1
|
Porco D, Purnomo CA, Glesener L, Proess R, Lippert S, Jans K, Colling G, Schneider S, Stassen R, Frantz AC. eDNA-based monitoring of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans with ddPCR in Luxembourg ponds: taking signals below the Limit of Detection (LOD) into account. BMC Ecol Evol 2024; 24:4. [PMID: 38178008 PMCID: PMC10768104 DOI: 10.1186/s12862-023-02189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are two pathogenic fungi that are a significant threat to amphibian communities worldwide. European populations are strongly impacted and the monitoring of the presence and spread of these pathogens is crucial for efficient decision-making in conservation management. RESULTS Here we proposed an environmental DNA (eDNA) monitoring of these two pathogenic agents through droplet digital PCR (ddPCR) based on water samples from 24 ponds in Luxembourg. In addition, amphibians were swabbed in eight of the targeted ponds in order to compare the two approaches at site-level detection. This study allowed the development of a new method taking below-Limit of Detection (LOD) results into account thanks to the statistical comparison of the frequencies of false positives in no template controls (NTC) and below-LOD results in technical replicates. In the eDNA-based approach, the use of this method led to an increase in Bd and Bsal detection of 28 and 50% respectively. In swabbing, this resulted in 8% more positive results for Bd. In some samples, the use of technical replicates allowed to recover above-LOD signals and increase Bd detection by 35 and 33% respectively for eDNA and swabbing, and Bsal detection by 25% for eDNA. CONCLUSIONS These results confirmed the usefulness of technical replicates to overcome high levels of stochasticity in very low concentration samples even for a highly sensitive technique such as ddPCR. In addition, it showed that below-LOD signals could be consistently recovered and the corresponding amplification events assigned either to positive or negative detection via the method developed here. This methodology might be particularly worth pursuing in pathogenic agents' detection as false negatives could have important adverse consequences. In total, 15 ponds were found positive for Bd and four for Bsal. This study reports the first record of Bsal in Luxembourg.
Collapse
Affiliation(s)
- David Porco
- Musée national d'histoire naturelle du Luxembourg, 25, rue Münster, Luxembourg, L-2160, Luxembourg.
- Fondation Faune Flore, 24, rue Münster, Luxembourg, L-2160, Luxembourg.
| | - Chanistya Ayu Purnomo
- Musée national d'histoire naturelle du Luxembourg, 25, rue Münster, Luxembourg, L-2160, Luxembourg
| | - Liza Glesener
- Naturschutzsyndikat SICONA, 12, rue de Capellen, L-8393 Olm, Luxembourg, Luxembourg
| | - Roland Proess
- Umweltplanungsbüro Ecotop, 45, Schlassuecht, L-7435 Hollenfels, Luxembourg, Luxembourg
| | - Stéphanie Lippert
- Musée national d'histoire naturelle du Luxembourg, 25, rue Münster, Luxembourg, L-2160, Luxembourg
| | - Kevin Jans
- Natur&ëmwelt Fondation Hëllef fir d'Natur, 5, Route de Luxembourg, L-1899, Kockelscheuer, Luxembourg
| | - Guy Colling
- Musée national d'histoire naturelle du Luxembourg, 25, rue Münster, Luxembourg, L-2160, Luxembourg
- Fondation Faune Flore, 24, rue Münster, Luxembourg, L-2160, Luxembourg
| | - Simone Schneider
- Musée national d'histoire naturelle du Luxembourg, 25, rue Münster, Luxembourg, L-2160, Luxembourg
- Naturschutzsyndikat SICONA, 12, rue de Capellen, L-8393 Olm, Luxembourg, Luxembourg
| | - Raf Stassen
- Biota.lu, 9a, Rue Principale, L-6990, Hostert, Luxembourg
| | - Alain C Frantz
- Musée national d'histoire naturelle du Luxembourg, 25, rue Münster, Luxembourg, L-2160, Luxembourg
- Fondation Faune Flore, 24, rue Münster, Luxembourg, L-2160, Luxembourg
| |
Collapse
|
2
|
Zamudio KR, McDonald CA, Belasen AM. High Variability in Infection Mechanisms and Host Responses: A Review of Functional Genomic Studies of Amphibian Chytridiomycosis. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kelly R. Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853-2701, USA
| | - Cait A. McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853-2701, USA
| | - Anat M. Belasen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853-2701, USA
| |
Collapse
|
3
|
Abstract
Discovering that chytrid fungi cause chytridiomycosis in amphibians represented a paradigm shift in our understanding of how emerging infectious diseases contribute to global patterns of biodiversity loss. In this Review we describe how the use of multidisciplinary biological approaches has been essential to pinpointing the origins of amphibian-parasitizing chytrid fungi, including Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, as well as to timing their emergence, tracking their cycles of expansion and identifying the core mechanisms that underpin their pathogenicity. We discuss the development of the experimental methods and bioinformatics toolkits that have provided a fuller understanding of batrachochytrid biology and informed policy and control measures.
Collapse
|
4
|
Barnhart KL, Bletz MC, LaBumbard BC, Tokash-Peters AG, Gabor CR, Woodhams DC. Batrachochytrium salamandrivorans ELICITS ACUTE STRESS RESPONSE IN SPOTTED SALAMANDERS BUT NOT INFECTION OR MORTALITY. Anim Conserv 2020; 23:533-546. [PMID: 33071596 DOI: 10.1111/acv.12565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The emerging fungal pathogen Batrachochytrium salamandrivorans (Bsal) is a major threat to amphibian species worldwide with potential to infect many species if it invades salamander biodiversity hotspots in the Americas. Bsal can cause the disease chytridiomycosis, and it is important to assess the risk of Bsal-induced chytridiomycosis to species in North America. We evaluated the susceptibility to Bsal of the common and widespread spotted salamander, Ambystoma maculatum, across life history stages and monitored the effect of Bsal exposure on growth rate and response of the stress hormone, corticosterone. We conclude that spotted salamanders appear resistant to Bsal because they showed no indication of disease or infection, and experienced minor effects on growth upon exposure. While we focused on a single population for this study, results were consistent across conditions of exposure including high or repeated doses of Bsal, life-stage at exposure, environmental conditions including two temperatures and two substrates, and promoting pathogen infectivity by conditioning Bsal cultures with thyroid hormone. Exposure to high levels of Bsal elicited an acute but not chronic increase in corticosterone in spotted salamanders, and reduced growth. We hypothesize that the early acute increase in corticosterone facilitated mounting an immune response to the pathogen, perhaps through immunoredistribution to the skin, but further study is needed to determine immune responses to Bsal. These results will contribute to development of appropriate Bsal management plans to conserve species at risk of emerging disease.
Collapse
Affiliation(s)
- Kelly L Barnhart
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| | - Molly C Bletz
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| | - Brandon C LaBumbard
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| | - Amanda G Tokash-Peters
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| | - Caitlin R Gabor
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666
| | - Douglas C Woodhams
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| |
Collapse
|
5
|
Ellison A, Zamudio K, Lips K, Muletz‐Wolz C. Temperature‐mediated shifts in salamander transcriptomic responses to the amphibian‐killing fungus. Mol Ecol 2020; 29:325-343. [DOI: 10.1111/mec.15327] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/04/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Amy Ellison
- School of Natural Sciences Bangor University Bangor UK
| | - Kelly Zamudio
- Department of Ecology & Evolutionary Biology Cornell University Ithaca NY USA
| | - Karen Lips
- Department of Biology University of Maryland College Park MD USA
| | - Carly Muletz‐Wolz
- Department of Biology University of Maryland College Park MD USA
- Center for Conservation Genomics Smithsonian Conservation Biology Institute National Zoological Park Washington DC USA
| |
Collapse
|
6
|
Verbrugghe E, Van Rooij P, Favoreel H, Martel A, Pasmans F. In vitro modeling of Batrachochytrium dendrobatidis infection of the amphibian skin. PLoS One 2019; 14:e0225224. [PMID: 31725762 PMCID: PMC6855447 DOI: 10.1371/journal.pone.0225224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/30/2019] [Indexed: 11/19/2022] Open
Abstract
The largest current disease-induced loss of vertebrate biodiversity is due to chytridiomycosis and despite the increasing understanding of the pathogenesis, knowledge unravelling the early host-pathogen interactions remains limited. Batrachochytrium dendrobatidis (Bd) zoospores attach to and invade the amphibian epidermis, with subsequent invasive growth in the host skin. Availability of an in vitro assay would facilitate in depth study of this interaction while reducing the number of experimental animals needed. We describe a fluorescent cell-based in vitro infection model that reproduces host-Bd interactions. Using primary keratinocytes from Litoria caerulea and the epithelial cell line A6 from Xenopus laevis, we reproduced different stages of host cell infection and intracellular growth of Bd, resulting in host cell death, a key event in chytridiomycosis. The presented in vitro models may facilitate future mechanistic studies of host susceptibility and pathogen virulence.
Collapse
Affiliation(s)
- Elin Verbrugghe
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- * E-mail:
| | - Pascale Van Rooij
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Herman Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
7
|
Seyedmousavi S, Bosco SDMG, de Hoog S, Ebel F, Elad D, Gomes RR, Jacobsen ID, Jensen HE, Martel A, Mignon B, Pasmans F, Piecková E, Rodrigues AM, Singh K, Vicente VA, Wibbelt G, Wiederhold NP, Guillot J. Fungal infections in animals: a patchwork of different situations. Med Mycol 2018. [PMID: 29538732 DOI: 10.1093/mmy/myx104] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The importance of fungal infections in both human and animals has increased over the last decades. This article represents an overview of the different categories of fungal infections that can be encountered in animals originating from environmental sources without transmission to humans. In addition, the endemic infections with indirect transmission from the environment, the zoophilic fungal pathogens with near-direct transmission, the zoonotic fungi that can be directly transmitted from animals to humans, mycotoxicoses and antifungal resistance in animals will also be discussed. Opportunistic mycoses are responsible for a wide range of diseases from localized infections to fatal disseminated diseases, such as aspergillosis, mucormycosis, candidiasis, cryptococcosis and infections caused by melanized fungi. The amphibian fungal disease chytridiomycosis and the Bat White-nose syndrome are due to obligatory fungal pathogens. Zoonotic agents are naturally transmitted from vertebrate animals to humans and vice versa. The list of zoonotic fungal agents is limited but some species, like Microsporum canis and Sporothrix brasiliensis from cats, have a strong public health impact. Mycotoxins are defined as the chemicals of fungal origin being toxic for warm-blooded vertebrates. Intoxications by aflatoxins and ochratoxins represent a threat for both human and animal health. Resistance to antifungals can occur in different animal species that receive these drugs, although the true epidemiology of resistance in animals is unknown, and options to treat infections caused by resistant infections are limited.
Collapse
Affiliation(s)
- Seyedmojtaba Seyedmousavi
- Molecular Microbiology Section, Laboratory of Clinical Microbiology and Immunology (LCMI), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sandra de M G Bosco
- Department of Microbiology and Immunology, Institute of Biosciences-UNESP Univ Estadual Paulista Botucatu, São Paulo, Brazil
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, and Center of Expertise in Mycology of Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Frank Ebel
- Institut für Infektionsmedizin und Zoonosen, Munich, Germany
| | - Daniel Elad
- Department of Clinical Bacteriology and Mycology, Kimron Veterinary Institute, Veterinary Services, Ministry of Agriculture, Beit Dagan, Israel
| | - Renata R Gomes
- Microbiology, Parasitology and Pathology Graduate Programme, Curitiba Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans Knöll Institute, Jena, Germany
| | | | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases. Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bernard Mignon
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH (Fundamental and Applied Research for Animals & Health), University of Liège, Liège, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases. Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Elena Piecková
- Faculty of Medicine, Slovak Medical University, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Anderson Messias Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Karuna Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - Vania A Vicente
- Research Group Microbial Immunology, Hans Knöll Institute, Jena, Germany
| | - Gudrun Wibbelt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Nathan P Wiederhold
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jacques Guillot
- Department of Parasitology, Mycology and Dermatology, EA Dynamyc UPEC, EnvA, Ecole nationale vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|
8
|
Abstract
Many infectious diseases originating from, or carried by, wildlife affect wildlife conservation and biodiversity, livestock health, or human health. We provide an update on changes in the epidemiology of 25 selected infectious, wildlife-related diseases in Europe (from 2010-16) that had an impact, or may have a future impact, on the health of wildlife, livestock, and humans. These pathogens were selected based on their: 1) identification in recent Europe-wide projects as important surveillance targets, 2) inclusion in European Union legislation as pathogens requiring obligatory surveillance, 3) presence in recent literature on wildlife-related diseases in Europe since 2010, 4) inclusion in key pathogen lists released by the Office International des Epizooties, 5) identification in conference presentations and informal discussions on a group email list by a European network of wildlife disease scientists from the European Wildlife Disease Association, or 6) identification as pathogens with changes in their epidemiology during 2010-16. The wildlife pathogens or diseases included in this review are: avian influenza virus, seal influenza virus, lagoviruses, rabies virus, bat lyssaviruses, filoviruses, canine distemper virus, morbilliviruses in aquatic mammals, bluetongue virus, West Nile virus, hantaviruses, Schmallenberg virus, Crimean-Congo hemorrhagic fever virus, African swine fever virus, amphibian ranavirus, hepatitis E virus, bovine tuberculosis ( Mycobacterium bovis), tularemia ( Francisella tularensis), brucellosis ( Brucella spp.), salmonellosis ( Salmonella spp.), Coxiella burnetii, chytridiomycosis, Echinococcus multilocularis, Leishmania infantum, and chronic wasting disease. Further work is needed to identify all of the key drivers of disease change and emergence, as they appear to be influencing the incidence and spread of these pathogens in Europe. We present a summary of these recent changes during 2010-16 to discuss possible commonalities and drivers of disease change and to identify directions for future work on wildlife-related diseases in Europe. Many of the pathogens are entering Europe from other continents while others are expanding their ranges inside and beyond Europe. Surveillance for these wildlife-related diseases at a continental scale is therefore important for planet-wide assessment, awareness of, and preparedness for the risks they may pose to wildlife, domestic animal, and human health.
Collapse
|
9
|
Smith HK, Pasmans F, Dhaenens M, Deforce D, Bonte D, Verheyen K, Lens L, Martel A. Skin mucosome activity as an indicator of Batrachochytrium salamandrivorans susceptibility in salamanders. PLoS One 2018; 13:e0199295. [PMID: 30020936 PMCID: PMC6051575 DOI: 10.1371/journal.pone.0199295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/05/2018] [Indexed: 11/18/2022] Open
Abstract
Recently emerged fungal diseases, Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are an increasing threat to amphibians worldwide. In Europe, the threat of Bsal to salamander populations is demonstrated by the rapid decline of fire salamander populations in Germany, the Netherlands and Belgium. Although most European urodelans are susceptible to infection in infection trials, recent evidence suggests marked interspecific differences in the course of infection, with potentially far reaching implications for salamander conservation. As a salamander's skin is the first line of defense against such pathogens, interspecific differences in innate immune function of the skin may explain differential susceptibility. Here we investigate if compounds present on a salamander's skin can kill Bsal spores and if there is variation among species. We used a non-invasive assay to compare killing ability of salamander mucosomes of four different species (captive and wild Salamandra salamandra and captive Ichtyosaura alpestris, Cynops pyrrhogaster and Lissotriton helveticus) by exposing Bsal zoospores to salamander mucosomes and determining spore survival. In all samples, zoospores were killed when exposed to mucosomes. Moreover, we saw a significant variation in this Bsal killing ability of mucosomes between different salamander host species. Our results indicate that mucosomes of salamanders might provide crucial skin protection against Bsal, and could explain why some species are more susceptible than others. This study represents a step towards better understanding host species variation in innate immune function and disease susceptibility in amphibians.
Collapse
Affiliation(s)
- Hannah Keely Smith
- Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Frank Pasmans
- Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Maarten Dhaenens
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Faculty of Pharmaceutical Science, Ottergemsesteenweg, Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Faculty of Pharmaceutical Science, Ottergemsesteenweg, Ghent, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat, Ghent, Belgium
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Geraardsberge Steenweg, Gontrode, Belgium
| | - Luc Lens
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat, Ghent, Belgium
| | - An Martel
- Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan, Merelbeke, Belgium
- * E-mail:
| |
Collapse
|
10
|
Ficetola GF, Lunghi E, Canedoli C, Padoa-Schioppa E, Pennati R, Manenti R. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Sci Rep 2018; 8:10575. [PMID: 30002477 PMCID: PMC6043550 DOI: 10.1038/s41598-018-28796-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/25/2018] [Indexed: 11/09/2022] Open
Abstract
The extent to which closely related species share similar niches remains highly debated. Ecological niches are increasingly analysed by combining distribution records with broad-scale climatic variables, but interactions between species and their environment often occur at fine scales. The idea that macroscale analyses correctly represent fine-scale processes relies on the assumption that average climatic variables are meaningful predictors of processes determining species persistence, but tests of this hypothesis are scarce. We compared broad- and fine-scale (microhabitat) approaches by analyzing the niches of European plethodontid salamanders. Both the microhabitat and the macroecological approaches identified niche differences among species, but the correspondence between micro- and macroecological niches was weak. When exploring niche evolution, the macroecological approach suggested a close relationship between niche and phylogenetic history, but this relationship did not emerge in fine-scale analyses. The apparent pattern of niche evolution emerging in broad-scale analyses likely was the by-product of related species having closely adjacent ranges. The environment actually experienced by most of animals is more heterogeneous than what is apparent from macro-scale predictors, and a better combination between macroecological and fine-grained data may be a key to obtain robust ecological generalizations.
Collapse
Affiliation(s)
- Gentile Francesco Ficetola
- University Grenoble Alpes, Laboratoire d'Écologie Alpine (LECA), F-38000, Grenoble, France.
- CNRS, Laboratoire d'Écologie Alpine (LECA), F-38000, Grenoble, France.
- Department of Earth and Environmental Sciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy.
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| | - Enrico Lunghi
- Universität Trier Fachbereich VI, Campus I, Gebäude N Universitätsring 15, 54286, Trier, Germany
- Natural Oasis, Via di Galceti 141, 59100, Prato, Italy
- Natural History Museum of the University of Florence, Section of Zoology "La Specola", Via Romana 17, 50125, Firenze, Italy
| | - Claudia Canedoli
- Department of Earth and Environmental Sciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Emilio Padoa-Schioppa
- Department of Earth and Environmental Sciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| |
Collapse
|
11
|
Batracobdella leeches, environmental features and Hydromantes salamanders. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 7:48-53. [PMID: 29988806 PMCID: PMC6031966 DOI: 10.1016/j.ijppaw.2018.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 11/24/2022]
Abstract
Leeches can parasitize many vertebrate taxa. In amphibians, leech parasitism often has potential detrimental effects including population decline. Most of studies on the host-parasite interactions involving leeches and amphibians focus on freshwater environments, while they are very scarce for terrestrial amphibians. In this work, we studied the relationship between the leech Batracobdella algira and the European terrestrial salamanders of the genus Hydromantes, identifying environmental features related to the presence of the leeches and their possible effects on the hosts. We performed observation throughout Sardinia (Italy), covering the distribution area of all Hydromantes species endemic to this island. From September 2015 to May 2017, we conducted >150 surveys in 26 underground environments, collecting data on 2629 salamanders and 131 leeches. Water hardness was the only environmental feature correlated with the presence of B. algira, linking this leech to active karstic systems. Leeches were more frequently parasitizing salamanders with large body size. Body Condition Index was not significantly different between parasitized and non-parasitized salamanders. Our study shows the importance of abiotic environmental features for host-parasite interactions, and poses new questions on complex interspecific interactions between this ectoparasite and amphibians. Sardinian Hydromantes salamanders are often parasitized by Batracobdella algira. Underground presence of B. algira is strongly associated to active karstic systems. Leeches often parasitize large-sized salamanders. Parasitism of B. algira does not affect Body Condition Index of salamanders.
Collapse
|
12
|
Wagner N, Neubeck C, Guicking D, Finke L, Wittich M, Weising K, Geske C, Veith M. No evidence for effects of infection with the amphibian chytrid fungus on populations of yellow-bellied toads. DISEASES OF AQUATIC ORGANISMS 2017; 123:55-65. [PMID: 28177293 DOI: 10.3354/dao03090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The parasitic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause the lethal disease chytridiomycosis in amphibians and therefore may play a role in population declines. The yellow-bellied toad Bombina variegata suffered strong declines throughout western and northwestern parts of its range and is therefore listed as highly endangered for Germany and the federal state of Hesse. Whether chytridiomycosis may play a role in the observed local declines of this strictly protected anuran species has never been tested. We investigated 19 Hessian yellow-bellied toad populations for Bd infection rates, conducted capture-mark-recapture studies in 4 of them over 2 to 3 yr, examined survival histories of recaptured infected individuals, and tested whether multi-locus heterozygosity of individuals as well as expected heterozygosity and different environmental variables of populations affect probabilities of Bd infection. Our results show high prevalence of Bd infection in Hessian yellow-bellied toad populations, but although significant decreases in 2 populations could be observed, no causative link to Bd as the reason for this can be established. Mass mortalities or obvious signs of disease in individuals were not observed. Conversely, we show that growth of Bd-infected populations is possible under favorable habitat conditions and that most infected individuals could be recaptured with improved body indices. Neither genetic diversity nor environmental variables appeared to affect Bd infection probabilities. Hence, genetically diverse amphibian specimens and populations may not automatically be less susceptible for Bd infection.
Collapse
Affiliation(s)
- Norman Wagner
- Trier University, Department of Biogeography, Universitätsring 15, 54296 Trier, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Rollins-Smith LA. Amphibian immunity-stress, disease, and climate change. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:111-119. [PMID: 27387153 DOI: 10.1016/j.dci.2016.07.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 06/25/2016] [Accepted: 07/01/2016] [Indexed: 05/22/2023]
Abstract
Like all other vertebrate groups, amphibian responses to the environment are mediated through the brain (hypothalamic)-pituitary-adrenal/interrenal (HPA/I) axis and the sympathetic nervous system. Amphibians are facing historically unprecedented environmental stress due to climate change that will involve unpredictable temperature and rainfall regimes and possible nutritional deficits due to extremes of temperature and drought. At the same time, amphibians in all parts of the world are experiencing unprecedented declines due to the emerging diseases, chytridiomycosis (caused by Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans) and ranavirus diseases due to viruses of the genus Ranavirus in the family Iridoviridae. Other pathogens and parasites also afflict amphibians, but here I will limit myself to a review of recent literature linking stress and these emerging diseases (chytridiomycosis and ranavirus disease) in order to better predict how environmental stressors and disease will affect global amphibian populations.
Collapse
Affiliation(s)
- Louise A Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
14
|
Van Rooij P, Martel A, Haesebrouck F, Pasmans F. Amphibian chytridiomycosis: a review with focus on fungus-host interactions. Vet Res 2015; 46:137. [PMID: 26607488 PMCID: PMC4660679 DOI: 10.1186/s13567-015-0266-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/05/2015] [Indexed: 01/30/2023] Open
Abstract
Amphibian declines and extinctions are emblematic for the current sixth mass extinction event. Infectious drivers of these declines include the recently emerged fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans (Chytridiomycota). The skin disease caused by these fungi is named chytridiomycosis and affects the vital function of amphibian skin. Not all amphibians respond equally to infection and host responses might range from resistant, over tolerant to susceptible. The clinical outcome of infection is highly dependent on the amphibian host, the fungal virulence and environmental determinants. B. dendrobatidis infects the skin of a large range of anurans, urodeles and caecilians, whereas to date the host range of B. salamandrivorans seems limited to urodeles. So far, the epidemic of B. dendrobatidis is mainly limited to Australian, neotropical, South European and West American amphibians, while for B. salamandrivorans it is limited to European salamanders. Other striking differences between both fungi include gross pathology and thermal preferences. With this review we aim to provide the reader with a state-of-the art of host-pathogen interactions for both fungi, in which new data pertaining to the interaction of B. dendrobatidis and B. salamandrivorans with the host’s skin are integrated. Furthermore, we pinpoint areas in which more detailed studies are necessary or which have not received the attention they merit.
Collapse
Affiliation(s)
- Pascale Van Rooij
- Laboratory of Veterinary Bacteriology and Mycology, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - An Martel
- Laboratory of Veterinary Bacteriology and Mycology, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Freddy Haesebrouck
- Laboratory of Veterinary Bacteriology and Mycology, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Frank Pasmans
- Laboratory of Veterinary Bacteriology and Mycology, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
15
|
Martel A, Blooi M, Adriaensen C, Van Rooij P, Beukema W, Fisher MC, Farrer RA, Schmidt BR, Tobler U, Goka K, Lips KR, Muletz C, Zamudio KR, Bosch J, Lötters S, Wombwell E, Garner TWJ, Cunningham AA, Spitzen-van der Sluijs A, Salvidio S, Ducatelle R, Nishikawa K, Nguyen TT, Kolby JE, Van Bocxlaer I, Bossuyt F, Pasmans F. Wildlife disease. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 2014; 346:630-1. [PMID: 25359973 DOI: 10.1126/science.1258268] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Emerging infectious diseases are reducing biodiversity on a global scale. Recently, the emergence of the chytrid fungus Batrachochytrium salamandrivorans resulted in rapid declines in populations of European fire salamanders. Here, we screened more than 5000 amphibians from across four continents and combined experimental assessment of pathogenicity with phylogenetic methods to estimate the threat that this infection poses to amphibian diversity. Results show that B. salamandrivorans is restricted to, but highly pathogenic for, salamanders and newts (Urodela). The pathogen likely originated and remained in coexistence with a clade of salamander hosts for millions of years in Asia. As a result of globalization and lack of biosecurity, it has recently been introduced into naïve European amphibian populations, where it is currently causing biodiversity loss.
Collapse
Affiliation(s)
- A Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - M Blooi
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium. Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, Antwerp, Belgium
| | - C Adriaensen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - P Van Rooij
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - W Beukema
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão, Rua Padre Armando Quintas, Vairão, Portugal
| | - M C Fisher
- Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - R A Farrer
- Genome Sequencing and Analysis Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - B R Schmidt
- Koordinationsstelle für amphibien- und reptilienschutz in der Schweiz (KARCH), Passage Maximilien-de-Meuron 6, 2000 Neuchâtel, Switzerland. Institut für Evolutionsbiologie und Umweltwissenschaften, Universität Zürich. Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - U Tobler
- Koordinationsstelle für amphibien- und reptilienschutz in der Schweiz (KARCH), Passage Maximilien-de-Meuron 6, 2000 Neuchâtel, Switzerland. Institut für Evolutionsbiologie und Umweltwissenschaften, Universität Zürich. Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - K Goka
- Invasive Alien Species Research Team, National Institute for Environment Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - K R Lips
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - C Muletz
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - K R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - J Bosch
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones cientificas (CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - S Lötters
- Biogeography Department, Trier University, 54286 Trier, Germany
| | - E Wombwell
- Durrell Institute of Conservation and Ecology, University of Kent, Kent CT2 7NR, UK. Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
| | - T W J Garner
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
| | - A A Cunningham
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
| | - A Spitzen-van der Sluijs
- Reptile, Amphibian and Fish Conservation the Netherlands (RAVON), Post Office Box 1413, 6501 BK Nijmegen, Netherlands
| | - S Salvidio
- Department of Earth Science, Environmental and Life (Di.S.T.A.V.), University of Genova, Corso Europa 26, I-16132 Genova, Italy
| | - R Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - K Nishikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - T T Nguyen
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - J E Kolby
- James Cook University, One Health Research Group, School of Public Health, Tropical Medicine and Rehabilitation Sciences, Townsville, Queensland, Australia
| | - I Van Bocxlaer
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - F Bossuyt
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - F Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| |
Collapse
|
16
|
A SURVEY FORBATRACHOCHYTRIUM DENDROBATIDISIN ENDANGERED AND HIGHLY SUSCEPTIBLE VIETNAMESE SALAMANDERS (TYLOTOTRITONSPP.). J Zoo Wildl Med 2013; 44:627-33. [DOI: 10.1638/2012-0181r.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|