1
|
Combret V, Rincé I, Budin-Verneuil A, Muller C, Deutscher J, Hartke A, Sauvageot N. Utilization of glycoprotein-derived N-acetylglucosamine-L-asparagine during Enterococcus faecalis infection depends on catabolic and transport enzymes of the glycosylasparaginase locus. Res Microbiol 2024; 175:104169. [PMID: 37977353 DOI: 10.1016/j.resmic.2023.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Enterococcus faecalis is a Gram-positive clinical pathogen causing severe infections. Its survival during infection depends on its ability to utilize host-derived metabolites, such as protein-deglycosylation products. We have identified in E. faecalis OG1RF a locus (ega) involved in the catabolism of the glycoamino acid N-acetylglucosamine-L-asparagine. This locus is separated into two transcription units, genes egaRP and egaGBCD1D2, respectively. RT-qPCR experiments revealed that the expression of the ega locus is regulated by the transcriptional repressor EgaR. Electromobility shift assays evidenced that N-acetylglucosamine-L-asparagine interacts directly with the EgaR protein, which leads to the transcription of the ega genes. Growth studies with egaG, egaB and egaC mutants confirmed that the encoded proteins are necessary for N-acetylglucosamine-L-asparagine catabolism. This glycoamino acid is transported and phosphorylated by a specific phosphotransferase system EIIABC components (OG1RF_10751, EgaB, EgaC) and subsequently hydrolyzed by the glycosylasparaginase EgaG, which generates aspartate and 6-P-N-acetyl-β-d-glucosaminylamine. The latter can be used as a fermentable carbon source by E. faecalis. Moreover, Galleria mellonella larvae had a significantly higher survival rate when infected with ega mutants compared to the wild-type strain, suggesting that the loss of N-acetylglucosamine-L-asparagine utilization affects enterococcal virulence.
Collapse
Affiliation(s)
- Victor Combret
- Normandie Université, UNICAEN, CBSA, F-14000 Caen, France
| | - Isabelle Rincé
- Normandie Université, UNICAEN, CBSA, F-14000 Caen, France
| | | | - Cécile Muller
- Normandie Université, UNICAEN, CBSA, F-14000 Caen, France
| | - Josef Deutscher
- Université Paris Saclay, INRAE, Micalis Institute, 78350 Jouy en Josas, France; CNRS, Institut de Biologie Physico-Chimique UMR8261, Expression Génétique Microbienne, 75005 Paris, France
| | - Axel Hartke
- Normandie Université, UNICAEN, CBSA, F-14000 Caen, France
| | | |
Collapse
|
2
|
Li C, Urem M, Du C, Zhang L, van Wezel GP. Systems-wide analysis of the ROK-family regulatory gene rokL6 and its role in the control of glucosamine toxicity in Streptomyces coelicolor. Appl Environ Microbiol 2023; 89:e0167423. [PMID: 37982622 PMCID: PMC10734537 DOI: 10.1128/aem.01674-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/29/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Central metabolism plays a key role in the control of growth and antibiotic production in streptomycetes. Specifically, aminosugars act as signaling molecules that affect development and antibiotic production, via metabolic interference with the global repressor DasR. While aminosugar metabolism directly connects to other major metabolic routes such as glycolysis and cell wall synthesis, several important aspects of their metabolism are yet unresolved. Accumulation of N-acetylglucosamine 6-phosphate or glucosamine 6-phosphate is lethal to many bacteria, a yet unresolved phenomenon referred to as "aminosugar sensitivity." We made use of this concept by selecting for suppressors in genes related to glucosamine toxicity in nagB mutants, which showed that the gene pair of rok-family regulatory gene rokL6 and major facilitator superfamily transporter gene sco1448 forms a cryptic rescue mechanism. Inactivation of rokL6 resulted in the expression of sco1448, which then prevents the toxicity of amino sugar-derived metabolites in Streptomyces. The systems biology of RokL6 and its transcriptional control of sco1448 shed new light on aminosugar metabolism in streptomycetes and on the response of bacteria to aminosugar toxicity.
Collapse
Affiliation(s)
- Chao Li
- Molecular Biotechnology, Leiden University, Leiden, the Netherlands
| | - Mia Urem
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Chao Du
- Molecular Biotechnology, Leiden University, Leiden, the Netherlands
| | - Le Zhang
- Molecular Biotechnology, Leiden University, Leiden, the Netherlands
| | | |
Collapse
|
3
|
Tanniche I, Fisher AK, Gillam F, Collakova E, Zhang C, Bevan DR, Senger RS. Lambda-PCR for precise DNA assembly and modification. Biotechnol Bioeng 2022; 119:3657-3667. [PMID: 36148504 PMCID: PMC9828557 DOI: 10.1002/bit.28240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023]
Abstract
Lambda-polymerase chain reaction (λ-PCR) is a novel and open-source method for DNA assembly and cloning projects. λ-PCR uses overlap extension to ultimately assemble linear and circular DNA fragments, but it allows the single-stranded DNA (ssDNA) primers of the PCR extension to first exist as double-stranded DNA (dsDNA). Having dsDNA at this step is advantageous for the stability of large insertion products, to avoid inhibitory secondary structures during direct synthesis, and to reduce costs. Three variations of λ-PCR were created to convert an initial dsDNA product into an ssDNA "megaprimer" to be used in overlap extension: (i) complete digestion by λ-exonuclease, (ii) asymmetric PCR, and (iii) partial digestion by λ-exonuclease. Four case studies are presented that demonstrate the use of λ-PCR in simple gene cloning, simultaneous multipart assemblies, gene cloning not achievable with commercial kits, and the use of thermodynamic simulations to guide λ-PCR assembly strategies. High DNA assembly and cloning efficiencies have been achieved with λ-PCR for a fraction of the cost and time associated with conventional methods and some commercial kits.
Collapse
Affiliation(s)
- Imen Tanniche
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA,School of Plant & Environmental Sciences; Virginia TechBlacksburgVirginiaUSA
| | - Amanda K. Fisher
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA,Genomics, Bioinformatics, and Computational Biology Interdisciplinary Program, Virginia TechBlacksburgVirginiaUSA,BioHybrid Solutions LLCPittsburghPennsylvaniaUSA
| | - Frank Gillam
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA,Locus BiosciencesMorrisvilleNorth CarolinaUSA
| | - Eva Collakova
- School of Plant & Environmental Sciences, Virginia TechBlacksburgVirginiaUSA
| | - Chenming Zhang
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| | - David R. Bevan
- Genomics, Bioinformatics, and Computational Biology Interdisciplinary Program, Virginia TechBlacksburgVirginiaUSA,Department of BiochemistryVirginia TechBlacksburgVirginiaUSA
| | - Ryan S. Senger
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA,Department of Chemical EngineeringVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
4
|
Singh VS, Dubey BK, Rai S, Singh SP, Tripathi AK. Engineering D-glucose utilization in Azospirillum brasilense Sp7 promotes rice root colonization. Appl Microbiol Biotechnol 2022; 106:7891-7903. [DOI: 10.1007/s00253-022-12250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022]
|
5
|
Zheng F, Zhang T, Yin S, Qin G, Chen J, Zhang J, Zhao D, Leng X, An S, Xia L. Comparison and interpretation of freshwater bacterial structure and interactions with organic to nutrient imbalances in restored wetlands. Front Microbiol 2022; 13:946537. [PMID: 36212857 PMCID: PMC9533089 DOI: 10.3389/fmicb.2022.946537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023] Open
Abstract
Chemical oxygen demand to nitrogen (COD/N) and nitrogen to phosphorus (N/P) ratios have distinct effects on bacterial community structure and interactions. However, how organic to nutrient imbalances affect the structure of freshwater bacterial assemblages in restored wetlands remains poorly understood. Here, the composition and dominant taxa of bacterial assemblages in four wetlands [low COD/N and high N/P (LH), low COD/N and low N/P (LL), high COD/N and high N/P (HH), and high COD/N and low N/P (HL)] were investigated. A total of 7,709 operational taxonomic units were identified by high throughput sequencing, and Actinobacteria, Proteobacteria, and Cyanobacteria were the most abundant phyla in the restored wetlands. High COD/N significantly increased bacterial diversity and was negatively correlated with N/P (R 2 = 0.128; p = 0.039), and the observed richness (Sobs) indices ranged from 860.77 to 1314.66. The corresponding Chao1 and phylogenetic diversity (PD) values ranged from 1533.42 to 2524.56 and 127.95 to 184.63. Bacterial beta diversity was negatively related to COD/N (R 2 = 0.258; p < 0.001). The distribution of bacterial assemblages was mostly driven by variations in ammonia nitrogen (NH4 +-N, p < 0.01) and electrical conductivity (EC, p < 0.01), which collectively explained more than 80% of the variation in bacterial assemblages. However, the dominant taxa Proteobacteria, Firmicutes, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Chloroflexi, and Deinococcus-Thermus were obviously affected by variation in COD/N and N/P (p < 0.05). The highest node and edge numbers and average degree were observed in the LH group. The co-occurrence networkindicated that LH promoted bacterial network compactness and bacterial interaction consolidation. The relationships between organic to nutrient imbalances and bacterial assemblages may provide a theoretical basis for the empirical management of wetland ecosystems.
Collapse
Affiliation(s)
- Fuchao Zheng
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Tiange Zhang
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Shenglai Yin
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ge Qin
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Jun Chen
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Jinghua Zhang
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Dehua Zhao
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Leng
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Shuqing An
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Lu Xia
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Bhayani J, Iglesias MJ, Minen RI, Cereijo AE, Ballicora MA, Iglesias AA, Asencion Diez MD. Carbohydrate Metabolism in Bacteria: Alternative Specificities in ADP-Glucose Pyrophosphorylases Open Novel Metabolic Scenarios and Biotechnological Tools. Front Microbiol 2022; 13:867384. [PMID: 35572620 PMCID: PMC9093745 DOI: 10.3389/fmicb.2022.867384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
We explored the ability of ADP-glucose pyrophosphorylase (ADP-Glc PPase) from different bacteria to use glucosamine (GlcN) metabolites as a substrate or allosteric effectors. The enzyme from the actinobacteria Kocuria rhizophila exhibited marked and distinctive sensitivity to allosteric activation by GlcN-6P when producing ADP-Glc from glucose-1-phosphate (Glc-1P) and ATP. This behavior is also seen in the enzyme from Rhodococcus spp., the only one known so far to portray this activation. GlcN-6P had a more modest effect on the enzyme from other Actinobacteria (Streptomyces coelicolor), Firmicutes (Ruminococcus albus), and Proteobacteria (Agrobacterium tumefaciens) groups. In addition, we studied the catalytic capacity of ADP-Glc PPases from the different sources using GlcN-1P as a substrate when assayed in the presence of their respective allosteric activators. In all cases, the catalytic efficiency of Glc-1P was 1-2 orders of magnitude higher than GlcN-1P, except for the unregulated heterotetrameric protein (GlgC/GgD) from Geobacillus stearothermophilus. The Glc-1P substrate preference is explained using a model of ADP-Glc PPase from A. tumefaciens based on the crystallographic structure of the enzyme from potato tuber. The substrate-binding domain localizes near the N-terminal of an α-helix, which has a partial positive charge, thus favoring the interaction with a hydroxyl rather than a charged primary amine group. Results support the scenario where the ability of ADP-Glc PPases to use GlcN-1P as an alternative occurred during evolution despite the enzyme being selected to use Glc-1P and ATP for α-glucans synthesis. As an associated consequence in such a process, certain bacteria could have improved their ability to metabolize GlcN. The work also provides insights in designing molecular tools for producing oligo and polysaccharides with amino moieties.
Collapse
Affiliation(s)
- Jaina Bhayani
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Maria Josefina Iglesias
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Romina I. Minen
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Antonela E. Cereijo
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Miguel A. Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Alberto A. Iglesias
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Matias D. Asencion Diez
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| |
Collapse
|
7
|
Flores CL, Ariño J, Gancedo C. The N-Acetylglucosamine Kinase from Yarrowia lipolytica Is a Moonlighting Protein. Int J Mol Sci 2021; 22:ijms222313109. [PMID: 34884915 PMCID: PMC8658026 DOI: 10.3390/ijms222313109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
In Yarrowia lipolytica, expression of the genes encoding the enzymes of the N-acetylglucosamine (NAGA) utilization pathway (NAG genes) becomes independent of the presence of NAGA in a Ylnag5 mutant lacking NAGA kinase. We addressed the question of whether the altered transcription was due to a lack of kinase activity or to a moonlighting role of this protein. Glucosamine-6-phosphate deaminase (Nag1) activity was measured as a reporter of NAG genes expression. The NGT1 gene encoding the NAGA transporter was deleted, creating a Ylnag5 ngt1 strain. In glucose cultures of this strain, Nag1 activity was similar to that of the Ylnag5 strain, ruling out the possibility that NAGA derived from cell wall turnover could trigger the derepression. Heterologous NAGA kinases were expressed in a Ylnag5 strain. Among them, the protein from Arabidopsis thaliana did not restore kinase activity but lowered Nag1 activity 4-fold with respect to a control. Expression in the Ylnag5 strain of YlNag5 variants F320S or D214V with low kinase activity caused a repression similar to that of the wild-type protein. Together, these results indicate that YlNag5 behaves as a moonlighting protein. An RNA-seq analysis revealed that the Ylnag5 mutation had a limited transcriptomic effect besides derepression of the NAG genes.
Collapse
Affiliation(s)
- Carmen-Lisset Flores
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, 28029 Madrid, Spain;
- Correspondence: (C.-L.F.); (J.A.)
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Correspondence: (C.-L.F.); (J.A.)
| | - Carlos Gancedo
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, 28029 Madrid, Spain;
| |
Collapse
|
8
|
Metabolism of Poly-β1,4- N-Acetylglucosamine Substrates and Importation of N-Acetylglucosamine and Glucosamine by Enterococcus faecalis. J Bacteriol 2021; 203:e0037121. [PMID: 34424034 DOI: 10.1128/jb.00371-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of Enterococcus faecalis to use a variety of carbon sources enables colonization at various anatomic sites within a mammalian host. N-Acetylglucosamine (GlcNAc) is one of the most abundant natural sugars and provides bacteria with a source of carbon and nitrogen when metabolized. N-Acetylglucosamine is also a component of bacterial peptidoglycan, further highlighting the significance of N-acetylglucosamine utilization. In this study, we show that CcpA-regulated enzymes are required for growth on the poly-β1,4-linked GlcNAc substrate, chitopentaose (β1,4-linked GlcNAc5). We also show that EF0114 (EndoE) is required for growth on chitobiose (β1,4-linked GlcNAc2) and that the GH20 domain of EndoE is required for the conversion of GlcNAc2 to N-acetylglucosamine. GlcNAc is transported into the cell via two separate phosphotransferase system (PTS) complexes, either the PTS IICBA encoded by ef1516 (nagE) or the Mpt glucose/mannose permease complex (MptBACD). The Mpt PTS is also the primary glucosamine transporter. In order for N-acetylglucosamine to be utilized as a carbon source, phosphorylated N-acetylglucosamine (GlcNAc-6-P) must be deacetylated, and here, we show that this activity is mediated by EF1317 (an N-acetylglucosamine-6-phosphate deacetylase; NagA homolog), as a deletion of ef1317 is unable to grow on GlcNAc as the carbon source. Deamination of glucosamine to fructose-6-phosphate is required for entry into glycolysis, and we show that growth on glucosamine is dependent on EF0466 (a glucosamine-6-phosphate deaminase; NagB homolog). Collectively, our data highlight the chitinolytic machinery required for breaking down exogenous chitinous substrates, as well as the uptake and cytosolic enzymes needed for metabolizing N-acetylglucosamine. IMPORTANCE Enterococcus faecalis causes life-threatening health care-associated infections in part due to its intrinsic and acquired antibiotic resistance, its ability to form biofilms, and its nutrient versatility. Alternative nutrient acquisition systems are key factors that contribute to enterococcal colonization at biologically unique host anatomic sites. Although E. faecalis can metabolize an array of carbon sources, little is known of how this bacterium acquires these secondary nutrient sources in mammalian hosts. Our research identifies the glycosidase machinery required for degrading exogenous chitinous substrates into N-acetylglucosamine monomers for transport and metabolism of one of the most abundant naturally occurring sugars, N-acetylglucosamine. Disrupting the function of this N-acetylglucosamine acquisition pathway may lead to new treatments against multidrug-resistant enterococcal infections.
Collapse
|
9
|
Coussement P, Bauwens D, Peters G, Maertens J, De Mey M. Mapping and refactoring pathway control through metabolic and protein engineering: The hexosamine biosynthesis pathway. Biotechnol Adv 2020; 40:107512. [DOI: 10.1016/j.biotechadv.2020.107512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/07/2019] [Accepted: 09/30/2019] [Indexed: 01/14/2023]
|
10
|
Wu Y, Chen T, Liu Y, Tian R, Lv X, Li J, Du G, Chen J, Ledesma-Amaro R, Liu L. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis. Nucleic Acids Res 2020; 48:996-1009. [PMID: 31799627 PMCID: PMC6954435 DOI: 10.1093/nar/gkz1123] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/17/2019] [Accepted: 11/16/2019] [Indexed: 01/01/2023] Open
Abstract
Dynamic regulation is an effective strategy for fine-tuning metabolic pathways in order to maximize target product synthesis. However, achieving dynamic and autonomous up- and down-regulation of the metabolic modules of interest simultaneously, still remains a great challenge. In this work, we created an autonomous dual-control (ADC) system, by combining CRISPRi-based NOT gates with novel biosensors of a key metabolite in the pathway of interest. By sensing the levels of the intermediate glucosamine-6-phosphate (GlcN6P) and self-adjusting the expression levels of the target genes accordingly with the GlcN6P biosensor and ADC system enabled feedback circuits, the metabolic flux towards the production of the high value nutraceutical N-acetylglucosamine (GlcNAc) could be balanced and optimized in Bacillus subtilis. As a result, the GlcNAc titer in a 15-l fed-batch bioreactor increased from 59.9 g/l to 97.1 g/l with acetoin production and 81.7 g/l to 131.6 g/l without acetoin production, indicating the robustness and stability of the synthetic circuits in a large bioreactor system. Remarkably, this self-regulatory methodology does not require any external level of control such as the use of inducer molecules or switching fermentation/environmental conditions. Moreover, the proposed programmable genetic circuits may be expanded to engineer other microbial cells and metabolic pathways.
Collapse
Affiliation(s)
- Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Taichi Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | | | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Wüllner D, Haupt A, Prochnow P, Leontiev R, Slusarenko AJ, Bandow JE. Interspecies Comparison of the Bacterial Response to Allicin Reveals Species-Specific Defense Strategies. Proteomics 2019; 19:e1900064. [PMID: 31622046 DOI: 10.1002/pmic.201900064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/16/2019] [Indexed: 12/22/2022]
Abstract
Allicin, a broad-spectrum antimicrobial agent from garlic, disrupts thiol and redox homeostasis, proteostasis, and cell membrane integrity. Since medicine demands antimicrobials with so far unexploited mechanisms, allicin is a promising lead structure. While progress is being made in unraveling its mode of action, little is known on bacterial adaptation strategies. Some isolates of Pseudomonas aeruginosa and Escherichia coli withstand exposure to high allicin concentrations due to as yet unknown mechanisms. To elucidate resistance and sensitivity-conferring cellular processes, the acute proteomic responses of a resistant P. aeruginosa strain and the sensitive species Bacillus subtilis are compared to the published proteomic response of E. coli to allicin treatment. The cellular defense strategies share functional features: proteins involved in translation and maintenance of protein quality, redox homeostasis, and cell envelope modification are upregulated. In both Gram-negative species, protein synthesis of the majority of proteins is downregulated while the Gram-positive B. subtilis responded by upregulation of multiple regulons. A comparison of the B. subtilis proteomic response to a library of responses to antibiotic treatment reveals 30 proteins specifically upregulated by allicin. Upregulated oxidative stress proteins are shared with nitrofurantoin and diamide. Microscopy-based assays further indicate that in B. subtilis cell wall integrity is impaired.
Collapse
Affiliation(s)
- Dominik Wüllner
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Annika Haupt
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Pascal Prochnow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Roman Leontiev
- Department of Plant Physiology (Bio III), RWTH Aachen University, 52056, Aachen, Germany.,Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66041, Saarbrücken, Germany
| | - Alan J Slusarenko
- Department of Plant Physiology (Bio III), RWTH Aachen University, 52056, Aachen, Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| |
Collapse
|
12
|
Averesch NJH, Rothschild LJ. Metabolic engineering of Bacillus subtilis for production of para-aminobenzoic acid - unexpected importance of carbon source is an advantage for space application. Microb Biotechnol 2019; 12:703-714. [PMID: 30980511 PMCID: PMC6559200 DOI: 10.1111/1751-7915.13403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 01/28/2023] Open
Abstract
High-strength polymers, such as aramid fibres, are important materials in space technology. To obtain these materials in remote locations, such as Mars, biological production is of interest. The aromatic polymer precursor para-aminobenzoic acid (pABA) can be derived from the shikimate pathway through metabolic engineering of Bacillus subtilis, an organism suited for space synthetic biology. Our engineering strategy included repair of the defective indole-3-glycerol phosphate synthase (trpC), knockout of one chorismate mutase isozyme (aroH) and overexpression of the aminodeoxychorismate synthase (pabAB) and aminodeoxychorismate lyase (pabC) from the bacteria Corynebacterium callunae and Xenorhabdus bovienii respectively. Further, a fusion-protein enzyme (pabABC) was created for channelling of the carbon flux. Using adaptive evolution, mutants of the production strain, able to metabolize xylose, were created, to explore and compare pABA production capacity from different carbon sources. Rather than the efficiency of the substrate or performance of the biochemical pathway, the product toxicity, which was strongly dependent on the pH, appeared to be the overall limiting factor. The highest titre achieved in shake flasks was 3.22 g l-1 with a carbon yield of 12.4% [C-mol/C-mol] from an amino sugar. This promises suitability of the system for in situ resource utilization (ISRU) in space biotechnology, where feedstocks that can be derived from cyanobacterial cell lysate play a role.
Collapse
Affiliation(s)
- Nils J. H. Averesch
- Universities Space Research AssociationMountain ViewCA94043USA
- NASA Ames Research CenterMoffett FieldCA94035USA
- Present address:
Stanford UniversityStanfordCA94305USA
| | | |
Collapse
|
13
|
Patel V, Wu Q, Chandrangsu P, Helmann JD. A metabolic checkpoint protein GlmR is important for diverting carbon into peptidoglycan biosynthesis in Bacillus subtilis. PLoS Genet 2018; 14:e1007689. [PMID: 30248093 PMCID: PMC6171935 DOI: 10.1371/journal.pgen.1007689] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/04/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
The Bacillus subtilis GlmR (formerly YvcK) protein is essential for growth on gluconeogenic carbon sources. Mutants lacking GlmR display a variety of phenotypes suggestive of impaired cell wall synthesis including antibiotic sensitivity, aberrant cell morphology and lysis. To define the role of GlmR, we selected suppressor mutations that ameliorate the sensitivity of a glmR null mutant to the beta-lactam antibiotic cefuroxime or restore growth on gluconeogenic carbon sources. Several of the resulting suppressors increase the expression of the GlmS and GlmM proteins that catalyze the first two committed steps in the diversion of carbon from central carbon metabolism into peptidoglycan biosynthesis. Chemical complementation studies indicate that the absence of GlmR can be overcome by provision of cells with N-acetylglucosamine (GlcNAc), even under conditions where GlcNAc cannot re-enter central metabolism and serve as a carbon source for growth. Our results indicate that GlmR facilitates the diversion of carbon from the central metabolite fructose-6-phosphate, which is limiting in cells growing on gluconeogenic carbon sources, into peptidoglycan biosynthesis. Our data suggest that GlmR stimulates GlmS activity, and we propose that this activation is antagonized by the known GlmR ligand and peptidoglycan intermediate UDP-GlcNAc. Thus, GlmR presides over a new mechanism for the regulation of carbon partitioning between central metabolism and peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Vaidehi Patel
- Cornell University, Department of Microbiology, Ithaca, NY, United States of America
| | - Qun Wu
- Cornell University, Department of Microbiology, Ithaca, NY, United States of America
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Pete Chandrangsu
- Cornell University, Department of Microbiology, Ithaca, NY, United States of America
| | - John D. Helmann
- Cornell University, Department of Microbiology, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
14
|
Cross Talk among Transporters of the Phosphoenolpyruvate-Dependent Phosphotransferase System in Bacillus subtilis. J Bacteriol 2018; 200:JB.00213-18. [PMID: 30038046 PMCID: PMC6148471 DOI: 10.1128/jb.00213-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/18/2018] [Indexed: 12/23/2022] Open
Abstract
The phosphoenolpyruvate-dependent phosphotransferase system (PTS) is the main carbohydrate uptake system in Bacillus subtilis A typical PTS consists of two general proteins, enzyme I (EI) and a histidine-containing protein (HPr), as well as a specific carbohydrate transporter (or enzyme II [EII]), all of which transfer the phosphoryl group from phosphoenolpyruvate to the transported carbohydrate. The specific PTS transporters are formed by multidomain proteins or single-domain subunits. These domains are domain C (EIIC), the transmembrane channel for the carbohydrate transport; domain B (EIIB), the membrane-bound domain responsible for phosphorylation of the carbohydrate; and domain A (EIIA), the mediator between HPr(H15∼P) and EIIB. There are 16 PTS transporters in B. subtilis, 6 of which, i.e., NagP, MalP, MurP, TreP, SacP, and SacX, contain no EIIA domain. Deletion of the single-EIIA-containing transporters showed that there is cross talk between the noncognate EIIA and EIIB domains in PTS. By deletion of all EIIA-containing proteins, strain KM455 (ΔEIIA) was constructed, and the EIIA-containing proteins were individually introduced into the strain. In this way, the PTS transporters of the glucose family, namely, PtsG, GamP, and PtsA (also known as YpqE), enabled growth with maltose, N-acetylglucosamine, sucrose, or trehalose as the sole carbon source. Construction of TkmA-EIIA fusion proteins confirmed the probable interaction between the EIIAs of the glucose family of PTS transporters and the EIIA-deficient PTS transporters. Likewise, we have shown that SacX is mainly phosphorylated by PtsA and GamP. PtsG and GmuA were also able to phosphorylate SacX, albeit less well than GamP and PtsA.IMPORTANCE The phosphoenolpyruvate-dependent phosphotransferase system (PTS) not only is a carbohydrate uptake system in B. subtilis but also plays an important role in sensing the nutrient fluctuation in the medium. This sensing system enables the cells to respond to these fluctuations properly. The PTS transporters have a pivotal role in this sensing system since they are carbohydrate specific. In this study, we tried to understand the interactions among these transporters which revealed the cross talk among PTSs. Three PTS proteins, namely, PtsG (the specific transporter of glucose), GamP (the specific transporter of glucosamine), and PtsA (a cytoplasmic single-domain EIIA protein) were shown to play the major role in the interaction among the PTSs.
Collapse
|
15
|
Hu Y, Zheng Q, Zhang S, Noll L, Wanek W. Significant release and microbial utilization of amino sugars and D-amino acid enantiomers from microbial cell wall decomposition in soils. SOIL BIOLOGY & BIOCHEMISTRY 2018; 123:115-125. [PMID: 31579317 PMCID: PMC6774783 DOI: 10.1016/j.soilbio.2018.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Amino sugars and D-amino acid enantiomers are major components of bacterial and fungal cell walls (i.e. peptidoglycan and chitin) and are often used as biomarkers of microbial residue turnover in soils. However, little is known about the in situ decomposition rates of microbial cell wall residues and how soil physicochemical properties affect this process. In this study, we investigated the in situ gross production and consumption rates of free amino sugars (glucosamine and muramic acid) and amino acids (meso-diaminopimelic acid, l-alanine, and d-alanine) by a novel isotope pool dilution assay using 15N-labeled amino compounds. Soils were obtained from six sites differing in land management (cropland, pasture, and forest) and bedrock (silicate and limestone) and incubated at three temperatures (5, 15, and 25 °C). Free glucosamine released during the decomposition of peptidoglycan and chitin contributed significantly to the extractable soil organic nitrogen pool. Gross production and consumption rates of glucosamine were higher than those of individual amino acids, i.e. L- and D-alanine. Muramic acid had a longer mean residence time (68 h compared to 2.7 h for glucosamine, L- and D-alanine) and made a negligible contribution to soil organic nitrogen fluxes, indicating that free muramic acid was not a major decomposition product of peptidoglycan in soils. Meso-diaminopimelic acid and D-alanine exhibited comparable gross production and consumption rates with L-alanine. These amino acids can be used as indicators to estimate the decomposition of peptidoglycan from bacterial cell wall residues. We found that chitin decomposition was greater in silicate soils, while peptidoglycan decomposition dominated in limestone soils. Glucosamine production rates were not correlated with soil total amino sugars, microbial community structure, or hydrolytic enzyme activities, but were highest in soils with low pH and high sand content, indicating that soil texture and soil pH may strongly influence the decomposition of amino sugar polymers. In contrast, mDAP, L- and D-alanine gross production and consumption rates were positively correlated with soil pH and clay content, due to greater depolymerization of peptidoglycan stem peptides in limestone soils. This isotope pool dilution approach strongly improves our understanding of the mechanisms and environmental controls on microbial cell wall decomposition in soils.
Collapse
|
16
|
Westbrook AW, Ren X, Oh J, Moo-Young M, Chou CP. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Metab Eng 2018; 47:401-413. [PMID: 29698777 DOI: 10.1016/j.ymben.2018.04.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/03/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022]
Abstract
Hyaluronic acid (HA) is a high-value biopolymer that is produced in large scales using attenuated strains ofgroup C streptococci. However, due to the pathogenicity and fastidious nature of these bacteria, the development of bioprocesses for HA production centered on robust 'Generally Recognized as Safe (GRAS)' organisms, such as Bacillus subtilis, is of increased interest. Here, we report metabolic engineering of novel B. subtilis strains in which the carbon flux has been partially diverted from central metabolism, i.e. the pentose phosphate pathway (PPP) and glycolysis, into HA biosynthesis. First, an improved base strain of B. subtilis was engineered for more effective HA production with less susceptibility to catabolite repression when expressing genes from a xylose-inducible promoter. Subsequently, Clustered Regularly Interspaced Palindromic Repeats interference (CRISPRi) was applied to reduce the expression of individual pfkA or zwf in the base strain, leading to substantial improvements to the HA titer with a concomitant decrease in the molecular weight (MW). On the other hand, multiplexed repression of both pfkA and zwf expression resulted in increases to the HA titer of up to 108% and enhancements to the MW, compared to the base strain. Moreover, the addition of exogenous HA monomers, i.e. glucuronic acid (GlcUA) and N-acetyl-glucosamine (GlcNAc), to B. subtilis cultures markedly improved the HA MW but decreased the HA titer, providing insights into the mechanism of HA biosynthesis by streptococcal hyaluronan synthase (SeHAS) in B. subtilis. Our study demonstrates the successful application of metabolic engineering strategies to establish B. subtilis as an effective platform for high-level HA production.
Collapse
Affiliation(s)
- Adam W Westbrook
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 5B6
| | - Xiang Ren
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 5B6
| | - Jaewon Oh
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 5B6
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 5B6
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 5B6.
| |
Collapse
|
17
|
Matzner D, Schüller A, Seitz T, Wittmann V, Mayer G. Fluoro-Carba-Sugars are Glycomimetic Activators of the glmS Ribozyme. Chemistry 2017; 23:12604-12612. [PMID: 28661578 DOI: 10.1002/chem.201702371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 11/05/2022]
Abstract
The glmS ribozyme is a bacterial gene-regulating riboswitch that controls cell wall synthesis, depending on glucosamine-6-phosphate as a cofactor. Due to the presence of this ribozyme in several human pathogen bacteria (e.g., MRSA, VRSA), the glmS ribozyme represents an attractive target for the development of artificial cofactors. The substitution of the ring oxygen in carbohydrates by functionalized methylene groups leads to a new generation of glycomimetics that exploits distinct interaction possibilities with their target structure in biological systems. Herein, we describe the synthesis of mono-fluoro-modified carba variants of α-d-glucosamine and β-l-idosamine. (5aR)-Fluoro-carba-α-d-glucosamine-6-phosphate is a synthetic mimic of the natural ligand of the glmS ribozyme and is capable of effectively addressing its unique self-cleavage mechanism. However, in contrast to what was expected, the activity is significantly decreased compared to its non-fluorinated analog. By combining self-cleavage assays with the Bacillus subtilis and Staphylococcus aureus glmS ribozyme and molecular docking studies, we provide a structure-activity relationship for fluorinated carba-sugars.
Collapse
Affiliation(s)
- Daniel Matzner
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Anna Schüller
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Torben Seitz
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.,Current address: Cilag AG, Schaffhausen, Switzerland
| | - Valentin Wittmann
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Günter Mayer
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| |
Collapse
|
18
|
Afzal M, Shafeeq S, Manzoor I, Henriques-Normark B, Kuipers OP. N-acetylglucosamine-Mediated Expression of nagA and nagB in Streptococcus pneumoniae. Front Cell Infect Microbiol 2016; 6:158. [PMID: 27900287 PMCID: PMC5110562 DOI: 10.3389/fcimb.2016.00158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 11/02/2016] [Indexed: 11/13/2022] Open
Abstract
In this study, we have explored the transcriptomic response of Streptococcus pneumoniae D39 to N-acetylglucosamine (NAG). Transcriptome comparison of S. pneumoniae D39 wild-type grown in chemically defined medium (CDM) in the presence of 0.5% NAG to that grown in the presence of 0.5% glucose revealed elevated expression of many genes/operons, including nagA, nagB, manLMN, and nanP. We have further confirmed the NAG-dependent expression of nagA, nagB, manLMN, and nanP by β-galactosidase assays. nagA, nagB and glmS are putatively regulated by a transcriptional regulator NagR. We predicted the operator site of NagR (dre site) in PnagA, PnagB, and PglmS, which was further confirmed by mutating the predicted dre site in the respective promoters (nagA, nagB, and glmS). Growth comparison of ΔnagA, ΔnagB, and ΔglmS with the D39 wild-type demonstrates that nagA and nagB are essential for S. pneumoniae D39 to grow in the presence of NAG as a sole carbon source. Furthermore, deletion of ccpA shows that CcpA has no effect on the expression of nagA, nagB, and glmS in the presence of NAG in S. pneumoniae.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands; Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| | - Irfan Manzoor
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands; Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | | | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| |
Collapse
|
19
|
Wendisch VF, Brito LF, Gil Lopez M, Hennig G, Pfeifenschneider J, Sgobba E, Veldmann KH. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol 2016; 234:139-157. [DOI: 10.1016/j.jbiotec.2016.07.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
|
20
|
Urem M, Świątek-Połatyńska MA, Rigali S, van Wezel GP. Intertwining nutrient-sensory networks and the control of antibiotic production inStreptomyces. Mol Microbiol 2016; 102:183-195. [DOI: 10.1111/mmi.13464] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Mia Urem
- Molecular Biotechnology, Institute of Biology, Leiden University; Sylviusweg 72 Leiden 2333BE The Netherlands
| | - Magdalena A. Świątek-Połatyńska
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 Marburg 35043 Germany
| | - Sébastien Rigali
- InBioS, Centre for Protein Engineering; University of Liège; Liège B-4000 Belgium
| | - Gilles P. van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University; Sylviusweg 72 Leiden 2333BE The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 Wageningen 6708 PB The Netherlands
| |
Collapse
|
21
|
Yadava U, Vetting MW, Al Obaidi N, Carter MS, Gerlt JA, Almo SC. Structure of an ABC transporter solute-binding protein specific for the amino sugars glucosamine and galactosamine. Acta Crystallogr F Struct Biol Commun 2016; 72:467-72. [PMID: 27303900 PMCID: PMC4909247 DOI: 10.1107/s2053230x16007500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/04/2016] [Indexed: 11/10/2022] Open
Abstract
The uptake of exogenous solutes by prokaryotes is mediated by transport systems embedded in the plasma membrane. In many cases, a solute-binding protein (SBP) is utilized to bind ligands with high affinity and deliver them to the membrane-bound components responsible for translocation into the cytoplasm. In the present study, Avi_5305, an Agrobacterium vitis SBP belonging to Pfam13407, was screened by differential scanning fluorimetry (DSF) and found to be stabilized by D-glucosamine and D-galactosamine. Avi_5305 is the first protein from Pfam13407 shown to be specific for amino sugars, and co-crystallization resulted in structures of Avi_5305 bound to D-glucosamine and D-galactosamine. Typical of Pfam13407, Avi_5305 consists of two α/β domains linked through a hinge region, with the ligand-binding site located in a cleft between the two domains. Comparisons with Escherichia coli ribose-binding protein suggest that a cation-π interaction with Tyr168 provides the specificity for D-glucosamine/D-galactosamine over D-glucose/D-galactose.
Collapse
Affiliation(s)
- Umesh Yadava
- Department of Physics, DDU Gorakhpur University, Gorakhpur 273 009, India
| | - Matthew W. Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nawar Al Obaidi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael S. Carter
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John A. Gerlt
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
22
|
Amino Sugars Enhance the Competitiveness of Beneficial Commensals with Streptococcus mutans through Multiple Mechanisms. Appl Environ Microbiol 2016; 82:3671-82. [PMID: 27084009 DOI: 10.1128/aem.00637-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Biochemical and genetic aspects of the metabolism of the amino sugars N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) by commensal oral streptococci and the effects of these sugars on interspecies competition with the dental caries pathogen Streptococcus mutans were explored. Multiple S. mutans wild-type isolates displayed long lag phases when transferred from glucose-containing medium to medium with GlcNAc as the primary carbohydrate source, but commensal streptococci did not. Competition in liquid coculture or dual-species biofilms between S. mutans and Streptococcus gordonii showed that S. gordonii was particularly dominant when the primary carbohydrate was GlcN or GlcNAc. Transcriptional and enzymatic assays showed that the catabolic pathway for GlcNAc was less highly induced in S. mutans than in S. gordonii Exposure to H2O2, which is produced by S. gordonii and antagonizes the growth of S. mutans, led to reduced mRNA levels of nagA and nagB in S. mutans When the gene for the transcriptional regulatory NagR was deleted in S. gordonii, the strain produced constitutively high levels of nagA (GlcNAc-6-P deacetylase), nagB (GlcN-6-P deaminase), and glmS (GlcN-6-P synthase) mRNA. Similar to NagR of S. mutans (NagRSm), the S. gordonii NagR protein (NagRSg) could bind to consensus binding sites (dre) in the nagA, nagB, and glmS promoter regions of S. gordonii Notably, NagRSg binding was inhibited by GlcN-6-P, but G-6-P had no effect, unlike for NagRSm This study expands the understanding of amino sugar metabolism and NagR-dependent gene regulation in streptococci and highlights the potential for therapeutic applications of amino sugars to prevent dental caries. IMPORTANCE Amino sugars are abundant in the biosphere, so the relative efficiency of particular bacteria in a given microbiota to metabolize these sources of carbon and nitrogen might have a profound impact on the ecology of the community. Our investigation reveals that several oral commensal bacteria have a much greater capacity to utilize amino sugars than the dental pathogen Streptococcus mutans and that the ability of the model commensal Streptococcus gordonii to compete against S. mutans is substantively enhanced by the presence of amino sugars commonly found in the oral cavity. The mechanisms underlying the greater capacity and competitive enhancements of the commensal are shown to depend on how the genes for the catabolic enzymes are regulated, the role of the allosteric modulators affecting such regulation, and the ability of amino sugars to enhance certain activities of the commensal that are antagonistic to S. mutans.
Collapse
|
23
|
Allosteric Activation of Escherichia coli Glucosamine-6-Phosphate Deaminase (NagB) In Vivo Justified by Intracellular Amino Sugar Metabolite Concentrations. J Bacteriol 2016; 198:1610-1620. [PMID: 27002132 DOI: 10.1128/jb.00870-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/15/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED We have investigated the impact of growth on glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) on cellular metabolism by quantifying glycolytic metabolites in Escherichia coli Growth on GlcNAc increased intracellular pools of both GlcNAc6P and GlcN6P 10- to 20-fold compared to growth on glucose. Growth on GlcN produced a 100-fold increase in GlcN6P but only a slight increase in GlcNAc6P. Changes to the amounts of downstream glycolytic intermediates were minor compared to growth on glucose. The enzyme glucosamine-6P deaminase (NagB) is required for growth on both GlcN and GlcNAc. It is an allosteric enzyme in E. coli, displaying sigmoid kinetics with respect to its substrate, GlcN6P, and is allosterically activated by GlcNAc6P. The high concentration of GlcN6P, accompanied by the small increase in GlcNAc6P, drives E. coli NagB (NagBEc) into its high activity state, as observed during growth on GlcN (L. I. Álvarez-Añorve, I. Bustos-Jaimes, M. L. Calcagno, and J. Plumbridge, J Bacteriol 191:6401-6407, 2009, http://dx.doi.org/10.1128/JB.00633-09). The slight increase in GlcNAc6P during growth on GlcN is insufficient to displace NagC, the GlcNAc6P-responsive repressor of the nag genes, from its binding sites, so there is only a small increase in nagB expression. We replaced the gene for the allosteric NagBEc enzyme with that of the nonallosteric, B. subtilis homologue, NagBBs We detected no effects on growth rates or competitive fitness on glucose or the amino sugars, nor did we detect any effect on the concentrations of central metabolites, thus demonstrating the robustness of amino sugar metabolism and leaving open the question of the role of allostery in the regulation of NagB. IMPORTANCE Chitin, the polymer of N-acetylglucosamine, is an abundant biomaterial, and both glucosamine and N-acetylglucosamine are valuable nutrients for bacteria. The amino sugars are components of numerous essential macromolecules, including bacterial peptidoglycan and mammalian glycosaminoglycans. Controlling the biosynthetic and degradative pathways of amino sugar metabolism is important in all organisms to avoid loss of nitrogen and energy via a futile cycle of synthesis and breakdown. The enzyme glucosamine-6P deaminase (NagB) is central to this control, and N-acetylglucosamine-6P is the key signaling molecule regulating amino sugar utilization in Escherichia coli Here, we investigate how the metabolic status of the bacteria impacts on the activity of NagBEc and the N-acetylglucosamine-6P-sensitive transcriptional repressor, NagC.
Collapse
|
24
|
Kutzner E, Kern T, Felsl A, Eisenreich W, Fuchs TM. Isotopologue profiling of the listerial N-metabolism. Mol Microbiol 2016; 100:315-27. [PMID: 26699934 DOI: 10.1111/mmi.13318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2015] [Indexed: 11/26/2022]
Abstract
The nitrogen (N-) sources and the relative contribution of a nitrogenous nutrient to the N-pool of the gram-positive pathogen Listeria monocytogenes are largely unknown. Therefore, (15) N-isotopologue profiling was established to study the N-metabolism of L. monocytogenes. The pathogen was grown in a defined minimal medium supplemented with potential (15) N-labeled nutrients. The bacteria were harvested and hydrolysed under acidic conditions, and the resulting amino acids were analysed by GC-MS, revealing (15) N-enrichments and isotopomeric compositions of amino acids. The differential (15) N-profiles showed the substantial and simultaneous usage of ammonium, glutamine, methionine, and, to a lower extent, the branched-chain amino acids valine, leucine, and isoleucine for anabolic purposes, with a significant preference for ammonium. In contrast, arginine, histidine and cysteine were directly incorporated into proteins. L. monocytogenes is able to replace glutamine with ethanolamine or glucosamine as amino donors for feeding the core N-metabolism. Perturbations of N-fluxes caused by gene deletions demonstrate the involvement of ethanolamine ammonia lyase, and suggest a role of the regulator GlnK of L. monocytogenes distinct from that of Escherichia coli. The metabolism of nitrogenous nutrients reflects the high flexibility of this pathogenic bacterium in exploiting N-sources that could also be relevant for its proliferation during infection.
Collapse
Affiliation(s)
- Erika Kutzner
- Lehrstuhl für Biochemie, Technische Universität München, D-85747, Garching, Germany
| | - Tanja Kern
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Angela Felsl
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Technische Universität München, D-85747, Garching, Germany
| | - Thilo M Fuchs
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| |
Collapse
|
25
|
NagR Differentially Regulates the Expression of the glmS and nagAB Genes Required for Amino Sugar Metabolism by Streptococcus mutans. J Bacteriol 2015; 197:3533-44. [PMID: 26324448 DOI: 10.1128/jb.00606-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The ability of bacteria to metabolize glucosamine (GlcN) and N-acetyl-d-glucosamine (GlcNAc) is considered important for persistent colonization of the oral cavity. In the dental caries pathogen Streptococcus mutans, the NagR protein regulates the expression of glmS, which encodes a GlcN-6-P synthetase, and nagA (GlcNAc-6-P deacetylase) and nagB (GlcN-6-P deaminase), which are required for the catabolism of GlcNAc and GlcN. Two NagR-binding sites (dre) were identified in each of the promoter regions for nagB and glmS. Using promoter-reporter gene fusions, the role of each dre site was examined in the regulation of glmS and nagB promoter activities in cells grown with glucose, GlcNAc, or GlcN. A synergistic relationship between the two dre sites in the glmS promoter that required proper spacing was observed, but that was not the case for nagB. Binding of purified NagR to DNA fragments from both promoter regions, as well as to dre sites alone, was strongly influenced by particular sugar phosphates. Using a random mutagenesis approach that targeted the effector-binding domain of NagR, mutants that displayed aberrant regulation of both the glmS and nagAB genes were identified. Collectively, these findings provide evidence that NagR is essential for regulation of genes for both the synthesis and catabolism of GlcN and GlcNAc in S. mutans, and that NagR engages differently with the target promoter regions in response to specific metabolites interacting with the effector-binding domain of NagR. IMPORTANCE Glucosamine and N-acetylglucosamine are among the most abundant naturally occurring sugars on the planet, and they are catabolized by many bacterial species as sources of carbon and nitrogen. Representing a group called lactic acid bacteria (LAB), the human dental caries pathogen Streptococcus mutans is shown to differ from known paradigm organisms in that it possesses a GntR/HutC-type regulator, NagR, that is required for the regulation of both catabolism of GlcN and biosynthesis. Results reported here reveal a simple and elegant mechanism whereby NagR differentially regulates two opposing biological processes by surveying metabolic intermediates. This study provides insights that may contribute to the development of novel therapeutic tools to combat dental caries and other infectious diseases.
Collapse
|
26
|
An Essential Poison: Synthesis and Degradation of Cyclic Di-AMP in Bacillus subtilis. J Bacteriol 2015; 197:3265-74. [PMID: 26240071 DOI: 10.1128/jb.00564-15] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Gram-positive bacteria synthesize the second messenger cyclic di-AMP (c-di-AMP) to control cell wall and potassium homeostasis and to secure the integrity of their DNA. In the firmicutes, c-di-AMP is essential for growth. The model organism Bacillus subtilis encodes three diadenylate cyclases and two potential phosphodiesterases to produce and degrade c-di-AMP, respectively. Among the three cyclases, CdaA is conserved in nearly all firmicutes, and this enzyme seems to be responsible for the c-di-AMP that is required for cell wall homeostasis. Here, we demonstrate that CdaA localizes to the membrane and forms a complex with the regulatory protein CdaR and the glucosamine-6-phosphate mutase GlmM. Interestingly, cdaA, cdaR, and glmM form a gene cluster that is conserved throughout the firmicutes. This conserved arrangement and the observed interaction between the three proteins suggest a functional relationship. Our data suggest that GlmM and GlmS are involved in the control of c-di-AMP synthesis. These enzymes convert glutamine and fructose-6-phosphate to glutamate and glucosamine-1-phosphate. c-di-AMP synthesis is enhanced if the cells are grown in the presence of glutamate compared to that in glutamine-grown cells. Thus, the quality of the nitrogen source is an important signal for c-di-AMP production. In the analysis of c-di-AMP-degrading phosphodiesterases, we observed that both phosphodiesterases, GdpP and PgpH (previously known as YqfF), contribute to the degradation of the second messenger. Accumulation of c-di-AMP in a gdpP pgpH double mutant is toxic for the cells, and the cells respond to this accumulation by inactivation of the diadenylate cyclase CdaA. IMPORTANCE Bacteria use second messengers for signal transduction. Cyclic di-AMP (c-di-AMP) is the only second messenger known so far that is essential for a large group of bacteria. We have studied the regulation of c-di-AMP synthesis and the role of the phosphodiesterases that degrade this second messenger. c-di-AMP synthesis strongly depends on the nitrogen source: glutamate-grown cells produce more c-di-AMP than glutamine-grown cells. The accumulation of c-di-AMP in a strain lacking both phosphodiesterases is toxic and results in inactivation of the diadenylate cyclase CdaA. Our results suggest that CdaA is the critical diadenylate cyclase that produces the c-di-AMP that is both essential and toxic upon accumulation.
Collapse
|
27
|
Plumbridge J. Regulation of the Utilization of Amino Sugars by Escherichia coli and Bacillus subtilis: Same Genes, Different Control. J Mol Microbiol Biotechnol 2015; 25:154-67. [DOI: 10.1159/000369583] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amino sugars are dual-purpose compounds in bacteria: they are essential components of the outer wall peptidoglycan (PG) and the outer membrane of Gram-negative bacteria and, in addition, when supplied exogenously their catabolism contributes valuable supplies of energy, carbon and nitrogen to the cell. The enzymes for both the synthesis and degradation of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) are highly conserved but during evolution have become subject to different regulatory regimes. <i>Escherichia coli</i> grows more rapidly using GlcNAc as a carbon source than with GlcN. On the other hand, <i>Bacillus subtilis,</i> but not other <i>Bacilli</i> tested, grows more efficiently on GlcN than GlcNAc. The more rapid growth on this sugar is associated with the presence of a second, GlcN-specific operon, which is unique to this species. A single locus is associated with the genes for catabolism of GlcNAc and GlcN in <i>E. coli,</i> although they enter the cell via different transporters. In <i>E. coli</i> the amino sugar transport and catabolic genes have also been requisitioned as part of the PG recycling process. Although PG recycling likely occurs in <i>B. subtilis,</i> it appears to have different characteristics.
Collapse
|
28
|
Murayama S, Ishikawa S, Chumsakul O, Ogasawara N, Oshima T. The Role of α-CTD in the Genome-Wide Transcriptional Regulation of the Bacillus subtilis Cells. PLoS One 2015; 10:e0131588. [PMID: 26154296 PMCID: PMC4495994 DOI: 10.1371/journal.pone.0131588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/02/2015] [Indexed: 11/22/2022] Open
Abstract
The amino acid sequence of the RNA polymerase (RNAP) α-subunit is well conserved throughout the Eubacteria. Its C-terminal domain (α-CTD) is important for the transcriptional regulation of specific promoters in both Escherichia coli and Bacillus subtilis, through interactions with transcription factors and/or a DNA element called the "UP element". However, there is only limited information regarding the α-CTD regulated genes in B. subtilis and the importance of this subunit in the transcriptional regulation of B. subtilis. Here, we established strains and the growth conditions in which the α-subunit of RNAP was replaced with a C-terminally truncated version. Transcriptomic and ChAP-chip analyses revealed that α-CTD deficiency reduced the transcription and RNAP binding of genes related to the utilization of secondary carbon sources, transition state responses, and ribosome synthesis. In E. coli, it is known that α-CTD also contributes to the expression of genes related to the utilization of secondary carbon sources and ribosome synthesis. Our results suggest that the biological importance of α-CTD is conserved in B. subtilis and E. coli, but that its specific roles have diversified between these two bacteria.
Collapse
Affiliation(s)
- Satohiko Murayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| | - Shu Ishikawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| | - Onuma Chumsakul
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| | - Naotake Ogasawara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| | - Taku Oshima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| |
Collapse
|
29
|
Fillenberg SB, Grau FC, Seidel G, Muller YA. Structural insight into operator dre-sites recognition and effector binding in the GntR/HutC transcription regulator NagR. Nucleic Acids Res 2015; 43:1283-96. [PMID: 25564531 PMCID: PMC4333415 DOI: 10.1093/nar/gku1374] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The uptake and metabolism of N-acetylglucosamine (GlcNAc) in Bacillus subtilis is controlled by NagR (formerly named YvoA), a member of the widely-occurring GntR/HutC family of transcription regulators. Upon binding to specific DNA operator sites (dre-sites) NagR blocks the transcription of genes for GlcNAc utilization and interaction of NagR with effectors abrogates gene repression. Here we report crystal structures of NagR in complex with operator DNA and in complex with the putative effector molecules glucosamine-6-phosphate (GlcN-6-P) and N-acetylglucosamine-6-phosphate (GlcNAc-6-P). A comparison of the distinct conformational states suggests that effectors are able to displace the NagR–DNA-binding domains (NagR–DBDs) by almost 70 Å upon binding. In addition, a high-resolution crystal structure of isolated NagR–DBDs in complex with palindromic double-stranded DNA (dsDNA) discloses both the determinants for highly sequence-specific operator dre-site recognition and for the unspecific binding of NagR to dsDNA. Extensive biochemical binding studies investigating the affinities of full-length NagR and isolated NagR–DBDs for either random DNA, dre-site-derived palindromic or naturally occurring non-palindromic dre-site sequences suggest that proper NagR function relies on an effector-induced fine-tuning of the DNA-binding affinities of NagR and not on a complete abrogation of its DNA binding.
Collapse
Affiliation(s)
- Simon B Fillenberg
- Lehrstuhl für Biotechnik, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestrasse 91, D-91052 Erlangen, Germany
| | - Florian C Grau
- Lehrstuhl für Biotechnik, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestrasse 91, D-91052 Erlangen, Germany
| | - Gerald Seidel
- Lehrstuhl für Mikrobiologie, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Yves A Muller
- Lehrstuhl für Biotechnik, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestrasse 91, D-91052 Erlangen, Germany
| |
Collapse
|
30
|
GxySBA ABC transporter of Agrobacterium tumefaciens and its role in sugar utilization and vir gene expression. J Bacteriol 2014; 196:3150-9. [PMID: 24957625 DOI: 10.1128/jb.01648-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Monosaccharides available in the extracellular milieu of Agrobacterium tumefaciens can be transported into the cytoplasm, or via the periplasmic sugar binding protein, ChvE, play a critical role in controlling virulence gene expression. The ChvE-MmsAB ABC transporter is involved in the utilization of a wide range of monosaccharide substrates but redundant transporters are likely given the ability of a chvE-mmsAB deletion strain to grow, albeit more slowly, in the presence of particular monosaccharides. In this study, a putative ABC transporter encoded by the gxySBA operon is identified and shown to be involved in the utilization of glucose, xylose, fucose, and arabinose, which are also substrates for the ChvE-MmsAB ABC transporter. Significantly, GxySBA is also shown to be the first characterized glucosamine ABC transporter. The divergently transcribed gene gxyR encodes a repressor of the gxySBA operon, the function of which can be relieved by a subset of the transported sugars, including glucose, xylose, and glucosamine, and this substrate-induced expression can be repressed by glycerol. Furthermore, deletion of the transporter can increase the sensitivity of the virulence gene expression system to certain sugars that regulate it. Collectively, the results reveal a remarkably diverse set of substrates for the GxySBA transporter and its contribution to the repression of sugar sensitivity by the virulence-controlling system, thereby facilitating the capacity of the bacterium to distinguish between the soil and plant environments.
Collapse
|
31
|
Uptake and metabolism of N-acetylglucosamine and glucosamine by Streptococcus mutans. Appl Environ Microbiol 2014; 80:5053-67. [PMID: 24928869 DOI: 10.1128/aem.00820-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucosamine and N-acetylglucosamine are among the most abundant sugars on the planet, and their introduction into the oral cavity via the diet and host secretions, and through bacterial biosynthesis, provides oral biofilm bacteria with a source of carbon, nitrogen, and energy. In this study, we demonstrated that the dental caries pathogen Streptococcus mutans possesses an inducible system for the metabolism of N-acetylglucosamine and glucosamine. These amino sugars are transported by the phosphoenolpyruvate:sugar phosphotransferase system (PTS), with the glucose/mannose enzyme II permease encoded by manLMN playing a dominant role. Additionally, a previously uncharacterized gene product encoded downstream of the manLMN operon, ManO, was shown to influence the efficiency of uptake and growth on N-acetylglucosamine and, to a lesser extent, glucosamine. A transcriptional regulator, designated NagR, was able to bind the promoter regions in vitro, and repress the expression in vivo, of the nagA and nagB genes, encoding N-acetylglucosamine-6-phosphate deacetylase and glucosamine-6-phosphate deaminase, respectively. The binding activity of NagR could be inhibited by glucosamine-6-phosphate in vitro. Importantly, in contrast to the case with certain other Firmicutes, the gene for de novo synthesis of glucosamine-6-phosphate in S. mutans, glmS, was also shown to be regulated by NagR, and NagR could bind the glmS promoter region in vitro. Finally, metabolism of these amino sugars by S. mutans resulted in the production of significant quantities of ammonia, which can neutralize cytoplasmic pH and increase acid tolerance, thus contributing to enhanced persistence and pathogenic potential.
Collapse
|
32
|
Gaugué I, Oberto J, Plumbridge J. Regulation of amino sugar utilization in Bacillus subtilis by the GntR family regulators, NagR and GamR. Mol Microbiol 2014; 92:100-15. [PMID: 24673833 DOI: 10.1111/mmi.12544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 11/30/2022]
Abstract
In Bacillus subtilis separate sets of genes are implicated in the transport and metabolism of the amino sugars, glucosamine and N-acetylglucosamine. The genes for use of N-acetylglucosamine (nagAB and nagP) are found in most firmicutes and are controlled by a GntR family repressor NagR (YvoA). The genes for use of glucosamine (gamAP) are repressed by another GntR family repressor GamR (YbgA). The gamR-gamAP synton is only found in B. subtilis and a few very close relatives. Although NagR and GamR are close phylogenetically, there is no cross regulation between their operons. GlcN6P prevents all binding of GamR to its targets. NagR binds specifically to targets containing the previously identified dre palindrome but its binding is not inhibited by GlcN6P or GlcNAc6P. GamR-like binding sites were also found in some other Bacilli associated with genes for use of chitin, the polymer of N-acetylglucosamine, and with a gene for another GamR homologue (yurK). We show that GamR can bind to two regions in the chi operon of B. licheniformis and that GamR and YurK are capable of heterologous regulation. GamR can repress the B. licheniformis licH-yurK genes and YurK can repress B. subtilis gamA.
Collapse
Affiliation(s)
- Isabelle Gaugué
- UPR9073-CNRS (associated with Université Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13, Pierre et Marie Curie, Paris, 75005, France
| | | | | |
Collapse
|