1
|
Guo X, Huang S, Zhang Y, Wang H, Li L, Ran J, Chen D, Li X, Li J. Evodiamine inhibits growth of vemurafenib drug-resistant melanoma via suppressing IRS4/PI3K/AKT signaling pathway. J Nat Med 2024; 78:342-354. [PMID: 38324123 DOI: 10.1007/s11418-023-01769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
Evodiamine, a novel alkaloid, was isolated from the fruit of tetradium. It exerts a diversity of pharmacological effects and has been used to treat gastropathy, hypertension, and eczema. Several studies reported that evodiamine has various biological effects, including anti-nociceptive, anti-bacterial, anti-obesity, and anti-cancer activities. However, there is no research regarding its effects on drug-resistant cancer. This study aimed to investigate the effect of evodiamine on human vemurafenib-resistant melanoma cells (A375/R cells) proliferation ability and its mechanism. Cell activity was assessed using the cell counting kit-8 (CCK-8) method. Flow cytometry assay was used to assess cell apoptosis and cell cycle. A xenograft model was used to analyze the inhibitory effects of evodiamine on tumor growth. Bioinformatics analyses, network pharmacology, and molecular docking were used to explore the potential mechanism of evodiamine in vemurafenib-resistant melanoma. RT-qPCR and Western blotting were performed to reveal the molecular mechanism. The alkaloid extract of the fruit of tetradium, evodiamine showed the strongest tumor inhibitory effect on vemurafenib-resistant melanoma cells compared to treatment with vemurafenib alone. Evodiamine inhibited vemurafenib-resistant melanoma cell growth, proliferation, and induced apoptosis, conforming to a dose-effect relationship and time-effect relationship. Results from network pharmacology and molecular docking suggested that evodiamine might interact with IRS4 to suppress growth of human vemurafenib-resistant melanoma cells. Interestingly, evodiamine suppressed IRS4 expression and then inhibited PI3K/AKT signaling pathway, and thus had the therapeutic action on vemurafenib-resistant melanoma.
Collapse
Affiliation(s)
- Xingxian Guo
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Shiying Huang
- Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, China
| | - Yonghong Zhang
- Chongqing Engineering Research Center for Clinical Big-Data and Drug Evaluation Medical Data Science Academy, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Department of Pharmacy, Chongqing Health Center for Women and Children), Chongqing, China
| | - Lisha Li
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400010, China
| | - Jianhua Ran
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Dilong Chen
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou, 404100, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Xiaopeng Li
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou, 404100, China.
| | - Jing Li
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
2
|
Ter Steege EJ, Doornbos LW, Haughton PD, van Diest PJ, Hilkens J, Derksen PWB, Bakker ERM. R-spondin-3 promotes proliferation and invasion of breast cancer cells independently of Wnt signaling. Cancer Lett 2023; 568:216301. [PMID: 37406727 DOI: 10.1016/j.canlet.2023.216301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
We recently identified R-spondin-3 (RSPO3) as a novel driver of breast cancer associating with reduced patient survival, expanding its clinical value as potential therapeutic target that had been recognized mostly for colorectal cancer so far. (Pre)clinical studies exploring RSPO3 targeting in colorectal cancer approach this indirectly with Wnt inhibitors, or directly with anti-RSPO3 antibodies. Here, we address the clinical relevance of RSPO3 in breast cancer and provide insight in the oncogenic activities of RSPO3. Utilizing the RSPO3 breast cancer mouse model, we show that RSPO3 drives the aberrant expansion of luminal progenitor cells expressing cancer stem cell marker CD61, inducing proliferative, poorly differentiated and invasive tumors. Complementary studies with tumor organoids and human breast cancer cell lines demonstrate that RSPO3 consistently promotes the proliferation and invasion of breast cancer cells. Importantly, RSPO3 exerts these oncogenic effects independently of Wnt signaling, rejecting the therapeutic value of Wnt inhibitors in RSPO3-driven breast cancer. Instead, direct RSPO3 targeting effectively inhibited RSPO3-driven growth of breast cancer cells. Conclusively, our data indicate that RSPO3 exerts unfavorable oncogenic effects in breast cancer, enhancing proliferation and malignancy in a Wnt-independent fashion, proposing RSPO3 itself as a valuable therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Eline J Ter Steege
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Loes W Doornbos
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter D Haughton
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - John Hilkens
- Department of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Elvira R M Bakker
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
El-Kafrawy SA, El-Daly MM, Bajrai LH, Alandijany TA, Faizo AA, Mobashir M, Ahmed SS, Ahmed S, Alam S, Jeet R, Kamal MA, Anwer ST, Khan B, Tashkandi M, Rizvi MA, Azhar EI. Genomic profiling and network-level understanding uncover the potential genes and the pathways in hepatocellular carcinoma. Front Genet 2022; 13:880440. [PMID: 36479247 PMCID: PMC9720179 DOI: 10.3389/fgene.2022.880440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/02/2022] [Indexed: 12/11/2023] Open
Abstract
Data integration with phenotypes such as gene expression, pathways or function, and protein-protein interactions data has proven to be a highly promising technique for improving human complex diseases, particularly cancer patient outcome prediction. Hepatocellular carcinoma is one of the most prevalent cancers, and the most common cause is chronic HBV and HCV infection, which is linked to the majority of cases, and HBV and HCV play a role in multistep carcinogenesis progression. We examined the list of known hepatocellular carcinoma biomarkers with the publicly available expression profile dataset of hepatocellular carcinoma infected with HCV from day 1 to day 10 in this study. The study covers an overexpression pattern for the selected biomarkers in clinical hepatocellular carcinoma patients, a combined investigation of these biomarkers with the gathered temporal dataset, temporal expression profiling changes, and temporal pathway enrichment following HCV infection. Following a temporal analysis, it was discovered that the early stages of HCV infection tend to be more harmful in terms of expression shifting patterns, and that there is no significant change after that, followed by a set of genes that are consistently altered. PI3K, cAMP, TGF, TNF, Rap1, NF-kB, Apoptosis, Longevity regulating pathway, signaling pathways regulating pluripotency of stem cells, Cytokine-cytokine receptor interaction, p53 signaling, Wnt signaling, Toll-like receptor signaling, and Hippo signaling pathways are just a few of the most commonly enriched pathways. The majority of these pathways are well-known for their roles in the immune system, infection and inflammation, and human illnesses like cancer. We also find that ADCY8, MYC, PTK2, CTNNB1, TP53, RB1, PRKCA, TCF7L2, PAK1, ITPR2, CYP3A4, UGT1A6, GCK, and FGFR2/3 appear to be among the prominent genes based on the networks of genes and pathways based on the copy number alterations, mutations, and structural variants study.
Collapse
Affiliation(s)
- Sherif A. El-Kafrawy
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mai M. El-Daly
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Leena H. Bajrai
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamir A. Alandijany
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arwa A. Faizo
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Mobashir
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Sunbul S. Ahmed
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Raja Jeet
- Botany Department, Ganesh Dutt College, Begusarai, Bihar, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, Hebersham, NSW, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Syed Tauqeer Anwer
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Bushra Khan
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Manal Tashkandi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Moshahid A. Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
ter Steege EJ, Boer M, Timmer NC, Ammerlaan CME, Song J, Derksen PWB, Hilkens J, Bakker ERM. R-spondin-3 is an oncogenic driver of poorly differentiated invasive breast cancer. J Pathol 2022; 258:289-299. [PMID: 36106661 PMCID: PMC9825844 DOI: 10.1002/path.5999] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
R-spondins (RSPOs) are influential signaling molecules that promote the Wnt/β-catenin pathway and self-renewal of stem cells. Currently, RSPOs are emerging as clinically relevant oncogenes, being linked to cancer development in multiple organs. Although this has instigated the rapid development and testing of therapeutic antibodies targeting RSPOs, functional evidence that RSPO causally drives cancer has focused primarily on the intestinal tract. Here, we assess the oncogenic capacity of RSPO in breast cancer in a direct fashion by generating and characterizing a novel mouse model with conditional Rspo3 expression in the mammary gland. We also address the prevalence of RSPO gene alterations in breast cancer patients. We found that a quarter of breast cancer patients harbor RSPO2/RSPO3 copy number amplifications, which are associated with lack of steroid hormone receptor expression and reduced patient survival. Foremost, we demonstrate the causal oncogenic capacity of RSPO3 in the breast, as conditional Rspo3 overexpression consistently drives the development of mammary adenocarcinomas in our novel Rspo3 breast cancer model. RSPO3-driven mammary tumors typically show poor differentiation, areas of epithelial-to-mesenchymal transition, and metastatic potential. Given the reported interplay in the Wnt/β-catenin pathway, we comparatively analyzed RSPO3-driven mouse mammary tumors versus classical WNT1-driven analogues. This revealed that RSPO3-driven tumors are distinct, as the poorly differentiated tumor morphology and metastatic potential were observed in RSPO3-driven tumorigenesis exclusively, further substantiated by differentiating gene expression profiles. Co-expression of Rspo3 and Wnt1 transduced mammary tumors with a mixed phenotype harboring morphological features characteristic of both transgenes. In summary, we report that a quarter of breast cancer patients harbor RSPO2/RSPO3 copy number gains, and these patients have a worse prognosis, whilst providing in vivo evidence that RSPO3 drives poorly differentiated invasive breast cancer in mice. Herewith, we establish RSPO3 as a driver of breast cancer with clinical relevance, proposing RSPO3 as a novel candidate target for therapy in breast cancer. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Eline J ter Steege
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Mandy Boer
- Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Nikki C Timmer
- Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Carola ME Ammerlaan
- Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Ji‐Ying Song
- Department of Experimental Animal PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Patrick WB Derksen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - John Hilkens
- Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Elvira RM Bakker
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands,Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
5
|
Parisi F, Freer G, Mazzanti CM, Pistello M, Poli A. Mouse Mammary Tumor Virus (MMTV) and MMTV-like Viruses: An In-depth Look at a Controversial Issue. Viruses 2022; 14:v14050977. [PMID: 35632719 PMCID: PMC9147501 DOI: 10.3390/v14050977] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Since its discovery as a milk factor, mouse mammary tumor virus (MMTV) has been shown to cause mammary carcinoma and lymphoma in mice. MMTV infection depends upon a viral superantigen (sag)-induced immune response and exploits the immune system to establish infection in mammary epithelial cells when they actively divide. Simultaneously, it avoids immune responses, causing tumors through insertional mutagenesis and clonal expansion. Early studies identified antigens and sequences belonging to a virus homologous to MMTV in human samples. Several pieces of evidence fulfill a criterion for a possible causal role for the MMTV-like virus in human breast cancer (BC), though the controversy about whether this virus was linked to BC has raged for over 40 years in the literature. In this review, the most important issues related to MMTV, from its discovery to the present days, are retraced to fully explore such a controversial issue. Furthermore, the hypothesis of an MMTV-like virus raised the question of a potential zoonotic mouse–man transmission. Several studies investigate the role of an MMTV-like virus in companion animals, suggesting their possible role as mediators. Finally, the possibility of an MMTV-like virus as a cause of human BC opens a new era for prevention and therapy.
Collapse
Affiliation(s)
- Francesca Parisi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale Delle Piagge, 2, 56124 Pisa, Italy;
| | - Giulia Freer
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Savi 10, 56126 Pisa, Italy; (G.F.); (M.P.)
| | - Chiara Maria Mazzanti
- Fondazione Pisana per la Scienza, Via Ferruccio Giovannini, 13, 56017 San Giuliano Terme, Italy;
| | - Mauro Pistello
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Savi 10, 56126 Pisa, Italy; (G.F.); (M.P.)
| | - Alessandro Poli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale Delle Piagge, 2, 56124 Pisa, Italy;
- Correspondence:
| |
Collapse
|
6
|
Heitink L, Whittle JR, Vaillant F, Capaldo BD, Dekkers JF, Dawson CA, Milevskiy MJG, Surgenor E, Tsai M, Chen H, Christie M, Chen Y, Smyth GK, Herold MJ, Strasser A, Lindeman GJ, Visvader JE. In vivo genome-editing screen identifies tumor suppressor genes that cooperate with Trp53 loss during mammary tumorigenesis. Mol Oncol 2022; 16:1119-1131. [PMID: 35000262 PMCID: PMC8895454 DOI: 10.1002/1878-0261.13179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/07/2021] [Accepted: 01/07/2022] [Indexed: 11/20/2022] Open
Abstract
Breast cancer is a heterogeneous disease that comprises multiple histological and molecular subtypes. To gain insight into mutations that drive breast tumorigenesis, we describe a pipeline for the identification and validation of tumor suppressor genes. Based on an in vivo genome‐wide CRISPR/Cas9 screen in Trp53+/– heterozygous mice, we identified tumor suppressor genes that included the scaffold protein Axin1, the protein kinase A regulatory subunit gene Prkar1a, as well as the proof‐of‐concept genes Pten, Nf1, and Trp53 itself. Ex vivo editing of primary mammary epithelial organoids was performed to further interrogate the roles of Axin1 and Prkar1a. Increased proliferation and profound changes in mammary organoid morphology were observed for Axin1/Trp53 and Prkar1a/Trp53 double mutants compared to Pten/Trp53 double mutants. Furthermore, direct in vivo genome editing via intraductal injection of lentiviruses engineered to express dual short‐guide RNAs revealed that mutagenesis of Trp53 and either Prkar1a, Axin1, or Pten markedly accelerated tumor development compared to Trp53‐only mutants. This proof‐of‐principle study highlights the application of in vivo CRISPR/Cas9 editing for uncovering cooperativity between defects in tumor suppressor genes that elicit mammary tumorigenesis.
Collapse
Affiliation(s)
- Luuk Heitink
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
| | - James R. Whittle
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
- Department of Medical OncologyPeter MacCallum Cancer CentreMelbourneAustralia
| | - François Vaillant
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
| | - Bianca D. Capaldo
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
| | - Johanna F. Dekkers
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Caleb A. Dawson
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
- Immunology DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Michael J. G. Milevskiy
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
| | - Elliot Surgenor
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Minhsuang Tsai
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Huei‐Rong Chen
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Michael Christie
- Personalised Oncology DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of PathologyThe Royal Melbourne HospitalParkvilleAustralia
| | - Yunshun Chen
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Gordon K. Smyth
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- School of Mathematics and StatisticsThe University of MelbourneParkvilleAustralia
| | - Marco J. Herold
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
- Blood Cells and Blood Cancer DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Andreas Strasser
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
- Blood Cells and Blood Cancer DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Geoffrey J. Lindeman
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
- Department of Medical OncologyPeter MacCallum Cancer CentreMelbourneAustralia
| | - Jane E. Visvader
- ACRF Cancer Biology and Stem Cells DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleAustralia
| |
Collapse
|
7
|
ERAS, a Member of the Ras Superfamily, Acts as an Oncoprotein in the Mammary Gland. Cancers (Basel) 2021; 13:cancers13215588. [PMID: 34771750 PMCID: PMC8582886 DOI: 10.3390/cancers13215588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The genes of the RAS family are among the group of genes most frequently mutated in human cancer. ERAS is a relatively unknown gene of this family. Although ERAS is overexpressed in some tumoral samples and in several cancer cell lines of human origin, it is not known if its expression drives tumor formation or if, alternatively, its expression is a secondary event in tumoral transformation. In this report, in order to clarify the role of ERAS in mammary tumorigenesis, we studied transgenic mice expressing ERAS in myoepithelial cells of mammary and other exocrine glands and in basal cells of stratified epithelia. These mice displayed an altered development and function of the mammary glands, and suffered high-frequency tumoral lesions in the mammary glands resembling a rare human breast tumor named malignant adenomyoepithelioma. Our results clearly demonstrate that ERAS is a true oncogene able to produce mammary tumors when inappropriately expressed. Abstract ERAS is a relatively uncharacterized gene of the Ras superfamily. It is expressed in ES cells and in the first stages of embryonic development; later on, it is silenced in the majority of cell types and tissues. Although there are several reports showing ERAS expression in tumoral cell lines and human tumor samples, it is unknown if ERAS deregulated expression is enough to drive tumor development. In this report, we have generated transgenic mice expressing ERAS in myoepithelial basal cells of the mammary gland and in basal cells of stratified epithelia. In spite of the low level of ERAS expression, these transgenic mice showed phenotypic alterations resembling overgrowth syndromes caused by the activation of the AKT-PI3K pathway. In addition, their mammary glands present developmental and functional disabilities accompanied by morphological and biochemical alterations in the myoepithelial cells. These mice suffer from tumoral transformation in the mammary glands with high incidence. These mammary tumors resemble, both histologically and by the expression of differentiation markers, malignant adenomyoepitheliomas. In sum, our results highlight the importance of ERAS silencing in adult tissues and define a truly oncogenic role for ERAS in mammary gland cells when inappropriately expressed.
Collapse
|
8
|
Ter Steege EJ, Bakker ERM. The role of R-spondin proteins in cancer biology. Oncogene 2021; 40:6469-6478. [PMID: 34663878 PMCID: PMC8616751 DOI: 10.1038/s41388-021-02059-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
R-spondin (RSPO) proteins constitute a family of four secreted glycoproteins (RSPO1-4) that have appeared as multipotent signaling ligands. The best-known molecular function of RSPOs lie within their capacity to agonize the Wnt/β-catenin signaling pathway. As RSPOs act upon cognate receptors LGR4/5/6 that are typically expressed by stem cells and progenitor cells, RSPO proteins importantly potentiate Wnt/β-catenin signaling especially within these proliferative stem cell compartments. Since multiple organs express LGR4/5/6 receptors and RSPO ligands within their stem cell niches, RSPOs can exert an influential role in stem cell regulation throughout the body. Inherently, over the last decade a multitude of reports implicated the deregulation of RSPOs in cancer development. First, RSPO2 and RSPO3 gene fusions with concomitant enhanced expression have been identified in colon cancer patients, and proposed as an alternative driver of Wnt/β-catenin hyperactivation that earmarks cancer in the colorectal tract. Moreover, the causal oncogenic capacity of RSPO3 overactivation has been demonstrated in the mouse intestine. As a paradigm organ in this field, most of current knowledge about RSPOs in cancer is derived from studies in the intestinal tract. However, RSPO gene fusions as well as enhanced RSPO expression have been reported in multiple additional cancer types, affecting different organs that involve divergent stem cell hierarchies. Importantly, the emerging oncogenic role of RSPO and its potential clinical utility as a therapeutic target have been recognized and investigated in preclinical and clinical settings. This review provides a survey of current knowledge on the role of RSPOs in cancer biology, addressing the different organs implicated, and of efforts made to explore intervention opportunities in cancer cases with RSPO overrepresentation, including the potential utilization of RSPO as novel therapeutic target itself.
Collapse
Affiliation(s)
- Eline J Ter Steege
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elvira R M Bakker
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Schrörs B, Boegel S, Albrecht C, Bukur T, Bukur V, Holtsträter C, Ritzel C, Manninen K, Tadmor AD, Vormehr M, Sahin U, Löwer M. Multi-Omics Characterization of the 4T1 Murine Mammary Gland Tumor Model. Front Oncol 2020; 10:1195. [PMID: 32793490 PMCID: PMC7390911 DOI: 10.3389/fonc.2020.01195] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Tumor models are critical for our understanding of cancer and the development of cancer therapeutics. The 4T1 murine mammary cancer cell line is one of the most widely used breast cancer models. Here, we present an integrated map of the genome, transcriptome, and immunome of 4T1. Results: We found Trp53 (Tp53) and Pik3g to be mutated. Other frequently mutated genes in breast cancer, including Brca1 and Brca2, are not mutated. For cancer related genes, Nav3, Cenpf, Muc5Ac, Mpp7, Gas1, MageD2, Dusp1, Ros, Polr2a, Rragd, Ros1, and Hoxa9 are mutated. Markers for cell proliferation like Top2a, Birc5, and Mki67 are highly expressed, so are markers for metastasis like Msln, Ect2, and Plk1, which are known to be overexpressed in triple-negative breast cancer (TNBC). TNBC markers are, compared to a mammary gland control sample, lower (Esr1), comparably low (Erbb2), or not expressed at all (Pgr). We also found testis cancer antigen Pbk as well as colon/gastrointestinal cancer antigens Gpa33 and Epcam to be highly expressed. Major histocompatibility complex (MHC) class I is expressed, while MHC class II is not. We identified 505 single nucleotide variations (SNVs) and 20 insertions and deletions (indels). Neoantigens derived from 22 SNVs and one deletion elicited CD8+ or CD4+ T cell responses in IFNγ-ELISpot assays. Twelve high-confidence fusion genes were observed. We did not observe significant downregulation of mismatch repair (MMR) genes or SNVs/indels impairing their function, providing evidence for 6-thioguanine resistance. Effects of the integration of the murine mammary tumor virus were observed at the genome and transcriptome level. Conclusions: 4T1 cells share substantial molecular features with human TNBC. As 4T1 is a common model for metastatic tumors, our data supports the rational design of mode-of-action studies for pre-clinical evaluation of targeted immunotherapies.
Collapse
Affiliation(s)
- Barbara Schrörs
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Sebastian Boegel
- University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Christian Albrecht
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Thomas Bukur
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Valesca Bukur
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Christoph Holtsträter
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Christoph Ritzel
- University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Katja Manninen
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Arbel D Tadmor
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Mathias Vormehr
- University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany.,BioNTech SE, Mainz, Germany
| | - Ugur Sahin
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany.,HI-TRON - Helmholtz-Institut für Translationale Onkologie Mainz, Mainz, Germany
| | - Martin Löwer
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| |
Collapse
|
10
|
Du J, Zhao Q, Liu K, Li Z, Fu F, Zhang K, Zhang H, Zheng M, Zhao Y, Zhang S. FGFR2/STAT3 Signaling Pathway Involves in the Development of MMTV-Related Spontaneous Breast Cancer in TA2 Mice. Front Oncol 2020; 10:652. [PMID: 32432040 PMCID: PMC7214838 DOI: 10.3389/fonc.2020.00652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
The Tientsin Albino 2 (TA2) mouse has a high incidence of spontaneous breast cancer (SBC) in the absence of external inducers or carcinogens. The initiation of SBC is related to mouse mammary tumor virus (MMTV) infection and pregnancy. Pathologic analysis showed that breast cancer cells in TA2 mice are triple negative. Our previous study confirmed that fibroblast growth factor receptor 2 (FGFR2) expression increased in SBC tissue compared to that in their corresponding normal breast tissues of TA2 mice. The present study focused on the function of the FGFR2/STAT3 signaling pathway in the initiation of SBC. In this study, the expression of FGF3, FGFR2, STAT3, p-STAT3Tyr705, and p-STAT3Ser727 was detected in serum and normal mammary gland tissues of TA2 mice with different number of pregnancies and SBC. The proliferation, invasiveness, and migration abilities of MA-891 cells from TA2 SBC were compared before and after cryptotanshinone and Stattic treatment. Transient siRNA transfection was used to detect the invasiveness, and migration abilities to avoid the off-targets effects. Downstream protein expression of STAT3 was also detected in MA-891 cells and TA2 xenografts from MA-891 inoculation. In addition, STAT3 expression was analyzed in 139 cases of human breast cancer including 117 cases of non-triple negative breast cancer (non-TNBC) (group I) and 22 cases of triple-negative breast cancer (TNBC) (group II). Results of our study confirmed that MMTV-LTR amplification, and FGFR2, p-STAT3Tyr705, p-STAT3Ser727 expression increased with the number of pregnancies in the breast tissue of TA2 mice and were the highest in SBC. Serum FGF3 expression of SBC was higher than it of TA2 mice with different number of pregnancies. After STAT3 was inhibited, the abilities of proliferation, invasiveness, and migration in MA-891 decreased and the expression levels of STAT3, p-STAT3Ser727, p-STAT3Tyr705, Bcl2, cyclin D1, and c-myc in MA-891 and animal xenografts were also down-regulated. In human breast cancer, STAT3 expression was significantly higher in TNBC than that in non-TNBC. Our results showed that the FGFR2/STAT3 signaling pathway may be related to SBC initiation in TA2 mice. Inhibition of STAT3 can decrease proliferation, invasiveness, and migration in MA-891 cells and the growth of TA2 xenografts.
Collapse
Affiliation(s)
- Jiaxing Du
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Qi Zhao
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Graduate School, Tianjin Medical University, Tianjin, China
| | - Kai Liu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Graduate School, Tianjin Medical University, Tianjin, China
| | - Zugui Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Fangmei Fu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Kexin Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Hao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Yongjie Zhao
- Departments of General Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
11
|
Li X, Zhong L, Wang Z, Chen H, Liao D, Zhang R, Zhang H, Kang T. Phosphorylation of IRS4 by CK1γ2 promotes its degradation by CHIP through the ubiquitin/lysosome pathway. Am J Cancer Res 2018; 8:3643-3653. [PMID: 30026872 PMCID: PMC6037025 DOI: 10.7150/thno.26021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/04/2018] [Indexed: 01/08/2023] Open
Abstract
IRS4, a member of the insulin receptor substrate protein family, can induce constitutive PI3K/AKT hyperactivation and cell proliferation even in the absence of insulin or growth factors and promote tumorigenesis, but its regulation has only been explored at the transcriptional level. Methods: Scansite was used to predict the potential protein kinases that may regulate the functions of IRS4, and mass spectrometry was used to identify the E3 ligase for IRS4. The protein interaction was carried out by immunoprecipitation, and protein stability was measured by cycloheximide treatment. In vitro kinase assay was used to determine the phosphorylation of IRS4 by casein kinase 1γ2 (CK1γ2). Colony formation assay and xenograft-bearing mice were employed to assess the cancer cell growth in vitro and in vivo, respectively. Immunohistochemistry was performed to examine protein levels of both IRS4 and CK1γ2 in osteosarcoma specimens and their relationship was evaluated by χ2 test. Two-tailed Student's t-test or the Mann-Whitney U test were used to compare the differences between subgroups. Results: IRS4 was phosphorylated at Ser859 by CK1γ2 in vitro and in vivo, which promoted the polyubiquitination and degradation of IRS4 through the ubiquitin/lysosome pathway by the carboxyl terminus of Hsc70-interacting protein(CHIP). Using osteosarcoma cell lines, the ectopic nonphosphorylated mutant of IRS4 by CK1γ2 triggered higher level of p-Akt and displayed faster cell proliferation and cancer growth in vitro and in nude mice. In addition, a negative correlation in protein levels between CK1γ2 and IRS4 was observed in osteosarcoma cell lines and tissue samples. Conclusions: IRS4, as a new substrate of CHIP, is negatively regulated by CK1γ2 at the posttranslational level, and specific CK1γ2 agonists may be a potentially effective strategy for treating patients with osteosarcoma.
Collapse
|
12
|
Insertional mutagenesis in a HER2-positive breast cancer model reveals ERAS as a driver of cancer and therapy resistance. Oncogene 2018; 37:1594-1609. [PMID: 29326437 PMCID: PMC6168451 DOI: 10.1038/s41388-017-0031-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022]
Abstract
Personalized medicine for cancer patients requires a deep understanding of the underlying genetics that drive cancer and the subsequent identification of predictive biomarkers. To discover new genes and pathways contributing to oncogenesis and therapy resistance in HER2+ breast cancer, we performed Mouse Mammary Tumor Virus (MMTV)-induced insertional mutagenesis screens in ErbB2/cNeu-transgenic mouse models. The screens revealed 34 common integration sites (CIS) in mammary tumors of MMTV-infected mice, highlighting loci with multiple independent MMTV integrations in which potential oncogenes are activated, most of which had never been reported as MMTV CIS. The CIS most strongly associated with the ErbB2-transgenic genotype was the locus containing Eras (ES cell-expressed Ras), a constitutively active RAS-family GTPase. We show that upon expression, Eras acts as a potent oncogenic driver through hyperactivation of the PI3K/AKT pathway, in contrast to other RAS proteins that signal primarily via the MAPK/ERK pathway and require upstream activation or activating mutations to induce signaling. We additionally show that ERAS synergistically enhances HER2-induced tumorigenesis and, in this role, can functionally replace ERBB3/HER3 by acting as a more powerful activator of PI3K/AKT signaling. Although previously reported as pseudogene in humans, we observed ERAS RNA and protein expression in a substantial subset of human primary breast carcinomas. Importantly, we show that ERAS induces primary resistance to the widely used HER2-targeting drugs Trastuzumab (Herceptin) and Lapatinib (Tykerb/Tyverb) in vivo, and is involved in acquired resistance via selective upregulation during treatment in vitro, indicating that ERAS may serve as a novel clinical biomarker for PI3K/AKT pathway hyperactivation and HER2-targeted therapy resistance.
Collapse
|
13
|
Ikink GJ, Hilkens J. Insulin receptor substrate 4 (IRS4) is a constitutive active oncogenic driver collaborating with HER2 and causing therapeutic resistance. Mol Cell Oncol 2017; 4:e1279722. [PMID: 28401183 PMCID: PMC5383353 DOI: 10.1080/23723556.2017.1279722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 01/11/2023]
Abstract
Insulin receptor substrate 4 (IRS4) belongs to a family of cytoplasmic docking proteins mediating signals from cell surface receptors to downstream effectors. While IRS1 and IRS2 mediate signals from an active receptor, we found that IRS4 hyperactivates the phosphatidylinositol phosphate kinase (PI3K)-pathway independent of upstream signals and is irresponsive to feedback regulation causing cancer and resistance to human epidermal growth factor receptor 2 (HER2) targeted therapy.
Collapse
Affiliation(s)
- Gerjon J Ikink
- Division of Molecular Genetics, The Netherlands Cancer Institute , Amsterdam, the Netherlands
| | - John Hilkens
- Division of Molecular Genetics, The Netherlands Cancer Institute , Amsterdam, the Netherlands
| |
Collapse
|
14
|
Dudley JP, Golovkina TV, Ross SR. Lessons Learned from Mouse Mammary Tumor Virus in Animal Models. ILAR J 2017; 57:12-23. [PMID: 27034391 DOI: 10.1093/ilar/ilv044] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mouse mammary tumor virus (MMTV), which was discovered as a milk-transmitted, infectious, cancer-inducing agent in the 1930s, has been used as an animal model for the study of retroviral infection and transmission, antiviral immune responses, and breast cancer and lymphoma biology. The main target cells for MMTV infection in vivo are cells of the immune system and mammary epithelial cells. Although the host mounts an immune response to the virus, MMTV has evolved multiple means of evading this response. MMTV causes mammary tumors when the provirus integrates into the mammary epithelial and lymphoid cell genome during viral replication and thereby activates cellular oncogene expression. Thus, tumor induction is a by-product of the infection cycle. A number of important oncogenes have been discovered by carrying out MMTV integration site analysis, some of which may play a role in human breast cancer.
Collapse
Affiliation(s)
- Jaquelin P Dudley
- Jaquelin P. Dudley, PhD, is a professor in the Department of Molecular Biosciences, Center for Infectious Disease and Institute for Cellular and Molecular Biology at the University of Texas at Austin. Tatyana V. Golovkina, PhD, is a professor in the Department of Microbiology at the University of Chicago in Chicago, Illinois. Susan R. Ross, PhD, is a professor in the Department of Microbiology in the Perelman School of Medicine of the University of Pennsylvania in Philadelphia, Pennsylvania
| | - Tatyana V Golovkina
- Jaquelin P. Dudley, PhD, is a professor in the Department of Molecular Biosciences, Center for Infectious Disease and Institute for Cellular and Molecular Biology at the University of Texas at Austin. Tatyana V. Golovkina, PhD, is a professor in the Department of Microbiology at the University of Chicago in Chicago, Illinois. Susan R. Ross, PhD, is a professor in the Department of Microbiology in the Perelman School of Medicine of the University of Pennsylvania in Philadelphia, Pennsylvania
| | - Susan R Ross
- Jaquelin P. Dudley, PhD, is a professor in the Department of Molecular Biosciences, Center for Infectious Disease and Institute for Cellular and Molecular Biology at the University of Texas at Austin. Tatyana V. Golovkina, PhD, is a professor in the Department of Microbiology at the University of Chicago in Chicago, Illinois. Susan R. Ross, PhD, is a professor in the Department of Microbiology in the Perelman School of Medicine of the University of Pennsylvania in Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Ikink GJ, Boer M, Bakker ERM, Hilkens J. IRS4 induces mammary tumorigenesis and confers resistance to HER2-targeted therapy through constitutive PI3K/AKT-pathway hyperactivation. Nat Commun 2016; 7:13567. [PMID: 27876799 PMCID: PMC5122961 DOI: 10.1038/ncomms13567] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/14/2016] [Indexed: 02/06/2023] Open
Abstract
In search of oncogenic drivers and mechanisms affecting therapy resistance in breast cancer, we identified Irs4, a poorly studied member of the insulin receptor substrate (IRS) family, as a mammary oncogene by insertional mutagenesis. Whereas normally silent in the postnatal mammary gland, IRS4 is found to be highly expressed in a subset of breast cancers. We show that Irs4 expression in mammary epithelial cells induces constitutive PI3K/AKT pathway hyperactivation, insulin/IGF1-independent cell proliferation, anchorage-independent growth and in vivo tumorigenesis. The constitutive PI3K/AKT pathway hyperactivation by IRS4 is unique to the IRS family and we identify the lack of a SHP2-binding domain in IRS4 as the molecular basis of this feature. Finally, we show that IRS4 and ERBB2/HER2 synergistically induce tumorigenesis and that IRS4-expression confers resistance to HER2-targeted therapy. Taken together, our findings present the cellular and molecular mechanisms of IRS4-induced tumorigenesis and establish IRS4 as an oncogenic driver and biomarker for therapy resistance in breast cancer. IRS proteins are scaffolds that can activate survival signalling pathways. In this study, the authors identified IRS4 as a potential oncogene in breast cancer that leads to the constitutive activation of PI3K/AKT signalling and thus confers resistance to HER2-targeted therapy.
Collapse
Affiliation(s)
- Gerjon J Ikink
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, CX 1066 Amsterdam, The Netherlands
| | - Mandy Boer
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, CX 1066 Amsterdam, The Netherlands
| | - Elvira R M Bakker
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, CX 1066 Amsterdam, The Netherlands
| | - John Hilkens
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, CX 1066 Amsterdam, The Netherlands
| |
Collapse
|
16
|
Hui L, Rixv L, Xiuying Z. A system for tumor heterogeneity evaluation and diagnosis based on tumor markers measured routinely in the laboratory. Clin Biochem 2015. [DOI: 10.1016/j.clinbiochem.2015.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Ranzani M, Annunziato S, Adams DJ, Montini E. Cancer gene discovery: exploiting insertional mutagenesis. Mol Cancer Res 2013; 11:1141-58. [PMID: 23928056 DOI: 10.1158/1541-7786.mcr-13-0244] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insertional mutagenesis has been used as a functional forward genetics screen for the identification of novel genes involved in the pathogenesis of human cancers. Different insertional mutagens have been successfully used to reveal new cancer genes. For example, retroviruses are integrating viruses with the capacity to induce the deregulation of genes in the neighborhood of the insertion site. Retroviruses have been used for more than 30 years to identify cancer genes in the hematopoietic system and mammary gland. Similarly, another tool that has revolutionized cancer gene discovery is the cut-and-paste transposons. These DNA elements have been engineered to contain strong promoters and stop cassettes that may function to perturb gene expression upon integration proximal to genes. In addition, complex mouse models characterized by tissue-restricted activity of transposons have been developed to identify oncogenes and tumor suppressor genes that control the development of a wide range of solid tumor types, extending beyond those tissues accessible using retrovirus-based approaches. Most recently, lentiviral vectors have appeared on the scene for use in cancer gene screens. Lentiviral vectors are replication-defective integrating vectors that have the advantage of being able to infect nondividing cells, in a wide range of cell types and tissues. In this review, we describe the various insertional mutagens focusing on their advantages/limitations, and we discuss the new and promising tools that will improve the insertional mutagenesis screens of the future.
Collapse
Affiliation(s)
- Marco Ranzani
- San Raffaele-Telethon Institute for Gene Therapy, via Olgettina 58, 20132, Milan, Italy.
| | | | | | | |
Collapse
|
18
|
Bruno RD, Rosenfield SM, Smith GH. Late developing mammary tumors and hyperplasia induced by a low-oncogenic variant of mouse mammary tumor virus (MMTV) express genes identical to those induced by canonical MMTV. Mol Cancer 2013; 12:79. [PMID: 23866257 PMCID: PMC3750450 DOI: 10.1186/1476-4598-12-79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/10/2013] [Indexed: 01/07/2023] Open
Abstract
Background The canonical milk-transmitted mouse mammary tumor virus (MMTV) of C3H mice (C3H-MMTV) rapidly induces tumors in 90% of infected animals by 8 months of age. Pro-viral insertions of C3H-MMTV into genomic DNA results in the overexpression of common core insertion site (CIS) genes, including Wnt1/10b, Rspo2, and Fgf3. Conversely, infection by either the endogenous Mtv-1 virus (in C3Hf) or the exogenous nodule-inducing virus (NIV) (in Balb/c NIV) induces premalignant mammary lesions and tumors with reduced incidence and longer latency than C3H-MMTV. Here, we asked whether Mtv-1/NIV affected the expression of core CIS genes. Findings We confirmed the presence of active virus in Mtv-1/NIV infected tissues and using quantitative reverse transcription PCR (qRT-PCR) found that Mtv-1/NIV induced neoplasms (tumors and hyperplasia) commonly expressed the core CIS genes Wnt1, Wnt10b, Rspo2, Fgf3. Conclusions These results underscore the importance of core CIS gene expression in the early events leading to MMTV-induced mammary tumor initiation regardless of the viral variant.
Collapse
|