1
|
Wang X, Chen Z, Tian W, Zhang J, Li Q, Ju J, Xu H, Chen K. Plasma homocysteine levels and risk of congestive heart failure or cardiomyopathy: A Mendelian randomization study. Front Cardiovasc Med 2023; 10:1030257. [PMID: 36776266 PMCID: PMC9908956 DOI: 10.3389/fcvm.2023.1030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Background Although observational studies have demonstrated associations between elevated plasma homocysteine levels and the risk of cardiovascular diseases, controversy remains. Objective This study investigated the causal association of plasma homocysteine levels with congestive heart failure and cardiomyopathy risk. Methods We performed a two-sample Mendelian randomization (MR) study of congestive heart failure (n = 218,792), cardiomyopathy (n = 159,811), and non-ischemic cardiomyopathy (n = 187,152). Genetic summary data on the association of single-nucleotide polymorphisms with homocysteine were extracted from the most extensive genome-wide association study of 44,147 individuals. MR analyses, including the random-effect inverse variance-weighted (IVW) meta-analysis, weighted median, simple median, maximum likelihood, penalized weighted median, MR-PRESSO, and MR-Egger regression, were used to estimate the associations between the selected single-nucleotide polymorphisms and congestive heart failure or cardiomyopathy. Results The MR analyses revealed no causal role of higher genetically predicted plasma homocysteine levels with congestive heart failure risk (random-effect IVW, odds ratio [OR] per standard deviation (SD) increase in homocysteine levels = 1.753, 95% confidence interval [CI] = 0.674-4.562, P = 0.250), cardiomyopathy (random-effect IVW, OR per SD increase in homocysteine levels = 0.805, 95% CI = 0.583 to 1.020, P = 0.189), or non-ischemic cardiomyopathy (random-effect IVW, OR per SD increase in homocysteine levels = 1.064, 95% CI = 0.927-1.222, P = 0.379). The results were consistent with other analytical methods and sensitivity analyses. Conclusion Genetically predicted homocysteine level was not associated with congestive heart failure or cardiomyopathy risk. It is unlikely that homocysteine-lowering therapy decreases the incidence or improves the outcomes of congestive heart failure and cardiomyopathy.
Collapse
Affiliation(s)
- Xinyi Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuo Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wende Tian
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuyi Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Hao Xu,
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Keji Chen,
| |
Collapse
|
2
|
De Geest B, Mishra M. Role of Oxidative Stress in Heart Failure: Insights from Gene Transfer Studies. Biomedicines 2021; 9:biomedicines9111645. [PMID: 34829874 PMCID: PMC8615706 DOI: 10.3390/biomedicines9111645] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 12/14/2022] Open
Abstract
Under physiological circumstances, there is an exquisite balance between reactive oxygen species (ROS) production and ROS degradation, resulting in low steady-state ROS levels. ROS participate in normal cellular function and in cellular homeostasis. Oxidative stress is the state of a transient or a persistent increase of steady-state ROS levels leading to disturbed signaling pathways and oxidative modification of cellular constituents. It is a key pathophysiological player in pathological hypertrophy, pathological remodeling, and the development and progression of heart failure. The heart is the metabolically most active organ and is characterized by the highest content of mitochondria of any tissue. Mitochondria are the main source of ROS in the myocardium. The causal role of oxidative stress in heart failure is highlighted by gene transfer studies of three primary antioxidant enzymes, thioredoxin, and heme oxygenase-1, and is further supported by gene therapy studies directed at correcting oxidative stress linked to metabolic risk factors. Moreover, gene transfer studies have demonstrated that redox-sensitive microRNAs constitute potential therapeutic targets for the treatment of heart failure. In conclusion, gene therapy studies have provided strong corroborative evidence for a key role of oxidative stress in pathological remodeling and in the development of heart failure.
Collapse
Affiliation(s)
- Bart De Geest
- Centre for Molecular and Vascular Biology, Catholic University of Leuven, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-372-059
| | - Mudit Mishra
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| |
Collapse
|
3
|
Zhu Y, Wang Q, Lin H, Chen K, Zheng C, Chen L, Ma S, Liao W, Bin J, Liao Y. Characterizing a long-term chronic heart failure model by transcriptomic alterations and monitoring of cardiac remodeling. Aging (Albany NY) 2021; 13:13585-13614. [PMID: 33891565 PMCID: PMC8202904 DOI: 10.18632/aging.202879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/02/2021] [Indexed: 12/23/2022]
Abstract
The long-term characteristics of transcriptomic alterations and cardiac remodeling in chronic heart failure (CHF) induced by myocardial infarction (MI) in mice are not well elucidated. This study aimed to reveal the dynamic changes in the transcriptome and cardiac remodeling in post-MI mice over a long time period. Monitoring C57BL/6 mice with MI for 8 months showed that approximately 44% of mice died of cardiac rupture in the first 2 weeks and others survived to 8 months with left ventricular (LV) aneurysm. The transcriptomic profiling analysis of cardiac tissues showed that the Integrin and WNT pathways were activated at 8 months after MI while the metabolism-related pathways were inversely inhibited. Subsequent differential analysis at 1 and 8 months post-MI revealed significant enrichments in biological processes, including consistent regulation of metabolism-related pathways. Moreover, echocardiographic monitoring showed a progressive increase in LV dimensions and a decrease in the LV fractional shortening during the first 4 weeks, and these parameters progressed at a lower rate till 8 months. A similar trend was found in the invasive LV hemodynamics, cardiac morphological and histological analyses. These results suggested that mouse MI model is ideal for long-term studies, and transcriptomic findings may provide new CHF therapeutic targets.
Collapse
Affiliation(s)
- Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiancheng Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kaitong Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| |
Collapse
|
4
|
Muthuramu I, Amin R, Aboumsallem JP, Mishra M, Robinson EL, De Geest B. Hepatocyte-Specific SR-BI Gene Transfer Corrects Cardiac Dysfunction in
Scarb1
-Deficient Mice and Improves Pressure Overload-Induced Cardiomyopathy. Arterioscler Thromb Vasc Biol 2018; 38:2028-2040. [DOI: 10.1161/atvbaha.118.310946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective—
We investigated the hypothesis that HDL (high-density lipoprotein) dysfunction in
Scarb1
−/−
mice negatively affects cardiac function both in the absence and in the presence of pressure overload. Second, we evaluated whether normalization of HDL metabolism in
Scarb1
−/−
mice by hepatocyte-specific SR-BI (scavenger receptor class B, type I) expression after E1E3E4-deleted adenoviral AdSR-BI (E1E3E4-deleted adenoviral vector expressing SR-BI protein in hepatocytes) transfer abrogates the effects of total body SR-BI deficiency on cardiac structure and function.
Approach and Results—
Transverse aortic constriction (TAC) or sham operation was performed at the age of 14 weeks, 2 weeks after saline injection or after gene transfer with AdSR-BI or with the control vector Adnull. Mortality rate in
Scarb1
−/−
TAC mice was significantly increased compared with wild-type TAC mice during 8 weeks of follow-up (hazard ratio, 2.02; 95% CI, 1.14–3.61). Hepatocyte-specific SR-BI gene transfer performed 2 weeks before induction of pressure overload by TAC potently reduced mortality in
Scarb1
−/−
mice (hazard ratio, 0.329; 95% CI, 0.180–0.600). Hepatocyte-specific SR-BI expression abrogated increased cardiac hypertrophy and lung congestion and counteracted increased myocardial apoptosis and interstitial and perivascular fibrosis in
Scarb1
−/−
TAC mice.
Scarb1
−/−
sham mice were, notwithstanding the absence of detectable structural heart disease, characterized by systolic and diastolic dysfunction and hypotension, which were completely counteracted by AdSR-BI transfer. Furthermore, AdSR-BI transfer abrogated increased end-diastolic pressure and diastolic dysfunction in
Scarb1
−/−
TAC mice. Increased oxidative stress and reduced antioxidant defense systems in
Scarb1
−/−
mice were rescued by AdSR-BI transfer.
Conclusions—
The detrimental effects of SR-BI deficiency on cardiac structure and function are nullified by hepatocyte-specific SR-BI transfer, which restores HDL metabolism.
Collapse
Affiliation(s)
- Ilayaraja Muthuramu
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| | - Ruhul Amin
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| | - Joseph Pierre Aboumsallem
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| | - Mudit Mishra
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| | - Emma Louise Robinson
- Experimental Cardiology, Department of Cardiovascular Sciences (E.L.R.), Catholic University of Leuven, Belgium
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands (E.L.R.)
| | - Bart De Geest
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| |
Collapse
|
5
|
Hainsworth AH, Yeo NE, Weekman EM, Wilcock DM. Homocysteine, hyperhomocysteinemia and vascular contributions to cognitive impairment and dementia (VCID). Biochim Biophys Acta Mol Basis Dis 2015; 1862:1008-17. [PMID: 26689889 DOI: 10.1016/j.bbadis.2015.11.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/27/2015] [Accepted: 11/29/2015] [Indexed: 11/29/2022]
Abstract
Homocysteine is produced physiologically in all cells, and is present in plasma of healthy individuals (plasma [HCy]: 3-10μM). While rare genetic mutations (CBS, MTHFR) cause severe hyperhomocysteinemia ([HCy]: 100-200μM), mild-moderate hyperhomocysteinemia ([HCy]: 10-100μM) is common in older people, and is an independent risk factor for stroke and cognitive impairment. As B-vitamin supplementation (B6, B12 and folate) has well-validated homocysteine-lowering efficacy, this may be a readily-modifiable risk factor in vascular contributions to cognitive impairment and dementia (VCID). Here we review the biochemical and cellular actions of HCy related to VCID. Neuronal actions of HCy were at concentrations above the clinically-relevant range. Effects of HCy <100μM were primarily vascular, including myocyte proliferation, vessel wall fibrosis, impaired nitric oxide signalling, superoxide generation and pro-coagulant actions. HCy-lowering clinical trials relevant to VCID are discussed. Extensive clinical and preclinical data support HCy as a mediator for VCID. In our view further trials of combined B-vitamin supplementation are called for, incorporating lessons from previous trials and from recent experimental work. To maximise likelihood of treatment effect, a future trial should: supply a high-dose, combination supplement (B6, B12 and folate); target the at-risk age range; and target cohorts with low baseline B-vitamin status. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Atticus H Hainsworth
- Cardiovascular and Cell Sciences Research Centre, St Georges University of London, London SW17 0RE, UK.
| | - Natalie E Yeo
- Cardiovascular and Cell Sciences Research Centre, St Georges University of London, London SW17 0RE, UK
| | - Erica M Weekman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40536, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40536, USA.
| |
Collapse
|
6
|
Selective homocysteine-lowering gene transfer attenuates pressure overload-induced cardiomyopathy via reduced oxidative stress. J Mol Med (Berl) 2015; 93:609-18. [DOI: 10.1007/s00109-015-1281-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/28/2015] [Accepted: 03/30/2015] [Indexed: 12/26/2022]
|
7
|
Hellmich MR, Coletta C, Chao C, Szabo C. The therapeutic potential of cystathionine β-synthetase/hydrogen sulfide inhibition in cancer. Antioxid Redox Signal 2015; 22:424-48. [PMID: 24730679 PMCID: PMC4307161 DOI: 10.1089/ars.2014.5933] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Cancer represents a major socioeconomic problem; there is a significant need for novel therapeutic approaches targeting tumor-specific pathways. RECENT ADVANCES In colorectal and ovarian cancers, an increase in the intratumor production of hydrogen sulfide (H2S) from cystathionine β-synthase (CBS) plays an important role in promoting the cellular bioenergetics, proliferation, and migration of cancer cells. It also stimulates peritumor angiogenesis inhibition or genetic silencing of CBS exerts antitumor effects both in vitro and in vivo, and potentiates the antitumor efficacy of anticancer therapeutics. CRITICAL ISSUES Recently published studies are reviewed, implicating CBS overexpression and H2S overproduction in tumor cells as a tumor-growth promoting "bioenergetic fuel" and "survival factor," followed by an overview of the experimental evidence demonstrating the anticancer effect of CBS inhibition. Next, the current state of the art of pharmacological CBS inhibitors is reviewed, with special reference to the complex pharmacological actions of aminooxyacetic acid. Finally, new experimental evidence is presented to reconcile a controversy in the literature regarding the effects of H2S donor on cancer cell proliferation and survival. FUTURE DIRECTIONS From a basic science standpoint, future directions in the field include the delineation of the molecular mechanism of CBS up-regulation of cancer cells and the delineation of the interactions of H2S with other intracellular pathways of cancer cell metabolism and proliferation. From the translational science standpoint, future directions include the translation of the recently emerging roles of H2S in cancer into human diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Mark R. Hellmich
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Ciro Coletta
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Celia Chao
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
8
|
Muthuramu I, Lox M, Jacobs F, De Geest B. Permanent ligation of the left anterior descending coronary artery in mice: a model of post-myocardial infarction remodelling and heart failure. J Vis Exp 2014:52206. [PMID: 25489995 PMCID: PMC4354439 DOI: 10.3791/52206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Heart failure is a syndrome in which the heart fails to pump blood at a rate commensurate with cellular oxygen requirements at rest or during stress. It is characterized by fluid retention, shortness of breath, and fatigue, in particular on exertion. Heart failure is a growing public health problem, the leading cause of hospitalization, and a major cause of mortality. Ischemic heart disease is the main cause of heart failure. Ventricular remodelling refers to changes in structure, size, and shape of the left ventricle. This architectural remodelling of the left ventricle is induced by injury (e.g., myocardial infarction), by pressure overload (e.g., systemic arterial hypertension or aortic stenosis), or by volume overload. Since ventricular remodelling affects wall stress, it has a profound impact on cardiac function and on the development of heart failure. A model of permanent ligation of the left anterior descending coronary artery in mice is used to investigate ventricular remodelling and cardiac function post-myocardial infarction. This model is fundamentally different in terms of objectives and pathophysiological relevance compared to the model of transient ligation of the left anterior descending coronary artery. In this latter model of ischemia/reperfusion injury, the initial extent of the infarct may be modulated by factors that affect myocardial salvage following reperfusion. In contrast, the infarct area at 24 hr after permanent ligation of the left anterior descending coronary artery is fixed. Cardiac function in this model will be affected by 1) the process of infarct expansion, infarct healing, and scar formation; and 2) the concomitant development of left ventricular dilatation, cardiac hypertrophy, and ventricular remodelling. Besides the model of permanent ligation of the left anterior descending coronary artery, the technique of invasive hemodynamic measurements in mice is presented in detail.
Collapse
Affiliation(s)
- Ilayaraja Muthuramu
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Catholic University of Leuven
| | - Marleen Lox
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Catholic University of Leuven
| | - Frank Jacobs
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Catholic University of Leuven
| | - Bart De Geest
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Catholic University of Leuven;
| |
Collapse
|