1
|
Wang H, Tang S, Wu Q, He Y, Zhu W, Xie X, Qin Z, Wang X, Zhou S, Yao S, Xu X, Guo C, Tong X, Han S, Chou YH, Wang Y, Wong KK, Yang CG, Chen L, Hu L, Ji H. Integrative study of lung cancer adeno-to-squamous transition in EGFR TKI resistance identifies RAPGEF3 as a therapeutic target. Natl Sci Rev 2024; 11:nwae392. [PMID: 39687207 PMCID: PMC11647589 DOI: 10.1093/nsr/nwae392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 12/18/2024] Open
Abstract
Although adeno-to-squamous transition (AST) has been observed in association with resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in clinic, its causality, molecular mechanism and overcoming strategies remain largely unclear. We here demonstrate that squamous transition occurs concomitantly with TKI resistance in PC9-derived xenograft tumors. Perturbation of squamous transition via DNp63 overexpression or knockdown leads to significant changes in TKI responses, indicative of a direct causal link between squamous transition and TKI resistance. Integrative RNA-seq, ATAC-seq analyses and functional studies reveal that FOXA1 plays an important role in maintaining adenomatous lineage and contributes to TKI sensitivity. FOXM1 overexpression together with FOXA1 knockout fully recapitulates squamous transition and TKI resistance in both PC9 xenografts and patient-derived xenograft (PDX) models. Importantly, pharmacological inhibition of RAPGEF3 combined with EGFR TKI efficiently overcomes TKI resistance, especially in RAPGEF3high PDXs. Our findings provide novel mechanistic insights into squamous transition and therapeutic strategy to overcome EGFR TKI resistance in lung cancer.
Collapse
Affiliation(s)
- Hua Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Tang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qibiao Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200092, China
| | - Weikang Zhu
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyun Xie
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhen Qin
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xue Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiyu Zhou
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shun Yao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoling Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chenchen Guo
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyuan Tong
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuo Han
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yueh-Hung Chou
- Department of Anatomical Pathology, Far Eastern Memorial Hospital, New Taipei City, Taiwan, China
| | - Yong Wang
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, NY 10016, USA
| | - Cai-Guang Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Luonan Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liang Hu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongbin Ji
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Gonzalez-Llerena JL, Espinosa-Rodriguez BA, Treviño-Almaguer D, Mendez-Lopez LF, Carranza-Rosales P, Gonzalez-Barranco P, Guzman-Delgado NE, Romo-Mancillas A, Balderas-Renteria I. Cordycepin Triphosphate as a Potential Modulator of Cellular Plasticity in Cancer via cAMP-Dependent Pathways: An In Silico Approach. Int J Mol Sci 2024; 25:5692. [PMID: 38891880 PMCID: PMC11171877 DOI: 10.3390/ijms25115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Cordycepin, or 3'-deoxyadenosine, is an adenosine analog with a broad spectrum of biological activity. The key structural difference between cordycepin and adenosine lies in the absence of a hydroxyl group at the 3' position of the ribose ring. Upon administration, cordycepin can undergo an enzymatic transformation in specific tissues, forming cordycepin triphosphate. In this study, we conducted a comprehensive analysis of the structural features of cordycepin and its derivatives, contrasting them with endogenous purine-based metabolites using chemoinformatics and bioinformatics tools in addition to molecular dynamics simulations. We tested the hypothesis that cordycepin triphosphate could bind to the active site of the adenylate cyclase enzyme. The outcomes of our molecular dynamics simulations revealed scores that are comparable to, and superior to, those of adenosine triphosphate (ATP), the endogenous ligand. This interaction could reduce the production of cyclic adenosine monophosphate (cAMP) by acting as a pseudo-ATP that lacks a hydroxyl group at the 3' position, essential to carry out nucleotide cyclization. We discuss the implications in the context of the plasticity of cancer and other cells within the tumor microenvironment, such as cancer-associated fibroblast, endothelial, and immune cells. This interaction could awaken antitumor immunity by preventing phenotypic changes in the immune cells driven by sustained cAMP signaling. The last could be an unreported molecular mechanism that helps to explain more details about cordycepin's mechanism of action.
Collapse
Affiliation(s)
- Jose Luis Gonzalez-Llerena
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
- Center for Research on Nutrition and Public Health, School of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 66460, Mexico;
| | - Bryan Alejandro Espinosa-Rodriguez
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Daniela Treviño-Almaguer
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Luis Fernando Mendez-Lopez
- Center for Research on Nutrition and Public Health, School of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 66460, Mexico;
| | - Pilar Carranza-Rosales
- Laboratory of Cell Biology, Northeast Biomedical Research Center, Mexican Social Security Institute, Monterrey 64720, Mexico;
| | - Patricia Gonzalez-Barranco
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Nancy Elena Guzman-Delgado
- Health Research Division, High Specialty Medical Unit, Cardiology Hospital N. 34. Mexican Social Security Institute, Monterrey 64360, Mexico;
| | - Antonio Romo-Mancillas
- Computer Aided Drug Design and Synthesis Group, School of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico
| | - Isaias Balderas-Renteria
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| |
Collapse
|
3
|
Parsons EC, Hoffmann R, Baillie GS. Revisiting the roles of cAMP signalling in the progression of prostate cancer. Biochem J 2023; 480:1599-1614. [PMID: 37830741 PMCID: PMC10586777 DOI: 10.1042/bcj20230297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Prostate cancer is one of the most common cancers in men and one of the top causes of death in men worldwide. Development and function of both normal prostate cells and early-stage prostate cancer cells are dependent on the cross-talk between androgen signalling systems and a variety of other transduction pathways which drive differentiation of these cells towards castration-resistance. One such signalling pathway is the ubiquitous cAMP signalling axis which functions to activate spatially restricted pools of cAMP effectors such as protein kinase A (PKA). The importance of both PKA and cAMP in the development of prostate cancer, and their interactions with the androgen receptor, were the focus of a review by Merkle and Hoffmann in 2010. In this updated review, we revisit this topic with analysis of current PKA-related prostate cancer literature and introduce novel information on the relevance of another cAMP effector, the exchange protein directly activated by cAMP (EPAC).
Collapse
Affiliation(s)
- Emma C. Parsons
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K
| | - Ralf Hoffmann
- Oncology, Philips Research Eindhoven, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands
- School of Cardiovascular & Metabolic Health, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - George S. Baillie
- School of Cardiovascular & Metabolic Health, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| |
Collapse
|
4
|
Slika H, Mansour H, Nasser SA, Shaito A, Kobeissy F, Orekhov AN, Pintus G, Eid AH. Epac as a tractable therapeutic target. Eur J Pharmacol 2023; 945:175645. [PMID: 36894048 DOI: 10.1016/j.ejphar.2023.175645] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
In 1957, cyclic adenosine monophosphate (cAMP) was identified as the first secondary messenger, and the first signaling cascade discovered was the cAMP-protein kinase A (PKA) pathway. Since then, cAMP has received increasing attention given its multitude of actions. Not long ago, a new cAMP effector named exchange protein directly activated by cAMP (Epac) emerged as a critical mediator of cAMP's actions. Epac mediates a plethora of pathophysiologic processes and contributes to the pathogenesis of several diseases such as cancer, cardiovascular disease, diabetes, lung fibrosis, neurological disorders, and others. These findings strongly underscore the potential of Epac as a tractable therapeutic target. In this context, Epac modulators seem to possess unique characteristics and advantages and hold the promise of providing more efficacious treatments for a wide array of diseases. This paper provides an in-depth dissection and analysis of Epac structure, distribution, subcellular compartmentalization, and signaling mechanisms. We elaborate on how these characteristics can be utilized to design specific, efficient, and safe Epac agonists and antagonists that can be incorporated into future pharmacotherapeutics. In addition, we provide a detailed portfolio for specific Epac modulators highlighting their discovery, advantages, potential concerns, and utilization in the context of clinical disease entities.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | - Hadi Mansour
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | | | - Abdullah Shaito
- Biomedical Research Center, Qatar University, Doha, P.O. Box: 2713, Qatar.
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, Georgia, USA.
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, Moscow, 117418, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, 125315, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Osennyaya Street 4-1-207, Moscow, 121609, Russia.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar.
| |
Collapse
|
5
|
Pereira VS, Alves BDCA, Waisberg J, Fonseca F, Gehrke F. Detection of COX-2 in liquid biopsy of patients with prostate cancer. J Clin Pathol 2023; 76:189-193. [PMID: 34782424 DOI: 10.1136/jclinpath-2021-207755] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023]
Abstract
AIMS To determine the profile of COX-2 gene expression in patients with prostate cancer attended at the ABC University Health Center outpatient clinic and correlate the results with patients' anatomopathological examinations. Prostate cancer is the sixth most common type of cancer worldwide and the second in Brazil. COX-2 expression is associated with an unfavourable prognosis. METHODS 15.0 mL of peripheral blood were collected from 24 patients and 25 healthy men. RNA extraction was performed using the QIAamp RNA Blood Mini Kit. Complementary DNA synthesis was performed using SuperScript II RNAse Reverse Transcriptase. Quantitative real-time PCR was performed with specific COX-2 oligonucleotides and the endogenous GAPDH gene. RESULTS The mean age of the patients was 69 years old. The Gleason scoring system showed 37.5% of patients with Gleason 6 (slow growth, low risk), 45.8% with Gleason 7 (intermediate risk) and 16.7% with Gleason 8 or 9 (risk of high-grade cancer). The median COX-2 expression in the study group was 0.97, while in the control group it was 0.11 (p<0.045). CONCLUSIONS Patients with prostate cancer showed higher COX-2 expression at diagnosis compared with the control group. Since COX-2 detection associated with prostate-specific antigen dosage shows promise as a biomarker for diagnosis and prognosis in patients with prostate cancer, further research is required to confirm these findings.
Collapse
Affiliation(s)
| | | | - Jaques Waisberg
- Programa de Pós-Graduação em Ciência Cirúrgica Interdisciplinar, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil.,Cirurgia, Centro Universitário FMABC, Santo André, Brazil
| | - Fernando Fonseca
- Laboratório de Análises Clínicas, Centro Universitário FMABC, Santo André, Brazil.,Ciências Farmacêuticas, Universidade Federal de São Paulo/UNIFESP, Diadema, Brazil
| | - Flavia Gehrke
- Programa de Pós Graduação em Ciências da Saúde, Iamspe, São Paulo, Brazil .,Patologia, Centro Universitário FMABC, Santo André, Brazil
| |
Collapse
|
6
|
Pan Y, Liu J, Ren J, Luo Y, Sun X. Epac: A Promising Therapeutic Target for Vascular Diseases: A Review. Front Pharmacol 2022; 13:929152. [PMID: 35910387 PMCID: PMC9330031 DOI: 10.3389/fphar.2022.929152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular diseases affect the circulatory system and comprise most human diseases. They cause severe symptoms and affect the quality of life of patients. Recently, since their identification, exchange proteins directly activated by cAMP (Epac) have attracted increasing scientific interest, because of their role in cyclic adenosine monophosphate (cAMP) signaling, a well-known signal transduction pathway. The role of Epac in cardiovascular disease and cancer is extensively studied, whereas their role in kidney disease has not been comprehensively explored yet. In this study, we aimed to review recent studies on the regulatory effects of Epac on various vascular diseases, such as cardiovascular disease, cerebrovascular disease, and cancer. Accumulating evidence has shown that both Epac1 and Epac2 play important roles in vascular diseases under both physiological and pathological conditions. Additionally, there has been an increasing focus on Epac pharmacological modulators. Therefore, we speculated that Epac could serve as a novel therapeutic target for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yunfeng Pan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Jia Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiahui Ren
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yun Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Ahmed MB, Alghamdi AAA, Islam SU, Lee JS, Lee YS. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach. Cells 2022; 11:cells11132020. [PMID: 35805104 PMCID: PMC9266045 DOI: 10.3390/cells11132020] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of death globally. Despite extensive research and considerable advances in cancer therapy, the fundamentals of the disease remain unclear. Understanding the key signaling mechanisms that cause cancer cell malignancy may help to uncover new pharmaco-targets. Cyclic adenosine monophosphate (cAMP) regulates various biological functions, including those in malignant cells. Understanding intracellular second messenger pathways is crucial for identifying downstream proteins involved in cancer growth and development. cAMP regulates cell signaling and a variety of physiological and pathological activities. There may be an impact on gene transcription from protein kinase A (PKA) as well as its downstream effectors, such as cAMP response element-binding protein (CREB). The position of CREB downstream of numerous growth signaling pathways implies its oncogenic potential in tumor cells. Tumor growth is associated with increased CREB expression and activation. PKA can be used as both an onco-drug target and a biomarker to find, identify, and stage tumors. Exploring cAMP effectors and their downstream pathways in cancer has become easier using exchange protein directly activated by cAMP (EPAC) modulators. This signaling system may inhibit or accelerate tumor growth depending on the tumor and its environment. As cAMP and its effectors are critical for cancer development, targeting them may be a useful cancer treatment strategy. Moreover, by reviewing the material from a distinct viewpoint, this review aims to give a knowledge of the impact of the cAMP signaling pathway and the related effectors on cancer incidence and development. These innovative insights seek to encourage the development of novel treatment techniques and new approaches.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | | | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan;
| | - Joon-Seok Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | - Young-Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
- Correspondence: ; Tel.: +82-53-950-6353; Fax: +82-53-943-2762
| |
Collapse
|
8
|
The Role of Neuropeptide-Stimulated cAMP-EPACs Signalling in Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010311. [PMID: 35011543 PMCID: PMC8746471 DOI: 10.3390/molecules27010311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023]
Abstract
Neuropeptides are autocrine and paracrine signalling factors and mainly bind to G protein-coupled receptors (GPCRs) to trigger intracellular secondary messenger release including adenosine 3′, 5′-cyclic monophosphate (cAMP), thus modulating cancer progress in different kind of tumours. As one of the downstream effectors of cAMP, exchange proteins directly activated by cAMP (EPACs) play dual roles in cancer proliferation and metastasis. More evidence about the relationship between neuropeptides and EPAC pathways have been proposed for their potential role in cancer development; hence, this review focuses on the role of neuropeptide/GPCR system modulation of cAMP/EPACs pathways in cancers. The correlated downstream pathways between neuropeptides and EPACs in cancer cell proliferation, migration, and metastasis is discussed to glimmer the direction of future research.
Collapse
|
9
|
Wehbe N, Slika H, Mesmar J, Nasser SA, Pintus G, Baydoun S, Badran A, Kobeissy F, Eid AH, Baydoun E. The Role of Epac in Cancer Progression. Int J Mol Sci 2020; 21:ijms21186489. [PMID: 32899451 PMCID: PMC7555121 DOI: 10.3390/ijms21186489] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer continues to be a prime contributor to global mortality. Despite tremendous research efforts and major advances in cancer therapy, much remains to be learned about the underlying molecular mechanisms of this debilitating disease. A better understanding of the key signaling events driving the malignant phenotype of cancer cells may help identify new pharmaco-targets. Cyclic adenosine 3',5'-monophosphate (cAMP) modulates a plethora of biological processes, including those that are characteristic of malignant cells. Over the years, most cAMP-mediated actions were attributed to the activity of its effector protein kinase A (PKA). However, studies have revealed an important role for the exchange protein activated by cAMP (Epac) as another effector mediating the actions of cAMP. In cancer, Epac appears to have a dual role in regulating cellular processes that are essential for carcinogenesis. In addition, the development of Epac modulators offered new routes to further explore the role of this cAMP effector and its downstream pathways in cancer. In this review, the potentials of Epac as an attractive target in the fight against cancer are depicted. Additionally, the role of Epac in cancer progression, namely its effect on cancer cell proliferation, migration/metastasis, and apoptosis, with the possible interaction of reactive oxygen species (ROS) in these phenomena, is discussed with emphasis on the underlying mechanisms and pathways.
Collapse
Affiliation(s)
- Nadine Wehbe
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
| | - Hasan Slika
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
| | - Joelle Mesmar
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
| | - Suzanne A. Nasser
- Department of Pharmacology, Beirut Arab University, P.O. Box 11-5020 Beirut, Lebanon;
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sharjah, P.O. Box 27272 Sharjah, UAE;
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Serine Baydoun
- Department of Radiology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
| | - Adnan Badran
- Department of Basic Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan;
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon;
| | - Ali H. Eid
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
- Correspondence: (A.H.E.); (E.B.); Tel.: +961-1-350-000 (ext. 4891) (A.H.E. & E.B.)
| | - Elias Baydoun
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
- Correspondence: (A.H.E.); (E.B.); Tel.: +961-1-350-000 (ext. 4891) (A.H.E. & E.B.)
| |
Collapse
|
10
|
Zhao Y, Li W. Beta-adrenergic signaling on neuroendocrine differentiation, angiogenesis, and metastasis in prostate cancer progression. Asian J Androl 2020; 21:253-259. [PMID: 29848834 PMCID: PMC6498733 DOI: 10.4103/aja.aja_32_18] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer is a complex, heterogeneous disease that mainly affects the older male population with a high-mortality rate. The mechanisms underlying prostate cancer progression are still incompletely understood. Beta-adrenergic signaling has been shown to regulate multiple cellular processes as a mediator of chronic stress. Recently, beta-adrenergic signaling has been reported to affect the development of aggressive prostate cancer by regulating neuroendocrine differentiation, angiogenesis, and metastasis. Here, we briefly summarize and discuss recent advances in these areas and their implications in prostate cancer therapeutics. We aim to provide a better understanding of the contribution of beta-adrenergic signaling to the progression of aggressive prostate cancer.
Collapse
Affiliation(s)
- Yicheng Zhao
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Division of Oncology, Department of Internal Medicine, and Memorial Herman Cancer Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wenliang Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Division of Oncology, Department of Internal Medicine, and Memorial Herman Cancer Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
11
|
Role of p120 Catenin in Epac1-Induced Chronic Postsurgical Pain in Rats. Pain Res Manag 2019; 2019:9017931. [PMID: 30863475 PMCID: PMC6377980 DOI: 10.1155/2019/9017931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/28/2022]
Abstract
Chronic postsurgical pain (CPSP) is a chronic pain state that is difficult to be treated clinically. A series of complicated changes have been produced from nociceptive stimulation to the occurrence and development of postsurgical pain. Many mechanisms remain unclear. In order to study the role of intercellular gap junctions in inducing inflammatory microenvironment at the beginning of nociceptor after operation, the model of skin/muscle incision and retraction (SMIR) was established. We observed the changes of the expression of exchange proteins directly activated by cAMP-1 (Epac1) and p120 catenin (p120), the quantities of macrophages and endothelial cells, vascular endothelial permeability, and mechanical withdrawal threshold (MWT). It was found that macrophages and endothelial cells were functionally coupled through Epac1-p120. Adhesive linkage disorder remodeled the chronic, inflammatory, and eutrophic microenvironment at the beginning of nociceptor after operation through macrophages, endothelial cells, and endothelial paracellular pathways. It might be an early event and a key step in peripheral sensitization of CPSP. The expression of p120 in muscle tissue around the incision might become a prognostic marker for the conversion of acute postsurgical pain into CPSP. Targeted intervention of Epac1-p120 might be a clinical strategy for inhibiting the conversion of acute postsurgical pain into CPSP.
Collapse
|
12
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
13
|
Insights into exchange factor directly activated by cAMP (EPAC) as potential target for cancer treatment. Mol Cell Biochem 2018; 447:77-92. [PMID: 29417338 DOI: 10.1007/s11010-018-3294-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/19/2018] [Indexed: 01/02/2023]
Abstract
Cancer remains a global health problem and approximately 1.7 million new cancer cases are diagnosed every year worldwide. Although diverse molecules are currently being explored as targets for cancer therapy the tumor treatment and therapy is highly tricky. Secondary messengers are important for hormone-mediated signaling pathway. Cyclic AMP (cAMP), a secondary messenger responsible for various physiological processes regulates cell metabolism by activating Protein kinase A (PKA) and by targeting exchange protein directly activated by cAMP (EPAC). EPAC is present in two isoforms EPAC1 and EPAC2, which exhibit different tissue distribution and is involved in GDP/GTP exchange along with activating Rap1- and Rap2-mediated signaling pathways. EPAC is also known for its dual role in cancer as pro- and anti-proliferative in addition to metastasis. Results after perturbing EPAC activity suggests its involvement in cancer cell migration, proliferation, and cytoskeleton remodeling which makes it a potential therapeutic target for cancer treatments.
Collapse
|
14
|
Jansen SR, Poppinga WJ, de Jager W, Lezoualc'h F, Cheng X, Wieland T, Yarwood SJ, Gosens R, Schmidt M. Epac1 links prostaglandin E2 to β-catenin-dependent transcription during epithelial-to-mesenchymal transition. Oncotarget 2018; 7:46354-46370. [PMID: 27344171 PMCID: PMC5216803 DOI: 10.18632/oncotarget.10128] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/02/2016] [Indexed: 01/16/2023] Open
Abstract
In epithelial cells, β-catenin is localized at cell-cell junctions where it stabilizes adherens junctions. When these junctions are disrupted, β-catenin can translocate to the nucleus where it functions as a transcriptional cofactor. Recent research has indicated that PGE2 enhances the nuclear function of β-catenin through cyclic AMP. Here, we aim to study the role of the cyclic AMP effector Epac in β-catenin activation by PGE2 in non-small cell lung carcinoma cells. We show that PGE2 induces a down-regulation of E-cadherin, promotes cell migration and enhances β-catenin translocation to the nucleus. This results in β-catenin-dependent gene transcription. We also observed increased expression of Epac1. Inhibition of Epac1 activity using the CE3F4 compound or Epac1 siRNA abolished the effects of PGE2 on β-catenin. Further, we observed that Epac1 and β-catenin associate together. Expression of an Epac1 mutant with a deletion in the nuclear pore localization sequence prevents this association. Furthermore, the scaffold protein Ezrin was shown to be required to link Epac1 to β-catenin. This study indicates a novel role for Epac1 in PGE2-induced EMT and subsequent activation of β-catenin.
Collapse
Affiliation(s)
- Sepp R Jansen
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands.,Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Wilfred J Poppinga
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Wim de Jager
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Frank Lezoualc'h
- Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III, Toulouse, France
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas, Houston, TX, USA
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Stephen J Yarwood
- School of Life Sciences, Heriot-Watt University, Edinburgh, Scotland
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Ma W, St-Jacques B. Signalling transduction events involved in agonist-induced PGE2/EP4 receptor externalization in cultured rat dorsal root ganglion neurons. Eur J Pain 2018; 22:845-861. [PMID: 29336505 DOI: 10.1002/ejp.1172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Prostaglandin E2 (PGE2) enriched in inflamed tissues contributes to chronic pain by sensitizing nociceptive dorsal root ganglion (DRG) neurons (nociceptors). Of four PGE2 receptors (EP1-4), EP4 plays a major role in PGE2-induced nociceptor sensitization. We have previously reported that PGE2 or EP4 agonists stimulated EP4 externalization in cultured DRG neurons and this event contributes to nociceptor sensitization. However, the signalling transduction events governing this event remain unknown. METHODS In this study, using antibody-based externalization assay, we examined EP subtypes and multiple signalling transduction events involved in PGE2-induced EP4 externalization in cultured DRG neurons. RESULTS In addition to EP4 agonist, EP2 agonist, to a lesser extent, also induced EP4 externalization while EP1 and EP3 agonists had no effect. The extracellular and intracellular calcium chelators, the inhibitors of CaMKII, cAMP, PKA, PKC, PKCε, PLC, MAPKs, PI3K and Akt suppressed agonist-induced EP4 externalization. The activator of AC, two PKA-specific cAMP analogues and one Epac-specific cAMP analogue also induced EP4 externalization. ELISA showed that double sequential exposures to EP4 agonists induced a greater release of pain peptide CGRP from cultured DRG neurons than a single exposure, an event blocked by the inhibitor of anterograde transport from ER/Golgi complex to cell surface. CONCLUSIONS Taken together, these data suggest that mobilization of extracellular and intracellular calcium as well as the activation of CaMKII, cAMP/PKA, cAMP/Epac, PKC/PKCε, MAPKs, PI3K-Akt and PLC signalling transduction pathways are involved in agonist-induced EP4 externalization. Agonist-enhanced EP4 externalization increases EP4 cell surface abundance and activity, thus enhancing nociceptor sensitization. SIGNIFICANCE This study adds mechanistic information regarding signalling transduction events involved in agonist-induced EP4 cell surface trafficking. EP4 and EP2 (to lesser extent) receptors, extra- and intracellular Ca++ , CaKMII, cAMP, PKA, PKC, PKCε, PLC, MAPK, PI3K and Akt are involved in this event. Agonist-induced EP4 externalization contributes to enhanced nociceptor sensitization.
Collapse
Affiliation(s)
- W Ma
- Douglas Mental Health University Institute, McGill University, Montréal, Canada.,Department of Psychiatry, McGill University, Montréal, Canada
| | - B St-Jacques
- Douglas Mental Health University Institute, McGill University, Montréal, Canada
| |
Collapse
|
16
|
Wang P, Liu Z, Chen H, Ye N, Cheng X, Zhou J. Exchange proteins directly activated by cAMP (EPACs): Emerging therapeutic targets. Bioorg Med Chem Lett 2017; 27:1633-1639. [PMID: 28283242 PMCID: PMC5397994 DOI: 10.1016/j.bmcl.2017.02.065] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/07/2017] [Accepted: 02/26/2017] [Indexed: 11/22/2022]
Abstract
Exchange proteins directly activated by cAMP (EPACs) are critical cAMP-dependent signaling pathway mediators. The discovery of EPAC proteins has significantly facilitated understanding on cAMP-dependent signaling pathway and efforts along this line open new avenues for developing novel therapeutics for cancer, diabetes, heart failure, inflammation, infections, neurological disorders and other human diseases. Over the past decade, important progress has been made in the identification of EPAC agonists, antagonists and their biological and pharmacological applications. In this review, we briefly summarize recently reported novel functions of EPACs and the discovery of their small molecule modulators. The challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center, Houston, TX 77030, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States.
| |
Collapse
|
17
|
Cao S, Bian Z, Zhu X, Shen SR. Effect of Epac1 on pERK and VEGF Activation in Postoperative Persistent Pain in Rats. J Mol Neurosci 2016; 59:554-64. [DOI: 10.1007/s12031-016-0776-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/02/2016] [Indexed: 02/01/2023]
|
18
|
Procalcitonin as a biomarker for infection-related mortality in cancer patients. Curr Opin Support Palliat Care 2016; 9:168-73. [PMID: 25872114 DOI: 10.1097/spc.0000000000000142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Infectious diseases are the second leading cause of death following direct cancer-related complications in the field of oncology. Clinical studies using the classic inflammatory biomarkers, C-reactive protein, erythrocyte sedimentation rate, leukocytosis, and thrombocytosis fail to show a significant correlation between these biomarkers and infection-related mortality. It is therefore crucial to define new biomarkers that are not affected by the primary cancer and precisely show the severity of the infection to help in the decision-making process. RECENT FINDINGS A significant increase in the number of cancer patients in the past decades has created an exponential increase in the number of immunocompromised patients. Preemptive and typically unnecessary usage of broad-spectrum antibiotics is common during the treatment of these patients and may result in an increase in multidrug-resistant microbial strains. Recent clinical studies suggest that a significant reduction in antibiotic consumption may be achieved by procalcitonin-guided algorithms without sacrificing the outcome of patients with severe infection. SUMMARY In this article, we focus on procalcitonin and its potential role in differentiating cancer and infection-induced inflammation. Using this strategy may significantly reduce the usage of empirical broad-spectrum antibiotics and result in earlier discharge of patients.
Collapse
|
19
|
Almahariq M, Mei FC, Cheng X. The pleiotropic role of exchange protein directly activated by cAMP 1 (EPAC1) in cancer: implications for therapeutic intervention. Acta Biochim Biophys Sin (Shanghai) 2016; 48:75-81. [PMID: 26525949 DOI: 10.1093/abbs/gmv115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/30/2015] [Indexed: 01/03/2023] Open
Abstract
The pleiotropic second messenger adenosine 3',5'-cyclic monophosphate (cAMP) regulates a myriad of biological processes under both physiological and pathophysiological conditions. Exchange protein directly activated by cAMP 1 (EPAC1) mediates the intracellular functions of cAMP by acting as a guanine nucleotide exchange factor for the Ras-like Rap small GTPases. Recent studies suggest that EPAC1 plays important roles in immunomodulation, cancer cell migration/metastasis, and metabolism. These results, coupled with the successful development of EPAC-specific small molecule inhibitors, identify EPAC1 as a promising therapeutic target for cancer treatments.
Collapse
Affiliation(s)
- Muayad Almahariq
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
20
|
Badrey MG, Abdel-Aziz HM, Gomha SM, Abdalla MM, Mayhoub AS. Design and Synthesis of Imidazopyrazolopyridines as Novel Selective COX-2 Inhibitors. Molecules 2015; 20:15287-303. [PMID: 26307959 PMCID: PMC6332013 DOI: 10.3390/molecules200815287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/02/2015] [Accepted: 08/06/2015] [Indexed: 12/12/2022] Open
Abstract
The usefulness of non-steroidal anti-inflammatory drugs (NSAIDs) is hampered by their gastrointestinal side effects. Non-selective cyclooxygenases inhibitors interfere with both COX-1 and COX-2 isozymes. Since COX-1 mediates cytoprotection of gastric mucosa, its inhibition leads to the undesirable side effects. On the other hand, COX-2 is undetectable in normal tissues and selectively induced by inflammatory stimuli. Therefore, it is strongly believed that the therapeutic benefits derive from inhibition of COX-2 only. The presence of a strong connection between reported COX-2 inhibitors and cardiac toxicity encourages medicinal chemists to explore new scaffolds. In the present study, we introduced imidazopyrazolopyridines as new potent and selective COX-2 inhibitors that lack the standard pharmacophoric binding features to hERG. Starting from our lead compound 5a, structure-based drug-design was conducted and more potent analogues were obtained with high COX-2 selectivity and almost full edema protection, in carrageenan-induced edema assay, in case of compound 5e. Increased bulkiness around imidazopyrazolopyridines by adding a substituted phenyl ring(s) afforded less active compounds.
Collapse
Affiliation(s)
- Mohamed G Badrey
- Chemistry Department, Faculty of Science, Fayoum University, El-Fayoum 63551, Egypt.
| | - Hassan M Abdel-Aziz
- Department of Chemistry, Faculty of Science, Bani Suef University, Bani Suef 62111, Egypt.
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | | | - Abdelrahman S Mayhoub
- Department of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
21
|
Braadland PR, Ramberg H, Grytli HH, Taskén KA. β-Adrenergic Receptor Signaling in Prostate Cancer. Front Oncol 2015; 4:375. [PMID: 25629002 PMCID: PMC4290544 DOI: 10.3389/fonc.2014.00375] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/16/2014] [Indexed: 12/29/2022] Open
Abstract
Enhanced sympathetic signaling, often associated with obesity and chronic stress, is increasingly acknowledged as a contributor to cancer aggressiveness. In prostate cancer, intact sympathetic nerves are critical for tumor formation, and sympathectomy induces apoptosis and blocks tumor growth. Perineural invasion, involving enrichment of intra-prostatic nerves, is frequently observed in prostate cancer and is associated with poor prognosis. β2-adrenergic receptor (ADRB2), the most abundant receptor for sympathetic signals in prostate luminal cells, has been shown to regulate trans-differentiation of cancer cells to neuroendocrine-like cells and to affect apoptosis, angiogenesis, epithelial–mesenchymal transition, migration, and metastasis. Epidemiologic studies have shown that use of β-blockers, inhibiting β-adrenergic receptor activity, is associated with reduced prostate cancer-specific mortality. In this review, we aim to present an overview on how β-adrenergic receptor and its downstream signaling cascade influence the development of aggressive prostate cancer, primarily through regulating neuroendocrine differentiation.
Collapse
Affiliation(s)
- Peder Rustøen Braadland
- Department of Tumor Biology, Institute of Cancer Research, Division of Cancer Medicine, Transplantation and Surgery, Oslo University Hospital , Oslo , Norway
| | - Håkon Ramberg
- Department of Tumor Biology, Institute of Cancer Research, Division of Cancer Medicine, Transplantation and Surgery, Oslo University Hospital , Oslo , Norway
| | - Helene Hartvedt Grytli
- Department of Tumor Biology, Institute of Cancer Research, Division of Cancer Medicine, Transplantation and Surgery, Oslo University Hospital , Oslo , Norway
| | - Kristin Austlid Taskén
- Department of Tumor Biology, Institute of Cancer Research, Division of Cancer Medicine, Transplantation and Surgery, Oslo University Hospital , Oslo , Norway ; Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| |
Collapse
|
22
|
Liu ZQ, Chu L, Fang JM, Zhang X, Zhao HX, Chen YJ, Xu Q. Prognostic role of C-reactive protein in prostate cancer: a systematic review and meta-analysis. Asian J Androl 2014; 16:467-71. [PMID: 24589465 PMCID: PMC4023380 DOI: 10.4103/1008-682x.123686] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several studies have reported that C-reactive protein (CRP), an inflammation biomarker, may be associated with the prognosis of prostate cancer (PCa). The objective of this systematic review is to summarize the predictive role of CRP for survival in PCa as reported in previous studies. Related studies were identified, and evaluated for quality through multiple search strategies. Data was collected from studies comparing overall and cancer-specific survival (CSS) in patients with elevated CRP levels and those having lower levels. However, for progression-free survival (PFS), data were collected according to the log of CRP. The hazard ratio (HR) and its 95% confidence interval (CI) were used to assess the strength of associations. A total of nine studies (n = 1,497) were evaluated in this meta-analysis (five for overall survival (OS), four for CSS and two for PFS). For OS and PFS, the pooled HR of CRP was statistically significant at 1.51 (95% CI, 1.28-1.79) and 1.50 (95% CI, 1.25-1.81), respectively. For CSS, the pooled HR was 1.91 (95% CI, 1.36-2.69) with higher CRP expression in PCa, which strongly indicates poorer survival in PCa. This study demonstrates that CRP may have a critical prognostic value in patients with prostatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Xu
- Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Role of soluble adenylyl cyclase in cell death and growth. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2646-55. [PMID: 25010002 DOI: 10.1016/j.bbadis.2014.06.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
cAMP signaling is an evolutionarily conserved intracellular communication system controlling numerous cellular functions. Until recently, transmembrane adenylyl cyclase (tmAC) was considered the major source for cAMP in the cell, and the role of cAMP signaling was therefore attributed exclusively to the activity of this family of enzymes. However, increasing evidence demonstrates the role of an alternative, intracellular source of cAMP produced by type 10 soluble adenylyl cyclase (sAC). In contrast to tmAC, sAC produces cAMP in various intracellular microdomains close to specific cAMP targets, e.g., in nucleus and mitochondria. Ongoing research demonstrates involvement of sAC in diverse physiological and pathological processes. The present review is focused on the role of cAMP signaling, particularly that of sAC, in cell death and growth. Although the contributions of sAC to the regulation of these cellular functions have only recently been discovered, current data suggest that sAC plays key roles in mitochondrial bioenergetics and the mitochondrial apoptosis pathway, as well as cell proliferation and development. Furthermore, recent reports suggest the importance of sAC in several pathologies associated with apoptosis as well as in oncogenesis. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
|
24
|
Abstract
The glucose-regulated proteins (GRPs) are stress-inducible chaperones that mostly reside in the endoplasmic reticulum or the mitochondria. Recent advances show that the GRPs have functions that are distinct from those of the related heat shock proteins, and they can be actively translocated to other cellular locations and assume novel functions that control signalling, proliferation, invasion, apoptosis, inflammation and immunity. Mouse models further identified their specific roles in development, tumorigenesis, metastasis and angiogenesis. This Review describes their discovery and regulation, as well as their biological functions in cancer. Promising agents that use or target the GRPs are being developed, and their efficacy as anticancer therapeutics is also discussed.
Collapse
Affiliation(s)
- Amy S Lee
- Department of Biochemistry and Molecular Biology, University of Southern California Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Room 5308, Los Angeles, California 900899176, USA
| |
Collapse
|