1
|
Bierzynska A, Bull K, Miellet S, Dean P, Neal C, Colby E, McCarthy HJ, Hegde S, Sinha MD, Bugarin Diz C, Stirrups K, Megy K, Mapeta R, Penkett C, Marsh S, Forrester N, Afzal M, Stark H, BioResource NIHR, Williams M, Welsh GI, Koziell AB, Hartley PS, Saleem MA. Exploring the relevance of NUP93 variants in steroid-resistant nephrotic syndrome using next generation sequencing and a fly kidney model. Pediatr Nephrol 2022; 37:2643-2656. [PMID: 35211795 PMCID: PMC9489583 DOI: 10.1007/s00467-022-05440-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 10/24/2022]
Abstract
BACKGROUND Variants in genes encoding nuclear pore complex (NPC) proteins are a newly identified cause of paediatric steroid-resistant nephrotic syndrome (SRNS). Recent reports describing NUP93 variants suggest these could be a significant cause of paediatric onset SRNS. We report NUP93 cases in the UK and demonstrate in vivo functional effects of Nup93 depletion in a fly (Drosophila melanogaster) nephrocyte model. METHODS Three hundred thirty-seven paediatric SRNS patients from the National cohort of patients with Nephrotic Syndrome (NephroS) were whole exome and/or whole genome sequenced. Patients were screened for over 70 genes known to be associated with Nephrotic Syndrome (NS). D. melanogaster Nup93 knockdown was achieved by RNA interference using nephrocyte-restricted drivers. RESULTS Six novel homozygous and compound heterozygous NUP93 variants were detected in 3 sporadic and 2 familial paediatric onset SRNS characterised histologically by focal segmental glomerulosclerosis (FSGS) and progressing to kidney failure by 12 months from clinical diagnosis. Silencing of the two orthologs of human NUP93 expressed in D. melanogaster, Nup93-1, and Nup93-2 resulted in significant signal reduction of up to 82% in adult pericardial nephrocytes with concomitant disruption of NPC protein expression. Additionally, nephrocyte morphology was highly abnormal in Nup93-1 and Nup93-2 silenced flies surviving to adulthood. CONCLUSION We expand the spectrum of NUP93 variants detected in paediatric onset SRNS and demonstrate its incidence within a national cohort. Silencing of either D. melanogaster Nup93 ortholog caused a severe nephrocyte phenotype, signaling an important role for the nucleoporin complex in podocyte biology. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Agnieszka Bierzynska
- Bristol Renal and Children’s Renal Unit, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY UK
| | - Katherine Bull
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sara Miellet
- Department of Life and Environmental Science, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB England, UK
- Illawarra Health and Medical Research Institute, Molecular Horizons and School of Medicine, University of Wollongong, Wollongong, Australia
| | - Philip Dean
- Bristol Genetics Laboratory, North Bristol National Health Service Trust, Bristol, UK
| | - Chris Neal
- Bristol Renal and Children’s Renal Unit, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY UK
| | - Elizabeth Colby
- Bristol Renal and Children’s Renal Unit, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY UK
| | - Hugh J. McCarthy
- Bristol Renal and Children’s Renal Unit, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY UK
- School of Medicine, University of Sydney and Children’s Hospital at Westmead, Westmead, Australia
| | - Shivaram Hegde
- Children’s Kidney Centre, University Hospital of Wales, Cardiff, UK
| | - Manish D. Sinha
- Department of Paediatric Nephrology, Evelina London Children’s Hospital, Guy’s and St, Thomas’ Hospital, London, UK
| | - Carmen Bugarin Diz
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, SE1 7EH UK
| | - Kathleen Stirrups
- NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - Karyn Megy
- NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Rutendo Mapeta
- NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Chris Penkett
- NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - Sarah Marsh
- Bristol Genetics Laboratory, North Bristol National Health Service Trust, Bristol, UK
| | - Natalie Forrester
- Illawarra Health and Medical Research Institute, Molecular Horizons and School of Medicine, University of Wollongong, Wollongong, Australia
| | - Maryam Afzal
- Bristol Renal and Children’s Renal Unit, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY UK
| | - Hannah Stark
- NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - NIHR BioResource
- NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - Maggie Williams
- Bristol Genetics Laboratory, North Bristol National Health Service Trust, Bristol, UK
| | - Gavin I. Welsh
- Bristol Renal and Children’s Renal Unit, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY UK
| | - Ania B. Koziell
- Department of Paediatric Nephrology, Evelina London Children’s Hospital, Guy’s and St, Thomas’ Hospital, London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, SE1 7EH UK
| | - Paul S. Hartley
- Department of Life and Environmental Science, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB England, UK
| | - Moin A. Saleem
- Bristol Renal and Children’s Renal Unit, Bristol Medical School, University of Bristol, Whitson Street, Bristol, BS1 3NY UK
| |
Collapse
|
2
|
Kadry YA, Maisuria EM, Huet-Calderwood C, Calderwood DA. Differences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding. J Biol Chem 2020; 295:11161-11173. [PMID: 32546480 DOI: 10.1074/jbc.ra120.013618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
The integrin family of transmembrane adhesion receptors coordinates complex signaling networks that control the ability of cells to sense and communicate with the extracellular environment. Kindlin proteins are a central cytoplasmic component of these networks, directly binding integrin cytoplasmic domains and mediating interactions with cytoskeletal and signaling proteins. The physiological importance of kindlins is well established, but how the scaffolding functions of kindlins are regulated at the molecular level is still unclear. Here, using a combination of GFP nanotrap association assays, pulldown and integrin-binding assays, and live-cell imaging, we demonstrate that full-length kindlins can oligomerize (self-associate) in mammalian cells, and we propose that this self-association inhibits integrin binding and kindlin localization to focal adhesions. We show that both kindlin-2 and kindlin-3 can self-associate and that kindlin-3 self-association is more robust. Using chimeric mapping, we demonstrate that the F2PH and F3 subdomains are important for kindlin self-association. Through comparative sequence analysis of kindlin-2 and kindlin-3, we identify kindlin-3 point mutations that decrease self-association and enhance integrin binding, affording mutant kindlin-3 the ability to localize to focal adhesions. Our results support the notion that kindlin self-association negatively regulates integrin binding.
Collapse
Affiliation(s)
- Yasmin A Kadry
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Eesha M Maisuria
- Department of Molecular Biophysics and Biochemistry, Yale College, Yale University, New Haven, Connecticut, USA
| | | | - David A Calderwood
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA .,Department of Cell Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Vaughan L, Marley R, Miellet S, Hartley PS. The impact of SPARC on age-related cardiac dysfunction and fibrosis in Drosophila. Exp Gerontol 2018; 109:59-66. [PMID: 29032244 PMCID: PMC6094046 DOI: 10.1016/j.exger.2017.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/17/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022]
Abstract
Tissue fibrosis, an accumulation of extracellular matrix proteins such as collagen, accompanies cardiac ageing in humans and this is linked to an increased risk of cardiac failure. The mechanisms driving age-related tissue fibrosis and cardiac dysfunction are unclear, yet clinically important. Drosophila is amenable to the study of cardiac ageing as well as collagen deposition; however it is unclear whether collagen accumulates in the ageing Drosophila heart. This work examined collagen deposition and cardiac function in ageing Drosophila, in the context of reduced expression of collagen-interacting protein SPARC (Secreted Protein Acidic and Rich in Cysteine) an evolutionarily conserved protein linked with fibrosis. Heart function was measured using high frame rate videomicroscopy. Collagen deposition was monitored using a fluorescently-tagged collagen IV reporter (encoded by the Viking gene) and staining of the cardiac collagen, Pericardin. The Drosophila heart accumulated collagen IV and Pericardin as flies aged. Associated with this was a decline in cardiac function. SPARC heterozygous flies lived longer than controls and showed little to no age-related cardiac dysfunction. As flies of both genotypes aged, cardiac levels of collagen IV (Viking) and Pericardin increased similarly. Over-expression of SPARC caused cardiomyopathy and increased Pericardin deposition. The findings demonstrate that, like humans, the Drosophila heart develops a fibrosis-like phenotype as it ages. Although having no gross impact on collagen accumulation, reduced SPARC expression extended Drosophila lifespan and cardiac health span. It is proposed that cardiac fibrosis in humans may develop due to the activation of conserved mechanisms and that SPARC may mediate cardiac ageing by mechanisms more subtle than gross accumulation of collagen.
Collapse
Affiliation(s)
- Leigh Vaughan
- Bournemouth University, Department of Life and Environmental Science, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Sara Miellet
- Bournemouth University, Department of Life and Environmental Science, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK
| | - Paul S Hartley
- Bournemouth University, Department of Life and Environmental Science, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK.
| |
Collapse
|
4
|
Zhan J, Zhang H. Kindlins: Roles in development and cancer progression. Int J Biochem Cell Biol 2018; 98:93-103. [PMID: 29544897 DOI: 10.1016/j.biocel.2018.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/15/2022]
Abstract
The Kindlins are FERM domain proteins comprising three members (Kindlin-1, -2 and -3) which are evolutionarily conserved. Kindlins bind with β-integrin cytoplasmic tails and execute broad biological functions including directed cell migration, proliferation, differentiation and survival. In light of more and more evidence point to the importance of Kindlin family members in normal development and human diseases especially in cancers, we aim to portrait the profile of Kindlins in the regulation of embryonic development and cancer progression. We first summarize all the known binding proteins for individual member of Kindlin family. We then outline the Kindlin-regulated signaling pathways including Wnt/β-catenin, TGFβ, EGFR, and Hedgehog signalings. Furthermore, we descript the pivotal role of Kindlins in embryonic development in detail with notions that Kindlin-1 is highly expressed in endo/ectodermal originated tissues, Kindlin-2 is highly expressed in mesoderm-derived tissues and Kindlin-3 is highly expressed in mesoderm- and ectoderm-derived tissues. Deregulation of Kindlins is generally reported in cancers from different organs. We also briefly descript the role of Kindlins in other diseases. Finally, we update the recent understanding of how Kindlins are regulated and modified as well as the degradation mechanism of Kindlins, respectively.
Collapse
Affiliation(s)
- Jun Zhan
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Hongquan Zhang
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| |
Collapse
|
5
|
Abstract
Heart failure places an enormous burden on health and economic systems worldwide. It is a complex disease that is profoundly influenced by both genetic and environmental factors. Neither the molecular mechanisms underlying heart failure nor effective prevention strategies are fully understood. Fortunately, relevant aspects of human heart failure can be experimentally studied in tractable model animals, including the fruit fly, Drosophila, allowing the in vivo application of powerful and sophisticated molecular genetic and physiological approaches. Heart failure in Drosophila, as in humans, can be classified into dilated cardiomyopathies and hypertrophic cardiomyopathies. Critically, many genes and cellular pathways directing heart development and function are evolutionarily conserved from Drosophila to humans. Studies of molecular mechanisms linking aging with heart failure have revealed that genes involved in aging-associated energy homeostasis and oxidative stress resistance influence cardiac dysfunction through perturbation of IGF and TOR pathways. Importantly, ion channel proteins, cytoskeletal proteins, and integrins implicated in aging of the mammalian heart have been shown to play significant roles in heart failure. A number of genes previously described having roles in development of the Drosophila heart, such as genes involved in Wnt signaling pathways, have recently been shown to play important roles in the adult fly heart. Moreover, the fly model presents opportunities for innovative studies that cannot currently be pursued in the mammalian heart because of technical limitations. In this review, we discuss progress in our understanding of genes, proteins, and molecular mechanisms that affect the Drosophila adult heart and heart failure.
Collapse
Affiliation(s)
- Shasha Zhu
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhe Han
- Center for Cancer and Immunology Research, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Yan Luo
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yulin Chen
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Qun Zeng
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Xiushan Wu
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Wuzhou Yuan
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| |
Collapse
|
6
|
Hartley PS, Motamedchaboki K, Bodmer R, Ocorr K. SPARC-Dependent Cardiomyopathy in Drosophila. ACTA ACUST UNITED AC 2016; 9:119-29. [PMID: 26839388 PMCID: PMC4838489 DOI: 10.1161/circgenetics.115.001254] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/27/2016] [Indexed: 12/17/2022]
Abstract
Supplemental Digital Content is available in the text. Background— The Drosophila heart is an important model for studying the genetics underpinning mammalian cardiac function. The system comprises contractile cardiomyocytes, adjacent to which are pairs of highly endocytic pericardial nephrocytes that modulate cardiac function by uncharacterized mechanisms. Identifying these mechanisms and the molecules involved is important because they may be relevant to human cardiac physiology. Methods and Results— This work aimed to identify circulating cardiomodulatory factors of potential relevance to humans using the Drosophila nephrocyte–cardiomyocyte system. A Kruppel-like factor 15 (dKlf15) loss-of-function strategy was used to ablate nephrocytes and then heart function and the hemolymph proteome were analyzed. Ablation of nephrocytes led to a severe cardiomyopathy characterized by a lengthening of diastolic interval. Rendering adult nephrocytes dysfunctional by disrupting their endocytic function or temporally conditional knockdown of dKlf15 led to a similar cardiomyopathy. Proteomics revealed that nephrocytes regulate the circulating levels of many secreted proteins, the most notable of which was the evolutionarily conserved matricellular protein Secreted Protein Acidic and Rich in Cysteine (SPARC), a protein involved in mammalian cardiac function. Finally, reducing SPARC gene dosage ameliorated the cardiomyopathy that developed in the absence of nephrocytes. Conclusions— The data implicate SPARC in the noncell autonomous control of cardiac function in Drosophila and suggest that modulation of SPARC gene expression may ameliorate cardiac dysfunction in humans.
Collapse
Affiliation(s)
- Paul S Hartley
- From the Department of Life and Environmental Science, University of Bournemouth, Dorset, United Kingdom (P.S.H.); and Proteomics Facility (K.M.) and Development, Aging, and Regeneration Program (R.B., K.O.), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA.
| | - Khatereh Motamedchaboki
- From the Department of Life and Environmental Science, University of Bournemouth, Dorset, United Kingdom (P.S.H.); and Proteomics Facility (K.M.) and Development, Aging, and Regeneration Program (R.B., K.O.), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Rolf Bodmer
- From the Department of Life and Environmental Science, University of Bournemouth, Dorset, United Kingdom (P.S.H.); and Proteomics Facility (K.M.) and Development, Aging, and Regeneration Program (R.B., K.O.), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Karen Ocorr
- From the Department of Life and Environmental Science, University of Bournemouth, Dorset, United Kingdom (P.S.H.); and Proteomics Facility (K.M.) and Development, Aging, and Regeneration Program (R.B., K.O.), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA.
| |
Collapse
|
7
|
Ivy JR, Drechsler M, Catterson JH, Bodmer R, Ocorr K, Paululat A, Hartley PS. Klf15 Is Critical for the Development and Differentiation of Drosophila Nephrocytes. PLoS One 2015; 10:e0134620. [PMID: 26301956 PMCID: PMC4547745 DOI: 10.1371/journal.pone.0134620] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/11/2015] [Indexed: 12/20/2022] Open
Abstract
Insect nephrocytes are highly endocytic scavenger cells that represent the only invertebrate model for the study of human kidney podocytes. Despite their importance, nephrocyte development is largely uncharacterised. This work tested whether the insect ortholog of mammalian Kidney Krüppel-Like Factor (Klf15), a transcription factor required for mammalian podocyte differentiation, was required for insect nephrocyte development. It was found that expression of Drosophila Klf15 (dKlf15, previously known as Bteb2) was restricted to the only two nephrocyte populations in Drosophila, the garland cells and pericardial nephrocytes. Loss of dKlf15 function led to attrition of both nephrocyte populations and sensitised larvae to the xenotoxin silver nitrate. Although pericardial nephrocytes in dKlf15 loss of function mutants were specified during embryogenesis, they failed to express the slit diaphragm gene sticks and stones and did not form slit diaphragms. Conditional silencing of dKlf15 in adults led to reduced surface expression of the endocytic receptor Amnionless and loss of in vivo scavenger function. Over-expression of dKlf15 increased nephrocyte numbers and rescued age-dependent decline in nephrocyte function. The data place dKlf15 upstream of sns and Amnionless in a nephrocyte-restricted differentiation pathway and suggest dKlf15 expression is both necessary and sufficient to sustain nephrocyte differentiation. These findings explain the physiological relevance of dKlf15 in Drosophila and imply that the role of KLF15 in human podocytes is evolutionarily conserved.
Collapse
Affiliation(s)
- Jessica R. Ivy
- University of Edinburgh / British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Maik Drechsler
- Department of Zoology & Developmental Biology, University of Osnabrück, Barbarastr. 11, D-49069 Osnabrück, Germany
| | - James H. Catterson
- University of Edinburgh / British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Rolf Bodmer
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Karen Ocorr
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Achim Paululat
- Department of Zoology & Developmental Biology, University of Osnabrück, Barbarastr. 11, D-49069 Osnabrück, Germany
| | - Paul S. Hartley
- Department of Life and Environmental Science, University of Bournemouth, Talbot Campus, Poole, Dorset BH12 5BB, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Maartens AP, Brown NH. The many faces of cell adhesion during Drosophila muscle development. Dev Biol 2015; 401:62-74. [DOI: 10.1016/j.ydbio.2014.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
9
|
Abstract
Integrins are heterodimeric, transmembrane receptors that are expressed in all cells, including those in the heart. They participate in multiple critical cellular processes including adhesion, extracellular matrix organization, signaling, survival, and proliferation. Particularly relevant for a contracting muscle cell, integrins are mechanotransducers, translating mechanical to biochemical information. Although it is likely that cardiovascular clinicians and scientists have the highest recognition of integrins in the cardiovascular system from drugs used to inhibit platelet aggregation, the focus of this article will be on the role of integrins specifically in the cardiac myocyte. After a general introduction to integrin biology, the article will discuss important work on integrin signaling, mechanotransduction, and lessons learned about integrin function from a range of model organisms. Then we will detail work on integrin-related proteins in the myocyte, how integrins may interact with ion channels and mediate viral uptake into cells, and also play a role in stem cell biology. Finally, we will discuss directions for future study.
Collapse
Affiliation(s)
- Sharon Israeli-Rosenberg
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Ana Maria Manso
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Hideshi Okada
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Robert S Ross
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|