1
|
Hu M, Liu R, Castro N, Loza Sanchez L, Rueankham L, Learn JA, Huang R, Lam KS, Carraway KL. A novel lipophilic amiloride derivative efficiently kills chemoresistant breast cancer cells. Sci Rep 2024; 14:20263. [PMID: 39217266 PMCID: PMC11365969 DOI: 10.1038/s41598-024-71181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Derivatives of the potassium-sparing diuretic amiloride are preferentially cytotoxic toward tumor cells relative to normal cells, and have the capacity to target tumor cell populations resistant to currently employed therapeutic agents. However, a major barrier to clinical translation of the amilorides is their modest cytotoxic potency, with estimated IC50 values in the high micromolar range. Here we report the synthesis of ten novel amiloride derivatives and the characterization of their cytotoxic potency toward MCF7 (ER/PR-positive), SKBR3 (HER2-positive) and MDA-MB-231 (triple negative) cell line models of breast cancer. Comparisons of derivative structure with cytotoxic potency toward these cell lines underscore the importance of an intact guanidine group, and uncover a strong link between drug-induced cytotoxicity and drug lipophilicity. We demonstrate that our most potent derivative called LLC1 is preferentially cytotoxic toward mouse mammary tumor over normal epithelial organoids, acts in the single digit micromolar range on breast cancer cell line models representing all major subtypes, acts on cell lines that exhibit both transient and sustained resistance to chemotherapeutic agents, but exhibits limited anti-tumor effects in a mouse model of metastatic breast cancer. Nonetheless, our observations offer a roadmap for the future optimization of amiloride-based compounds with preferential cytotoxicity toward breast tumor cells.
Collapse
Affiliation(s)
- Michelle Hu
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Noemi Castro
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Liliana Loza Sanchez
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Lapamas Rueankham
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Julie A Learn
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Ruiqi Huang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA.
- UC Davis School of Medicine, 4645 2nd Avenue, Room 1100B, Sacramento, CA, 95817, USA.
| |
Collapse
|
2
|
Hu M, Liu R, Castro N, Sanchez LL, Learn J, Huang R, Lam KS, Carraway KL. Structure-Activity Relationship Study Identifies a Novel Lipophilic Amiloride Derivative that Efficiently Kills Chemoresistant Breast Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.25.542364. [PMID: 37292759 PMCID: PMC10245970 DOI: 10.1101/2023.05.25.542364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Derivatives of the potassium-sparing diuretic amiloride are preferentially cytotoxic toward tumor cells relative to normal cells, and have the capacity to target tumor cell populations resistant to currently employed therapeutic agents. However, a major barrier to clinical translation of the amilorides is their modest cytotoxic potency, with estimated IC 50 values in the high micromolar range. Here we report the synthesis of ten novel amiloride derivatives and the characterization of their cytotoxic potency toward MCF7 (ER/PR-positive), SKBR3 (HER2-positive) and MDA-MB-231 (triple negative) cell line models of breast cancer. Comparisons of derivative structure with cytotoxic potency toward these cell lines underscore the importance of an intact guanidine group, and uncover a strong link between drug-induced cytotoxicity and drug lipophilicity. We demonstrate that our most potent derivative called LLC1 is preferentially cytotoxic toward mouse mammary tumor over normal epithelial organoids, acts in the single digit micromolar range on breast cancer cell line models representing all major subtypes, acts on cell lines that exhibit both transient and sustained resistance to chemotherapeutic agents, but exhibits limited anti-tumor effects in a mouse model of metastatic breast cancer. Nonetheless, our observations offer a roadmap for the future optimization of amiloride-based compounds with preferential cytotoxicity toward breast tumor cells.
Collapse
|
3
|
Lin MC, Chen GY, Yu HH, Hsu PL, Lee CW, Cheng CC, Wu SY, Pan BS, Su BC. Repurposing the diuretic benzamil as an anti-osteosarcoma agent that acts by suppressing integrin/FAK/STAT3 signalling and compromising mitochondrial function. Bone Joint Res 2024; 13:157-168. [PMID: 38569602 PMCID: PMC10990635 DOI: 10.1302/2046-3758.134.bjr-2023-0289.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Aims Osteosarcoma is the most common primary bone malignancy among children and adolescents. We investigated whether benzamil, an amiloride analogue and sodium-calcium exchange blocker, may exhibit therapeutic potential for osteosarcoma in vitro. Methods MG63 and U2OS cells were treated with benzamil for 24 hours. Cell viability was evaluated with the MTS/PMS assay, colony formation assay, and flow cytometry (forward/side scatter). Chromosome condensation, the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, cleavage of poly-ADP ribose polymerase (PARP) and caspase-7, and FITC annexin V/PI double staining were monitored as indicators of apoptosis. Intracellular calcium was detected by flow cytometry with Fluo-4 AM. The phosphorylation and activation of focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) were measured by western blot. The expression levels of X-linked inhibitor of apoptosis protein (XIAP), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), SOD1, and SOD2 were also assessed by western blot. Mitochondrial status was assessed with tetramethylrhodamine, ethyl ester (TMRE), and intracellular adenosine triphosphate (ATP) was measured with BioTracker ATP-Red Live Cell Dye. Total cellular integrin levels were evaluated by western blot, and the expression of cell surface integrins was assessed using fluorescent-labelled antibodies and flow cytometry. Results Benzamil suppressed growth of osteosarcoma cells by inducing apoptosis. Benzamil reduced the expression of cell surface integrins α5, αV, and β1 in MG63 cells, while it only reduced the expression of αV in U2OS cells. Benzamil suppressed the phosphorylation and activation of FAK and STAT3. In addition, mitochondrial function and ATP production were compromised by benzamil. The levels of anti-apoptotic proteins XIAP, Bcl-2, and Bcl-xL were reduced by benzamil. Correspondingly, benzamil potentiated cisplatin- and methotrexate-induced apoptosis in osteosarcoma cells. Conclusion Benzamil exerts anti-osteosarcoma activity by inducing apoptosis. In terms of mechanism, benzamil appears to inhibit integrin/FAK/STAT3 signalling, which triggers mitochondrial dysfunction and ATP depletion.
Collapse
Affiliation(s)
- Meng-Chieh Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Guan-Yu Chen
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Hsien Yu
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ling Hsu
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Chih-Cheng Cheng
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Bo-Syong Pan
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bor-Chyuan Su
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Dhakan C, Anemone A, Ventura V, Carella A, Corrado A, Pirotta E, Villano D, Romdhane F, Gammaraccio F, Aime S, Longo DL. Assessing the Therapeutic Efficacy of Proton Transport Inhibitors in a Triple-Negative Breast Cancer Murine Model with Magnetic Resonance Imaging-Chemical Exchange Saturation Transfer Tumor pH Imaging. Metabolites 2023; 13:1161. [PMID: 37999256 PMCID: PMC10673543 DOI: 10.3390/metabo13111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Proton transporters play a key role in maintaining the acidic tumor microenvironment; hence, their inhibition has been proposed as a new therapeutic treatment, although few methods can accurately assess their effect in vivo. In this study, we investigated whether MRI-CEST (Magnetic Resonance Imaging-Chemical Exchange Saturation Transfer) tumor pH imaging can be a useful tool to evaluate in vivo the therapeutic efficacy of several Proton Pump Inhibitors (PPIs) in breast cancer. Cell viability and extracellular pH assays were carried out in breast cancer cells cultured at physiological pH (7.4) or acid-adapted (pH of 6.5 and 6.8) following the exposure to inhibitors of V-ATPase (Lansoprazole, Esomeprazole) or NHE1 (Amiloride, Cariporide) at several concentrations. Next, triple-negative breast cancer 4T1 tumor-bearing mice were treated with Lansoprazole or Amiloride and MRI-CEST tumor pH imaging was utilized to assess the in vivo efficacy. Only Lansoprazole induced, in addition to breast cancer cell toxicity, a significant inhibition of proton extrusion. A significant reduction in tumor volume, prolonged survival, and increase in extracellular tumor pH after 1 and 2 weeks were observed after Lansoprazole treatment, whereas no significant changes were detected upon Amiloride treatment. Our results suggested that MRI-CEST tumor pH imaging can monitor the therapeutic efficacy of PPIs in breast cancer murine models.
Collapse
Affiliation(s)
- Chetan Dhakan
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126 Turin, Italy
| | - Annasofia Anemone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Vittoria Ventura
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126 Turin, Italy
| | - Alessia Corrado
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126 Turin, Italy
| | - Elisa Pirotta
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126 Turin, Italy
| | - Daisy Villano
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Feriel Romdhane
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126 Turin, Italy
| | - Francesco Gammaraccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Silvio Aime
- IRCCS SynLAB SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
5
|
Adlimoghaddam A, Allen GJP, O'Donnell MJ, Treberg JR, Weihrauch D. Gene knockout of NHX-3 in the soil nematode Caenorhabditis elegans leads to broad-spectrum compensatory regulation of Na +/H + exchangers, antiporters, and the V-type H +-ATPase. Comp Biochem Physiol A Mol Integr Physiol 2023:111455. [PMID: 37263376 DOI: 10.1016/j.cbpa.2023.111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
Na+/H+ exchangers are directly involved in a variety of an animal's essential physiological processes such as ionoregulation, acid-base regulation, nitrogenous waste excretion, and nutrient absorption. While nine NHX isoforms have been identified in Caenorhabditis elegans, the physiological importance of each isoform is not understood. The current study aimed to further our knowledge of NHX-3 which has previously been suggested to be involved in the movement of ammonia and acid-base equivalents across the nematode's hypodermis. Although NHX-3 knockout mutant nematodes exported H+ and imported Na+ at slower rates than wild-type nematodes, attempts to inhibit the NHX activity of mutant nematodes using amiloride and EIPA caused an unexpected increase in hypodermal H+ export and did not impact Na+ fluxes suggesting that the different H+ and Na+ transport profiles of the nematodes are likely due to compensatory changes in the mutants in response to the NHX-3 knockout, rather than the loss of NHX-3's physiological function. Significant changes in the mRNA expression of 7 other NHX isoforms, 2 Na+/H+ antiporter isoforms, and the V-type H+-ATPase were detected between wild-type and mutant nematodes. Furthermore, mutant nematodes possessed significantly reduced rates of cytochrome C oxidase activity and ammonia excretion rates, indicating the knockout of NHX-3 induced fundamental changes in metabolism that could impact the nematode's need to eliminate metabolic end-products like H+ and ammonia that relate to NHX transport. While C. elegans is a popular genetic model with cheap and accessible commercial mutants, our findings suggest caution in interpretation of results in studies using mutants to study physiological traits and the biological significance of specific transporters.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | - Jason R Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
6
|
Jiang X, Deng W, Tao S, Tang Z, Chen Y, Tian M, Wang T, Tao C, Li Y, Fang Y, Pu C, Gao J, Wang X, Qu W, Gai X, Ding Z, Fu Y, Zheng Y, Cao S, Zhou J, Huang M, Liu W, Xu J, Fan J, Shi Y. A RIPK3-independent role of MLKL in suppressing parthanatos promotes immune evasion in hepatocellular carcinoma. Cell Discov 2023; 9:7. [PMID: 36650126 PMCID: PMC9845215 DOI: 10.1038/s41421-022-00504-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 01/18/2023] Open
Abstract
Mixed lineage kinase domain-like (MLKL) is widely accepted as an executioner of necroptosis, in which MLKL mediates necroptotic signaling and triggers cell death in a receptor-interacting protein kinase 3 (RIPK3)-dependent manner. Recently, it is increasingly noted that RIPK3 is intrinsically silenced in hepatocytes, raising a question about the role of MLKL in hepatocellular carcinoma (HCC). This study reports a previously unrecognized role of MLKL in regulating parthanatos, a programmed cell death distinct from necroptosis. In HCC cells with intrinsic RIPK3 deficiency, knockout of MLKL impedes the orthotopic tumor growth, activates the anti-tumor immune response and enhances the therapeutic effect of immune checkpoint blockade in syngeneic HCC tumor models. Mechanistically, MLKL is required for maintaining the endoplasmic reticulum (ER)-mitochondrial Mg2+ dynamics in HCC cells. MLKL deficiency restricts ER Mg2+ release and mitochondrial Mg2+ uptake, leading to ER dysfunction and mitochondrial oxidative stress, which together confer increased susceptibility to metabolic stress-induced parthanatos. Importantly, pharmacological inhibition of poly(ADP-ribose) polymerase to block parthanatos restores the tumor growth and immune evasion in MLKL-knockout HCC tumors. Together, our data demonstrate a new RIPK3-independent role of MLKL in regulating parthanatos and highlight the role of MLKL in facilitating immune evasion in HCC.
Collapse
Affiliation(s)
- Xifei Jiang
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Wenjia Deng
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Siyao Tao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Tang
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yuehong Chen
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mengxin Tian
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,grid.8547.e0000 0001 0125 2443Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ting Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Chenyang Tao
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yize Li
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Fang
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Congying Pu
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jun Gao
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Xiaomin Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Weifeng Qu
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Xiameng Gai
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhenbin Ding
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yixian Fu
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Zheng
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Siyuwei Cao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jian Zhou
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China ,grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Min Huang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Weiren Liu
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jun Xu
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jia Fan
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China ,grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yinghong Shi
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
7
|
Ware AW, Harris JJ, Slatter TL, Cunliffe HE, McDonald FJ. The epithelial sodium channel has a role in breast cancer cell proliferation. Breast Cancer Res Treat 2021; 187:31-43. [PMID: 33630195 DOI: 10.1007/s10549-021-06133-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/05/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Breast cancer is the most common cancer affecting women worldwide with half a million associated deaths annually. Despite a huge global effort, the pathways of breast cancer progression are not fully elucidated. Ion channels have recently emerged as novel regulators of cancer cell proliferation and metastasis. The epithelial sodium channel, ENaC, made up of α, β and γ subunits is well known for its role in Na+ reabsorption in epithelia, but a number of novel roles for ENaC have been described, including potential roles in cancer. A role for ENaC in breast cancer, however, has yet to be described. Therefore, the effects of ENaC level and activity on breast cancer proliferation were investigated. METHODS Through the publicly available SCAN-B dataset associations between αENaC mRNA expression and breast cancer subtypes, proliferation markers and epithelial-mesenchymal transition markers (EMT) were assessed. αENaC expression, through overexpression or siRNA-mediated knockdown, and activity, through the ENaC-specific inhibitor amiloride, were altered in MCF7, T47D, BT549, and MDAMB231 breast cancer cells. MTT and EdU cell proliferation assays were used to determine the effect of these manipulations on breast cancer cell proliferation. RESULTS High αENaC mRNA expression was associated with less aggressive and less proliferative breast cancer subtypes and with reduced expression of proliferation markers. Decreased αENaC expression or activity, in the mesenchymal breast cancer cell lines BT549 and MDAMB231, increased breast cancer cell proliferation. Conversely, increased αENaC expression decreased breast cancer cell proliferation. CONCLUSION αENaC expression is associated with a poor prognosis in breast cancer and is a novel regulator of breast cancer cell proliferation. Taken together, these results identify ENaC as a potential future therapeutic target.
Collapse
Affiliation(s)
- Adam W Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Joshua J Harris
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Heather E Cunliffe
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
8
|
Tong Y, Zhang G, Li Y, Xu J, Yuan J, Zhang B, Hu T, Song G. Corilagin inhibits breast cancer growth via reactive oxygen species-dependent apoptosis and autophagy. J Cell Mol Med 2018; 22:3795-3807. [PMID: 29923307 PMCID: PMC6050496 DOI: 10.1111/jcmm.13647] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
Corilagin is a component of Phyllanthus urinaria extract and has been found of possessing anti‐inflammatory, anti‐oxidative, and anti‐tumour properties in clinic treatments. However, the underlying mechanisms in anti‐cancer particularly of its induction of cell death in human breast cancer remain undefined. Our research found that corilagin‐induced apoptotic and autophagic cell death depending on reactive oxygen species (ROS) in human breast cancer cell, and it occurred in human breast cancer cell (MCF‐7) only comparing with normal cells. The expression of procaspase‐8, procaspase‐3, PARP, Bcl‐2 and procaspase‐9 was down‐regulated while caspase‐8, cleaved PARP, caspase‐9 and Bax were up‐regulated after corilagin treatment, indicating apoptosis mediated by extrinsic and mitochondrial pathways occurred in MCF‐7 cell. Meanwhile, autophagy mediated by suppressing Akt/mTOR/p70S6K pathway was detected with an increase in autophagic vacuoles and LC3‐II conversion. More significantly, inhibition of autophagy by chloroquine diphosphate salt (CQ) remarkably enhanced apoptosis, while the caspase inhibitor z‐VAD‐fmk failed in affecting autophagy, suggesting that corilagin‐induced autophagy functioned as a survival mechanism in MCF‐7 cells. In addition, corilagin induced intracellular reactive oxygen species (ROS) generation, when reduced by ROS scavenger NAC, apoptosis and autophagy were both down‐regulated. Nevertheless, in SK‐BR3 cell which expressed RIP3, necroptosis inhibitor Nec‐1 could not alleviate cell death induced by corilagin, indicating necroptosis was not triggered. Subcutaneous tumour growth in nude mice was attenuated by corilagin, consisting with the results in vitro. These results imply that corilagin inhibits cancer cell proliferation through inducing apoptosis and autophagy which regulated by ROS release.
Collapse
Affiliation(s)
- Yinping Tong
- Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Gongye Zhang
- Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Yang Li
- Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Jiajia Xu
- Fisheries college, Jimei University, Xiamen, China
| | - Jiahui Yuan
- Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Bing Zhang
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, China
| | - Tianhui Hu
- Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Gang Song
- Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Meng MB, Wang HH, Cui YL, Wu ZQ, Shi YY, Zaorsky NG, Deng L, Yuan ZY, Lu Y, Wang P. Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy. Oncotarget 2018; 7:57391-57413. [PMID: 27429198 PMCID: PMC5302997 DOI: 10.18632/oncotarget.10548] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
While the mechanisms underlying apoptosis and autophagy have been well characterized over recent decades, another regulated cell death event, necroptosis, remains poorly understood. Elucidating the signaling networks involved in the regulation of necroptosis may allow this form of regulated cell death to be exploited for diagnosis and treatment of cancer, and will contribute to the understanding of the complex tumor microenvironment. In this review, we have summarized the mechanisms and regulation of necroptosis, the converging and diverging features of necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy, as well as attempts to exploit this newly gained knowledge to provide therapeutics for cancer.
Collapse
Affiliation(s)
- Mao-Bin Meng
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Huan-Huan Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yao-Li Cui
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhi-Qiang Wu
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yang-Yang Shi
- Stanford University School of Medicine, Stanford, CA, United States of America
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Lei Deng
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - You Lu
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
10
|
Amiloride, An Old Diuretic Drug, Is a Potential Therapeutic Agent for Multiple Myeloma. Clin Cancer Res 2017; 23:6602-6615. [DOI: 10.1158/1078-0432.ccr-17-0678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/30/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
|
11
|
Buchholz M, Majchrzak-Stiller B, Hahn S, Vangala D, Pfirrmann RW, Uhl W, Braumann C, Chromik AM. Innovative substance 2250 as a highly promising anti-neoplastic agent in malignant pancreatic carcinoma - in vitro and in vivo. BMC Cancer 2017; 17:216. [PMID: 28340556 PMCID: PMC5366103 DOI: 10.1186/s12885-017-3204-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Former studies already revealed the anti-neoplastic properties of the anti-infective agent Taurolidine (TRD) against many tumor species in vitro and in vivo. Its anti-proliferative and cell death inducing capacity is largely due to its main derivative Taurultam (TRLT). In this study it could be demonstrated, that substance 2250 - a newly defined innovative structural analogue of TRLT - exhibits an anti-neoplastic effect on malignant pancreatic carcinoma in vitro and in vivo. METHODS The anti-neoplastic potential of substance 2250 as well as its mode of action was demonstrated in extensive in vitro analysis, followed by successful and effective in vivo testings, using xenograft models derived from established pancreatic cancer cell lines as well as patient derived tissue. RESULTS Our functional analysis regarding the role of oxidative stress (ROS) and caspase activated apoptosis showed, that ROS driven programmed cell death (PCD) is the major mechanisms induced by substance 2250 in pancreatic carcinoma. What is strongly relevant towards clinical practice is especially the observed inhibition of patient derived pancreatic cancer tumor growth in mice treated with this new substance in combination with its sharply higher metabolic stability. CONCLUSION These encouraging results provide new therapeutical opportunities in pancreatic cancer treatment and build the basis for further functional analysis as well as first clinical studies for this promising agent.
Collapse
Affiliation(s)
- M. Buchholz
- Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - B. Majchrzak-Stiller
- Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - S. Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Bochum, Germany
| | - D. Vangala
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Bochum, Germany
- Department of Internal Medicine, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | | | - W. Uhl
- Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - C. Braumann
- Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - A. M. Chromik
- Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Focal photodynamic intracellular acidification as a cancer therapeutic. Semin Cancer Biol 2017; 43:147-156. [PMID: 28215969 DOI: 10.1016/j.semcancer.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 11/21/2022]
Abstract
Cancer cells utilize an array of proton transporters to regulate intra- and extracellular pH to thrive in hypoxic conditions, and to increase tumor growth and metastasis. Efforts to target many of the transporters involved in cancer cell pH regulation have yielded promising results, however, many productive attempts to disrupt pH regulation appear to be non-specific to cancer cells, and more effective in some cancer cells than others. Following a review of the status of photodynamic cancer therapy, a novel light-activated process is presented which creates very focal, rapid, and significant decreases in only intracellular pH (pHi), leading to cell death. The light-activation of the H+ carrier, nitrobenzaldehyde, has been effective at initiating pH-induced apoptosis in non-cancerous and numerous cancerous cell lines in vitro, to include breast, prostate, and pancreatic cancers. Also, this intracellular acidification technique caused significant reductions in tumor growth rate and enhanced survival in mice bearing triple negative breast cancer tumors. The efficacy of an NBA-upconverting nanoparticle to kill breast cancer cells in vitro is described, as well as a discussion of the potential intracellular mechanisms underlying the pH-induced apoptosis.
Collapse
|
13
|
Aredia F, Czaplinski S, Fulda S, Scovassi AI. Molecular features of the cytotoxicity of an NHE inhibitor: Evidence of mitochondrial alterations, ROS overproduction and DNA damage. BMC Cancer 2016; 16:851. [PMID: 27816051 PMCID: PMC5097842 DOI: 10.1186/s12885-016-2878-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND NH exchangers (NHEs) play a crucial role in regulating intra/extracellular pH, which is altered in cancer cells, and are therefore suitable targets to alter cancer cell metabolism in order to inhibit cell survival and proliferation. Among NHE inhibitors, amiloride family members are commonly used in clinical practice as diuretics; we focused on the amiloride HMA, reporting a net cytotoxic effect on a panel of human cancer cell lines; now we aim to provide new insights into the molecular events leading to cell death by HMA. METHODS Colon cancer cell lines were treated with HMA and analysed with: morphological and cellular assays for cell viability and death, and autophagy; biochemical approaches to evaluate mitochondrial function and ROS production; in situ detection of DNA damage; molecular tools to silence crucial autophagy/necroptosis factors. RESULTS HMA affects cellular morphology, alters mitochondrial structure and function, causes an increase in ROS, which is detrimental to DNA integrity, stimulates poly(ADP-ribose) synthesis, activates RIPK3-dependent death and triggers autophagy, which is unable to rescue cell survival. These features are hot points of an intricate network of processes, including necroptosis and autophagy, regulating the homeostasis between survival and death. CONCLUSION Our results allow the identification of multiple events leading to cell death in cancer cells treated with HMA. The here-defined intricate network activated by HMA could be instrumental to selectively target the key players of each pathway in the attempt to improve the global response to HMA. Our data could be the starting point for developing a newly designed targeted therapy.
Collapse
Affiliation(s)
- Francesca Aredia
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, 27100, Pavia, Italy.,Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Sebastian Czaplinski
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, 60528, Frankfurt, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, 60528, Frankfurt, Germany
| | - A Ivana Scovassi
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, 27100, Pavia, Italy.
| |
Collapse
|
14
|
Baek MW, Cho HS, Kim SH, Kim WJ, Jung JY. Ascorbic Acid Induces Necrosis in Human Laryngeal Squamous Cell Carcinoma via ROS, PKC, and Calcium Signaling. J Cell Physiol 2016; 232:417-425. [DOI: 10.1002/jcp.25438] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/19/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Min-Woo Baek
- Department of Oral Physiology, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders; Chonnam National University School of Dentistry; Gwangju Republic of Korea
| | - Heui-Seung Cho
- Department of Oral Physiology, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders; Chonnam National University School of Dentistry; Gwangju Republic of Korea
| | - Sun-Hun Kim
- Department of Oral Anatomy, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders; Chonnam National University School of Dentistry; Gwangju Republic of Korea
| | - Won-Jae Kim
- Department of Oral Physiology, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders; Chonnam National University School of Dentistry; Gwangju Republic of Korea
| | - Ji-Yeon Jung
- Department of Oral Physiology, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders; Chonnam National University School of Dentistry; Gwangju Republic of Korea
| |
Collapse
|
15
|
Das A, McDonald DG, Dixon-Mah YN, Jacqmin DJ, Samant VN, Vandergrift WA, Lindhorst SM, Cachia D, Varma AK, Vanek KN, Banik NL, Jenrette JM, Raizer JJ, Giglio P, Patel SJ. RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma. Tumour Biol 2016; 37:7525-34. [PMID: 26684801 DOI: 10.1007/s13277-015-4621-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/10/2015] [Indexed: 01/20/2023] Open
Abstract
Radiation-induced necrosis (RN) is a relatively common side effect of radiation therapy for glioblastoma. However, the molecular mechanisms involved and the ways RN mechanisms differ from regulated cell death (apoptosis) are not well understood. Here, we compare the molecular mechanism of cell death (apoptosis or necrosis) of C6 glioma cells in both in vitro and in vivo (C6 othotopically allograft) models in response to low and high doses of X-ray radiation. Lower radiation doses were used to induce apoptosis, while high-dose levels were chosen to induce radiation necrosis. Our results demonstrate that active caspase-8 in this complex I induces apoptosis in response to low-dose radiation and inhibits necrosis by cleaving RIP1 and RI. When activation of caspase-8 was reduced at high doses of X-ray radiation, the RIP1/RIP3 necrosome complex II is formed. These complexes induce necrosis through the caspase-3-independent pathway mediated by calpain, cathepsin B/D, and apoptosis-inducing factor (AIF). AIF has a dual role in apoptosis and necrosis. At high doses, AIF promotes chromatinolysis and necrosis by interacting with histone H2AX. In addition, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. Analysis of inflammatory markers in matched plasma and cerebrospinal fluid (CSF) isolated from in vivo specimens demonstrated the upregulation of chemokines and cytokines during the necrosis phase. Using RIP1/RIP3 kinase specific inhibitors (Nec-1, GSK'872), we also establish that the RIP1-RIP3 complex regulates programmed necrosis after either high-dose radiation or TNF-α-induced necrosis requires RIP1 and RIP3 kinases. Overall, our data shed new light on the relationship between RIP1/RIP3-mediated programmed necrosis and AIF-mediated caspase-independent programmed necrosis in glioblastoma.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Daniel G McDonald
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Yaenette N Dixon-Mah
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Dustin J Jacqmin
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Vikram N Samant
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - William A Vandergrift
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Scott M Lindhorst
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - David Cachia
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Abhay K Varma
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kenneth N Vanek
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Naren L Banik
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Joseph M Jenrette
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffery J Raizer
- Department of Neurology and Northwestern Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pierre Giglio
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Neurological Surgery, Ohio State University Wexner Medical College, Columbus, OH, 43210, USA
| | - Sunil J Patel
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
16
|
Louhimo R, Laakso M, Belitskin D, Klefström J, Lehtonen R, Hautaniemi S. Data integration to prioritize drugs using genomics and curated data. BioData Min 2016; 9:21. [PMID: 27231484 PMCID: PMC4881054 DOI: 10.1186/s13040-016-0097-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/30/2016] [Indexed: 09/15/2023] Open
Abstract
Background Genomic alterations affecting drug target proteins occur in several tumor types and are prime candidates for patient-specific tailored treatments. Increasingly, patients likely to benefit from targeted cancer therapy are selected based on molecular alterations. The selection of a precision therapy benefiting most patients is challenging but can be enhanced with integration of multiple types of molecular data. Data integration approaches for drug prioritization have successfully integrated diverse molecular data but do not take full advantage of existing data and literature. Results We have built a knowledge-base which connects data from public databases with molecular results from over 2200 tumors, signaling pathways and drug-target databases. Moreover, we have developed a data mining algorithm to effectively utilize this heterogeneous knowledge-base. Our algorithm is designed to facilitate retargeting of existing drugs by stratifying samples and prioritizing drug targets. We analyzed 797 primary tumors from The Cancer Genome Atlas breast and ovarian cancer cohorts using our framework. FGFR, CDK and HER2 inhibitors were prioritized in breast and ovarian data sets. Estrogen receptor positive breast tumors showed potential sensitivity to targeted inhibitors of FGFR due to activation of FGFR3. Conclusions Our results suggest that computational sample stratification selects potentially sensitive samples for targeted therapies and can aid in precision medicine drug repositioning. Source code is available from http://csblcanges.fimm.fi/GOPredict/. Electronic supplementary material The online version of this article (doi:10.1186/s13040-016-0097-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Riku Louhimo
- Genome Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Helsinki, FI-00014 Finland
| | - Marko Laakso
- Genome Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Helsinki, FI-00014 Finland
| | - Denis Belitskin
- Translational Cancer Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Helsinki, FI-00014 Finland
| | - Juha Klefström
- Translational Cancer Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Helsinki, FI-00014 Finland
| | - Rainer Lehtonen
- Genome Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Helsinki, FI-00014 Finland
| | - Sampsa Hautaniemi
- Genome Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Helsinki, FI-00014 Finland
| |
Collapse
|
17
|
Rowson-Hodel AR, Berg AL, Wald JH, Hatakeyama J, VanderVorst K, Curiel DA, Leon LJ, Sweeney C, Carraway KL. Hexamethylene amiloride engages a novel reactive oxygen species- and lysosome-dependent programmed necrotic mechanism to selectively target breast cancer cells. Cancer Lett 2016; 375:62-72. [PMID: 26944316 DOI: 10.1016/j.canlet.2016.02.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
Anticancer chemotherapeutics often rely on induction of apoptosis in rapidly dividing cells. While these treatment strategies are generally effective in debulking the primary tumor, post-therapeutic recurrence and metastasis are pervasive concerns with potentially devastating consequences. We demonstrate that the amiloride derivative 5-(N,N-hexamethylene) amiloride (HMA) harbors cytotoxic properties particularly attractive for a novel class of therapeutic agent. HMA is potently and specifically cytotoxic toward breast cancer cells, with remarkable selectivity for transformed cells relative to non-transformed or primary cells. Nonetheless, HMA is similarly cytotoxic to breast cancer cells irrespective of their molecular profile, proliferative status, or species of origin, suggesting that it engages a cell death mechanism common to all breast tumor subtypes. We observed that HMA induces a novel form of caspase- and autophagy-independent programmed necrosis relying on the orchestration of mitochondrial and lysosomal pro-death mechanisms, where its cytotoxicity was attenuated with ROS-scavengers or lysosomal cathepsin inhibition. Overall, our findings suggest HMA may efficiently target the heterogeneous populations of cancer cells known to reside within a single breast tumor by induction of a ROS- and lysosome-mediated form of programmed necrosis.
Collapse
Affiliation(s)
- Ashley R Rowson-Hodel
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Anastasia L Berg
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jessica H Wald
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jason Hatakeyama
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Daniel A Curiel
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Leonardo J Leon
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
18
|
Zhao H, Wang C, Lu B, Zhou Z, Jin Y, Wang Z, Zheng L, Liu K, Luo T, Zhu D, Chi G, Luo Y, Ge P. Pristimerin triggers AIF-dependent programmed necrosis in glioma cells via activation of JNK. Cancer Lett 2016; 374:136-148. [PMID: 26854718 DOI: 10.1016/j.canlet.2016.01.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/25/2015] [Accepted: 01/31/2016] [Indexed: 01/01/2023]
Abstract
Programmed necrosis is established as a new form of programmed cell death and is emerging as a new strategy of treatment for cancers. Pristimerin is a natural chemical with anti-tumor effect despite the fact that its mechanism remains poorly understood. In this study, we used glioma cell lines and mice model of xenograft glioma to investigate the effect of pristimerin on glioma and its underlying mechanism. We found that pristimerin inhibited the viabilities of glioma cells in vitro and the growth of xenograft gliomas in vivo, which was accompanied by upregulation of JNK and phosphor-JNK, nuclear accumulation of AIF, and elevation in the ratio of Bax/Bcl-2. In vitro studies showed that pristimerin induced necrosis in glioma cells, as well as mitochondrial depolarization, overproduction of ROS and reduction of GSH. Ablation of AIF level with SiRNA mitigated pristimerin-induced nuclear accumulation of AIF and prevented necrosis in glioma cells. Moreover, pharmacological inhibition of JNK with SP600125 or knockdown of its level with SiRNA reversed mitochondrial depolarization attenuated the elevation of Bax/Bcl-2 and suppressed nuclear accumulation of AIF. Further, inhibition of ROS with NAC not only rescued glioma cell necrosis but also suppressed JNK activation, mitigated Bax/Bcl-2 ratio, maintained mitochondrial membrane potential, and inhibited AIF translocation into nucleus. Therefore, we demonstrated first in this study that pristimerin triggered AIF-dependent necroptosis in glioma cells via induction of mitochondrial dysfunction by activation of JNK through overproduction of ROS. These results suggest that pristimerin has potential therapeutic effects on glioma.
Collapse
Affiliation(s)
- Hongwei Zhao
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Chen Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Bin Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Zijian Zhou
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Yong Jin
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Zongqi Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Linjie Zheng
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Kai Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Tianfei Luo
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun 130021, China; Department of Neurology, First Hospital of Jilin University, Changchun 130021, China
| | - Dong Zhu
- Department of Orthopaedics, First Hospital of Jilin University, Changchun 130021, China
| | - Guangfan Chi
- Department of Orthopaedics, First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yinan Luo
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun 130021, China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
19
|
Pasupuleti N, Grodzki AC, Gorin F. Mis-trafficking of endosomal urokinase proteins triggers drug-induced glioma nonapoptotic cell death. Mol Pharmacol 2015; 87:683-96. [PMID: 25634671 DOI: 10.1124/mol.114.096602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
5-Benzylglycinyl-amiloride (UCD38B) is the parent molecule of a class of anticancer small molecules that kill proliferative and nonproliferative high-grade glioma cells by programmed necrosis. UCD38B intracellularly triggers endocytosis, causing 40-50% of endosomes containing proteins of the urokinase plasminogen activator system (uPAS) to relocate to perinuclear mitochondrial regions. Endosomal "mis-trafficking" caused by UCD38B in human glioma cells corresponds to mitochondrial depolarization with the release and nuclear translocation of apoptotis-inducing factor (AIF) followed by irreversible caspase-independent cell demise. High-content quantification of immunocytochemical colocalization studies identified that UCD38B treatment increased endocytosis of the urokinase plasminogen activator (uPA), its receptor (uPAR), and plasminogen activator inhibitor-1 (PAI-1) into the early and late endosomes by 4- to 5-fold prior to AIF nuclear translocation and subsequent glioma demise. PAI-1 was found to comparably relocate with a subset of early and late endosomes in four different human glioma cell lines after UCD38B treatment, followed by caspase-independent, nonapoptotic cell death. Following UCD38B treatment, the receptor guidance protein LRP-1, which is required for endosomal recycling of the uPA receptor to the plasmalemma, remained abnormally associated with PAI-1 in early and late endosomes. The resultant aberrant endosomal recycling increased the total cellular content of the uPA-PAI-1 protein complex. Reversible inhibition of cellular endocytosis demonstrated that UCD38B bypasses the plasmalemmal uPAS complex and directly acts intracellularly to alter uPAS endocytotic trafficking. UCD38B represents a class of small molecules whose anticancer cytotoxicity is a consequence of causing the mis-trafficking of early and late endosomes containing uPAS cargo and leading to AIF-mediated necrotic cell death.
Collapse
Affiliation(s)
- Nagarekha Pasupuleti
- Department of Neurology, School of Medicine (N.P., F.G.), and Department of Molecular Biosciences, School of Veterinary Medicine (N.P., A.C.G., F.G.), University of California, Davis, California
| | - Ana Cristina Grodzki
- Department of Neurology, School of Medicine (N.P., F.G.), and Department of Molecular Biosciences, School of Veterinary Medicine (N.P., A.C.G., F.G.), University of California, Davis, California
| | - Fredric Gorin
- Department of Neurology, School of Medicine (N.P., F.G.), and Department of Molecular Biosciences, School of Veterinary Medicine (N.P., A.C.G., F.G.), University of California, Davis, California
| |
Collapse
|
20
|
Park EJ, Min KJ, Lee TJ, Yoo YH, Kim YS, Kwon TK. β-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells. Cell Death Dis 2014; 5:e1230. [PMID: 24832602 PMCID: PMC4047891 DOI: 10.1038/cddis.2014.202] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022]
Abstract
β-Lapachone activates multiple cell death mechanisms including apoptosis, autophagy and necrotic cell death in cancer cells. In this study, we investigated β-lapachone-induced cell death and the underlying mechanisms in human hepatocellular carcinoma SK-Hep1 cells. β-Lapachone markedly induced cell death without caspase activation. β-Lapachone increased PI uptake and HMGB-1 release to extracellular space, which are markers of necrotic cell death. Necrostatin-1 (a RIP1 kinase inhibitor) markedly inhibited β-lapachone-induced cell death and HMGB-1 release. In addition, β-lapachone activated poly (ADP-ribosyl) polymerase-1(PARP-1) and promoted AIF release, and DPQ (a PARP-1 specific inhibitor) or AIF siRNA blocked β-lapachone-induced cell death. Furthermore, necrostatin-1 blocked PARP-1 activation and cytosolic AIF translocation. We also found that β-lapachone-induced reactive oxygen species (ROS) production has an important role in the activation of the RIP1-PARP1-AIF pathway. Finally, β-lapachone-induced cell death was inhibited by dicoumarol (a NQO-1 inhibitor), and NQO1 expression was correlated with sensitivity to β-lapachone. Taken together, our results demonstrate that β-lapachone induces programmed necrosis through the NQO1-dependent ROS-mediated RIP1-PARP1-AIF pathway.
Collapse
Affiliation(s)
- E J Park
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Korea
| | - K-j Min
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Korea
| | - T-J Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, Korea
| | - Y H Yoo
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan, Korea
| | - Y-S Kim
- Department of Biochemistry, Ajou University School of Medicine, San 5, Wonchon-dong, Yeongtong-gu, Suwon, Korea
| | - T K Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Korea
| |
Collapse
|
21
|
Zhou H, Xu M, Gao Y, Deng Z, Cao H, Zhang W, Wang Q, Zhang B, Song G, Zhan Y, Hu T. Matrine induces caspase-independent program cell death in hepatocellular carcinoma through bid-mediated nuclear translocation of apoptosis inducing factor. Mol Cancer 2014; 13:59. [PMID: 24628719 PMCID: PMC4007561 DOI: 10.1186/1476-4598-13-59] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/10/2014] [Indexed: 12/14/2022] Open
Abstract
Matrine, a clinical drug in China, has been used to treat viral hepatitis, cardiac arrhythmia and skin inflammations. Matrine also exhibits chemotherapeutic potential through its ability to trigger cancer cell death. However, the mechanisms involved are still largely unknown. The objective of this study was to investigate the major determinant for the cell death induced by matrine in human hepatocellular carcinoma. We use human hepatocellular carcinoma cell line HepG2 and human hepatocellular carcinoma xenograft in nude mice as models to study the action of matrine in hepatocellular cancers. We found that caspase-dependent and -independent Program Cell Death (PCD) occurred in matrine-treated HepG2 cells, accompanied by the decreasing of mitochondrial transmembrane potential and the increasing ROS production. Further studies showed that AIF released from the mitochondria to the nucleus, and silencing of AIF reduced the caspase-independent PCD induced by matrine. What’s more, AIF nuclear translocation, and the subsequent cell death as well, was prevented by Bid inhibitor BI-6C9, Bid-targeted siRNA and ROS scavenger Tiron. In the in vivo study, matrine significantly attenuated tumor growth with AIF release from mitochondria into nucleus in nude mice. These data imply that matrine potently induce caspase-independent PCD in HepG2 cells through Bid-mediated AIF translocation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gang Song
- Cancer Research Center, Xiamen University Medical college, Xiamen 361102, China.
| | | | | |
Collapse
|