environmental factors can trigger the disease. An estimated 30 million years ago, exogenous retroviruses are thought to have integrated themselves into human germ line cells, becoming part of human DNA and being transmitted over generations. Usually such human endogenous retroviruses (HERVs) are silenced or expressed at low levels, but in some pathological conditions, such as MS, their expression is higher than that in the healthy population. Three HERV families have been associated with MS: HERV-H, HERV-K, and HERV-W. The envelope protein of MS-associated retrovirus (MSRV) from the HERV-W family currently has the strongest evidence as a potential trigger for MS. In addition to expression in peripheral immune cells, MSRV is expressed in monocytes and microglia in central nervous system lesions of people with MS and, through the activation of toll-like receptor 4, it has been shown to drive the production of proinflammatory cytokines, reduction of myelin protein expression, and death of oligodendrocyte precursors. In conclusion, the association between HERVs and MS is well documented and a pathological role for MSRV in MS is plausible. Further studies are required to determine whether the presence of these HERVs is a cause or an effect of immune dysregulation in MS.
Collapse
Affiliation(s)
- Elena Morandi
- Clinical Neurology Research Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham , Nottingham , UK
| | - Rachael E Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham , Nottingham , UK
| | - Bruno Gran
- Clinical Neurology Research Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham , Nottingham , UK
| |
Collapse
|
14
|
Nadeau MJ, Manghera M, Douville RN. Inside the Envelope: Endogenous Retrovirus-K Env as a Biomarker and Therapeutic Target. Front Microbiol 2015; 6:1244. [PMID: 26617584 PMCID: PMC4643131 DOI: 10.3389/fmicb.2015.01244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/26/2015] [Indexed: 11/27/2022] Open
Abstract
Due to multiple ancestral human retroviral germ cell infections, the modern human genome is strewn with relics of these infections, termed endogenous retroviruses (ERVs). ERV expression has been silenced due to negative selective pressures and genetic phenomena such as mutations and epigenetic silencing. Nonetheless, select ERVs have retained the capacity to be damaging to their host when reawakened. Much of the current research on the ERVK Env protein strongly suggests a causal or contributive role in the pathogenesis of various cancers, autoimmune and infectious diseases. Additionally, there is a small body of research suggesting that ERVK Env has been domesticated for use in placental development, akin to the ERVW syncytin. Though much is left to ascertain, the innate immune response to ERVK Env expression has been partially characterized and appears to be due to a region located in the transmembrane domain of the Env protein. In this review, we aim to highlight ERVK Env as a biomarker for inflammatory conditions and explore its use as a future therapeutic target for cancers, HIV infection and neurological disease.
Collapse
Affiliation(s)
- Marie-Josée Nadeau
- Douville Lab, Department of Biology, University of Winnipeg Winnipeg, MB, Canada
| | - Mamneet Manghera
- Douville Lab, Department of Biology, University of Winnipeg Winnipeg, MB, Canada ; Department of Immunology, University of Manitoba Winnipeg, MB, Canada
| | - Renée N Douville
- Douville Lab, Department of Biology, University of Winnipeg Winnipeg, MB, Canada ; Department of Immunology, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
15
|
Suntsova M, Garazha A, Ivanova A, Kaminsky D, Zhavoronkov A, Buzdin A. Molecular functions of human endogenous retroviruses in health and disease. Cell Mol Life Sci 2015; 72:3653-75. [PMID: 26082181 PMCID: PMC11113533 DOI: 10.1007/s00018-015-1947-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/13/2022]
Abstract
Human endogenous retroviruses (HERVs) and related genetic elements form 504 distinct families and occupy ~8% of human genome. Recent success of high-throughput experimental technologies facilitated understanding functional impact of HERVs for molecular machinery of human cells. HERVs encode active retroviral proteins, which may exert important physiological functions in the body, but also may be involved in the progression of cancer and numerous human autoimmune, neurological and infectious diseases. The spectrum of related malignancies includes, but not limits to, multiple sclerosis, psoriasis, lupus, schizophrenia, multiple cancer types and HIV. In addition, HERVs regulate expression of the neighboring host genes and modify genomic regulatory landscape, e.g., by providing regulatory modules like transcription factor binding sites (TFBS). Indeed, recent bioinformatic profiling identified ~110,000 regulatory active HERV elements, which formed at least ~320,000 human TFBS. These and other peculiarities of HERVs might have played an important role in human evolution and speciation. In this paper, we focus on the current progress in understanding of normal and pathological molecular niches of HERVs, on their implications in human evolution, normal physiology and disease. We also review the available databases dealing with various aspects of HERV genetics.
Collapse
Affiliation(s)
- Maria Suntsova
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia.
| | - Andrew Garazha
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia.
| | - Alena Ivanova
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.
| | - Dmitry Kaminsky
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.
| | - Alex Zhavoronkov
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.
- Department of Translational and Regenerative Medicine, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow, 141700, Russia.
| | - Anton Buzdin
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.
- National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, 1, Akademika Kurchatova sq., Moscow, 123182, Russia.
| |
Collapse
|
16
|
Schmidt KLM, Vangsted AJ, Hansen B, Vogel UB, Hermansen NEU, Jensen SB, Laska MJ, Nexø BA. Synergy of two human endogenous retroviruses in multiple myeloma. Leuk Res 2015; 39:1125-8. [PMID: 26231931 DOI: 10.1016/j.leukres.2015.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/14/2015] [Accepted: 06/22/2015] [Indexed: 11/19/2022]
Abstract
Multiple myeloma (MM) is a severe, incurable neoplasm of the plasma cells. In this study we have used genetic epidemiology to associate the risk of MM with endogenous retroviral loci in humans. We used SNP analysis on a Sequenom platform and statistical analysis in SPSS. Markers near two endogenous retroviral loci, HERV-Fc1 on chromosome X and HERV-K on chromosome 1, were associated with MM. Moreover, there was strong gene-gene interaction in relation to risk of MM. We take this as indirect confirmation of the association.
Collapse
Affiliation(s)
| | - Annette J Vangsted
- Department of Hematology, Rigshospitalet, Copenhagen University, DK-2100 Copenhagen, Denmark
| | - Bettina Hansen
- Department of Biomedicin, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ulla B Vogel
- National Institute of Occupational Health, DK-2100 Copenhagen O, Denmark
| | - N Emil U Hermansen
- Department of Hematology, Rigshospitalet, Copenhagen University, DK-2100 Copenhagen, Denmark
| | - Sara B Jensen
- Department of Biomedicin, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Magdalena J Laska
- Department of Biomedicin, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bjørn A Nexø
- Department of Biomedicin, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
17
|
ERVK polyprotein processing and reverse transcriptase expression in human cell line models of neurological disease. Viruses 2015; 7:320-32. [PMID: 25609305 PMCID: PMC4306841 DOI: 10.3390/v7010320] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/02/2014] [Accepted: 01/12/2015] [Indexed: 12/03/2022] Open
Abstract
Enhanced expression of the reverse transcriptase (RT) protein encoded by human endogenous retrovirus-K (ERVK) is a promising biomarker for several inflammatory and neurological diseases. However, unlike RT enzymes encoded by exogenous retroviruses, little work has been done to identify ERVK RT isoforms, their expression patterns, and cellular localization. Using Western blot, we showcase the ERVK gag-pro-pol polyprotein processing leading to the production of several ERVK RT isoforms in human neuronal (ReNcell CX) and astrocytic (SVGA) models of neuroinflammatory disease. Since the pro-inflammatory cytokine IFNγ plays a key role in the pathology of several ERVK-associated neurological diseases, we sought to determine if IFNγ can drive ERVK RT expression. IFNγ signalling markedly enhanced ERVK polyprotein and RT expression in both human astrocytes and neurons. RT isoforms were expressed in a cell-type specific pattern and the RT-RNase H form was significantly increased with IFNγ treatment. Fluorescent imaging revealed distinct cytoplasmic, perinuclear and nuclear ERVK RT staining patterns upon IFNγ stimulation of astrocytes and neurons. These findings indicate that ERVK expression is inducible under inflammatory conditions such as IFNγ exposure—and thus, these newly established in vitro models may be useful in exploring ERVK biology in the context of neuroinflammatory disease.
Collapse
|
18
|
Manghera M, Ferguson J, Douville R. Endogenous Retrovirus-K and Nervous System Diseases. Curr Neurol Neurosci Rep 2014; 14:488. [DOI: 10.1007/s11910-014-0488-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Interactions between chromosomal and nonchromosomal elements reveal missing heritability. Proc Natl Acad Sci U S A 2014; 111:7719-22. [PMID: 24825890 DOI: 10.1073/pnas.1407126111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The measurement of any nonchromosomal genetic contribution to the heritability of a trait is often confounded by the inability to control both the chromosomal and nonchromosomal information in a population. We have designed a unique system in yeast where we can control both sources of information so that the phenotype of a single chromosomal polymorphism can be measured in the presence of different cytoplasmic elements. With this system, we have shown that both the source of the mitochondrial genome and the presence or absence of a dsRNA virus influence the phenotype of chromosomal variants that affect the growth of yeast. Moreover, by considering this nonchromosomal information that is passed from parent to offspring and by allowing chromosomal and nonchromosomal information to exhibit nonadditive interactions, we are able to account for much of the heritability of growth traits. Taken together, our results highlight the importance of including all sources of heritable information in genetic studies and suggest a possible avenue of attack for finding additional missing heritability.
Collapse
|
20
|
Human endogenous retrovirus HERV-Fc1 association with multiple sclerosis susceptibility: a meta-analysis. PLoS One 2014; 9:e90182. [PMID: 24594754 PMCID: PMC3971560 DOI: 10.1371/journal.pone.0090182] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/27/2014] [Indexed: 01/07/2023] Open
Abstract
Background Human endogenous retroviruses (HERVs) are repetitive sequences derived from ancestral germ-line infections by exogenous retroviruses and different HERV families have been integrated in the genome. HERV-Fc1 in chromosome X has been previously associated with multiple sclerosis (MS) in Northern European populations. Additionally, HERV-Fc1 RNA levels of expression have been found increased in plasma of MS patients with active disease. Considering the North-South latitude gradient in MS prevalence, we aimed to evaluate the role of HERV-Fc1on MS risk in three independent Spanish cohorts. Methods A single nucleotide polymorphism near HERV-Fc1, rs391745, was genotyped by Taqman chemistry in a total of 2473 MS patients and 3031 ethnically matched controls, consecutively recruited from: Northern (569 patients and 980 controls), Central (883 patients and 692 controls) and Southern (1021 patients and 1359 controls) Spain. Our results were pooled in a meta-analysis with previously published data. Results Significant associations of the HERV-Fc1 polymorphism with MS were observed in two Spanish cohorts and the combined meta-analysis with previous data yielded a significant association [rs391745 C-allele carriers: pM-H = 0.0005; ORM-H (95% CI) = 1.27 (1.11–1.45)]. Concordantly to previous findings, when the analysis was restricted to relapsing remitting and secondary progressive MS samples, a slight enhancement in the strength of the association was observed [pM-H = 0.0003, ORM-H (95% CI) = 1.32 (1.14–1.53)]. Conclusion Association of the HERV-Fc1 polymorphism rs391745 with bout-onset MS susceptibility was confirmed in Southern European cohorts.
Collapse
|
21
|
Zwolińska K, Knysz B, Gąsiorowski J, Pazgan-Simon M, Gładysz A, Sobczyński M, Piasecki E. Frequency of human endogenous retroviral sequences (HERV) K113 and K115 in the Polish population, and their effect on HIV infection. PLoS One 2013; 8:e77820. [PMID: 24204983 PMCID: PMC3810129 DOI: 10.1371/journal.pone.0077820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/04/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The human genome contains about 8% of endogenous retroviral sequences originated from germ cell infections by exogenous retroviruses during evolution. Most of those sequences are inactive because of accumulation of mutations but some of them are still capable to be transcribed and translated. The latter are insertionally polymorphic HERV-K113 and HERV-K115. It has been suggested that their presence and expression was connected with several human diseases. It is also believed that they could interfere with the replication cycle of exogenous retroviruses, including HIV. RESULTS Prevalence of endogenous retroviral sequences HERV-K113 and HERV-K115 was determined in the Polish population. The frequencies were found as 11.8% for HERV-K113 and 7.92% for HERV-K115. To verify the hypothesis that the presence of these HERVs sequences could affect susceptibility to HIV infection, comparison of a control group (HIV-negative, not exposed to HIV; n = 303) with HIV-positive patients (n = 470) and exposed but uninfected (EU) individuals (n = 121) was performed. Prevalence of HERV-K113 and HERV-K115 in the EU group was 8.26% and 5.71%, respectively. In the HIV(+) group we detected HERV-K113 sequences in 12.98% of the individuals and HERV-K115 sequences in 7.23% of the individuals. There were no statistically significant differences between groups studied. CONCLUSION The frequency of HERV-K113 and HERV-K115 sequences in Poland were found to be higher than usually shown for European populations. No relation between presence of the HERVs and HIV infection was detected.
Collapse
Affiliation(s)
- Katarzyna Zwolińska
- Laboratory of Virology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- * E-mail:
| | - Brygida Knysz
- Department and Clinic of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wrocław Medical University, Poland
| | - Jacek Gąsiorowski
- Department and Clinic of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wrocław Medical University, Poland
| | - Monika Pazgan-Simon
- Department and Clinic of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wrocław Medical University, Poland
| | - Andrzej Gładysz
- Department and Clinic of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wrocław Medical University, Poland
| | - Maciej Sobczyński
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Poland
| | - Egbert Piasecki
- Laboratory of Virology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University, Częstochowa, Poland
| |
Collapse
|
22
|
Katoh I, Kurata SI. Association of endogenous retroviruses and long terminal repeats with human disorders. Front Oncol 2013; 3:234. [PMID: 24062987 PMCID: PMC3769647 DOI: 10.3389/fonc.2013.00234] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/27/2013] [Indexed: 01/31/2023] Open
Abstract
Since the human genome sequences became available in 2001, our knowledge about the human transposable elements which comprise ∼40% of the total nucleotides has been expanding. Non-long terminal repeat (non-LTR) retrotransposons are actively transposing in the present-day human genome, and have been found to cause ∼100 identified clinical cases of varied disorders. In contrast, almost all of the human endogenous retroviruses (HERVs) originating from ancient infectious retroviruses lost their infectivity and transposing activity at various times before the human-chimpanzee speciation (∼6 million years ago), and no known HERV is presently infectious. Insertion of HERVs and mammalian apparent LTR retrotransposons (MaLRs) into the chromosomal DNA influenced a number of host genes in various modes during human evolution. Apart from the aspect of genome evolution, HERVs and solitary LTRs being suppressed in normal biological processes can potentially act as extra transcriptional apparatuses of cellular genes by re-activation in individuals. There has been a reasonable prediction that aberrant LTR activation could trigger malignant disorders and autoimmune responses if epigenetic changes including DNA hypomethylation occur in somatic cells. Evidence supporting this hypothesis has begun to emerge only recently: a MaLR family LTR activation in the pathogenesis of Hodgkin’s lymphoma and a HERV-E antigen expression in an anti-renal cell carcinoma immune response. This mini review addresses the impacts of the remnant-form LTR retrotransposons on human pathogenesis.
Collapse
Affiliation(s)
- Iyoko Katoh
- Department of Microbiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi , Chuo, Yamanashi , Japan
| | | |
Collapse
|