1
|
Thakro V, Varshney N, Malik N, Daware A, Srivastava R, Mohanty JK, Basu U, Narnoliya L, Jha UC, Tripathi S, Tyagi AK, Parida SK. Functional allele of a MATE gene selected during domestication modulates seed color in chickpea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:53-71. [PMID: 37738381 DOI: 10.1111/tpj.16469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023]
Abstract
Seed color is one of the key target traits of domestication and artificial selection in chickpeas due to its implications on consumer preference and market value. The complex seed color trait has been well dissected in several crop species; however, the genetic mechanism underlying seed color variation in chickpea remains poorly understood. Here, we employed an integrated genomics strategy involving QTL mapping, high-density mapping, map-based cloning, association analysis, and molecular haplotyping in an inter-specific RIL mapping population, association panel, wild accessions, and introgression lines (ILs) of Cicer gene pool. This delineated a MATE gene, CaMATE23, encoding a Transparent Testa (TT) and its natural allele (8-bp insertion) and haplotype underlying a major QTL governing seed color on chickpea chromosome 4. Signatures of selective sweep and a strong purifying selection reflected that CaMATE23, especially its 8-bp insertion natural allelic variant, underwent selection during chickpea domestication. Functional investigations revealed that the 8-bp insertion containing the third cis-regulatory RY-motif element in the CaMATE23 promoter is critical for enhanced binding of CaFUSCA3 transcription factor, a key regulator of seed development and flavonoid biosynthesis, thereby affecting CaMATE23 expression and proanthocyanidin (PA) accumulation in the seed coat to impart varied seed color in chickpea. Consequently, overexpression of CaMATE23 in Arabidopsis tt12 mutant partially restored the seed color phenotype to brown pigmentation, ascertaining its functional role in PA accumulation in the seed coat. These findings shed new light on the seed color regulation and evolutionary history, and highlight the transcriptional regulation of CaMATE23 by CaFUSCA3 in modulating seed color in chickpea. The functionally relevant InDel variation, natural allele, and haplotype from CaMATE23 are vital for translational genomic research, including marker-assisted breeding, for developing chickpea cultivars with desirable seed color that appeal to consumers and meet global market demand.
Collapse
Affiliation(s)
- Virevol Thakro
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Varshney
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Anurag Daware
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rishi Srivastava
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Mohanty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Udita Basu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Laxmi Narnoliya
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Shailesh Tripathi
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
2
|
Mei H, Cui C, Liu Y, Du Z, Wu K, Jiang X, Zheng Y, Zhang H. QTL analysis of traits related to seed size and shape in sesame (Sesamum indicum L.). PLoS One 2023; 18:e0293155. [PMID: 37917626 PMCID: PMC10621824 DOI: 10.1371/journal.pone.0293155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023] Open
Abstract
Seed size and shape are important traits that determine seed yield in sesame. Understanding the genetic basis of seed size and shape is essential for improving the yield of sesame. In this study, F2 and BC1 populations were developed by crossing the Yuzhi 4 and Bengal small-seed (BS) lines for detecting the quantitative trait loci (QTLs) of traits related to seed size and shape. A total of 52 QTLs, including 13 in F2 and 39 in BC1 populations, for seed length (SL), seed width (SW), and length to width ratio (L/W) were identified, explaining phenotypic variations from 3.68 to 21.64%. Of these QTLs, nine stable major QTLs were identified in the two populations. Notably, three major QTLs qSL-LG3-2, qSW-LG3-2, and qSW-LG3-F2 that accounted for 4.94-16.34% of the phenotypic variations were co-localized in a 2.08 Mb interval on chromosome 1 (chr1) with 279 candidate genes. Three stable major QTLs qSL-LG6-2, qLW-LG6, and qLW-LG6-F2 that explained 8.14-33.74% of the phenotypic variations were co-localized in a 3.27 Mb region on chr9 with 398 candidate genes. In addition, the stable major QTL qSL-LG5 was co-localized with minor QTLs qLW-LG5-3 and qSW-LG5 to a 1.82 Mb region on chr3 with 195 candidate genes. Gene annotation, orthologous gene analysis, and sequence analysis indicated that three genes are likely involved in sesame seed development. These results obtained herein provide valuable in-formation for functional gene cloning and improving the seed yield of sesame.
Collapse
Affiliation(s)
- Hongxian Mei
- The Shennong Laboratory, Zhengzhou, Henan, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Chengqi Cui
- The Shennong Laboratory, Zhengzhou, Henan, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yanyang Liu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhenwei Du
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Ke Wu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xiaolin Jiang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yongzhan Zheng
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Haiyang Zhang
- The Shennong Laboratory, Zhengzhou, Henan, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Weldemichael MY, Gebremedhn HM. Omics technologies towards sesame improvement: a review. Mol Biol Rep 2023; 50:6885-6899. [PMID: 37326753 DOI: 10.1007/s11033-023-08551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Genetic improvement of sesame (Sesamum indicum L.), one of the most important oilseed crops providing edible oil, proteins, minerals, and vitamins, is important to ensure a balanced diet for the growing world population. Increasing yield, seed protein, oil, minerals, and vitamins is urgently needed to meet the global demand. The production and productivity of sesame is very low due to various biotic and abiotic stresses. Therefore, various efforts have been made to combat these constraints and increase the production and productivity of sesame through conventional breeding. However, less attention has been paid to the genetic improvement of the crop through modern biotechnological methods, leaving it lagging behind other oilseed crops. Recently, however, the scenario has changed as sesame research has entered the era of "omics" and has made significant progress. Therefore, the purpose of this paper is to provide an overview of the progress made by omics research in improving sesame. This review presents a number of efforts that have been made over past decade using omics technologies to improve various traits of sesame, including seed composition, yield, and biotic and abiotic resistant varieties. It summarizes the advances in genetic improvement of sesame using omics technologies, such as germplasm development (web-based functional databases and germplasm resources), gene discovery (molecular markers and genetic linkage map construction), proteomics, transcriptomics, and metabolomics that have been carried out in the last decade. In conclusion, this review highlights future directions that may be important for omics-assisted breeding in sesame genetic improvement.
Collapse
Affiliation(s)
- Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, P.O. Box 231, Mekelle, Tigrai, Ethiopia.
| | - Hailay Mehari Gebremedhn
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, P.O. Box 231, Mekelle, Tigrai, Ethiopia
| |
Collapse
|
4
|
Wang H, Cui C, Liu Y, Zheng Y, Zhao Y, Chen X, Wang X, Jing B, Mei H, Wang Z. Genetic mapping of QTLs controlling brown seed coat traits by genome resequencing in sesame ( Sesamum indicum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1131975. [PMID: 36909448 PMCID: PMC9995652 DOI: 10.3389/fpls.2023.1131975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Introduction Sesame seeds have become an irreplaceable source of edible oils and food products with rich nutrients and a unique flavor, and their metabolite contents and physiological functions vary widely across different seed coat colors. Although the quantitative trait loci (QTLs) for genetic variation in seed coat color have been extensively investigated, the identification of unique genetic loci for intermediate colors such as brown has not been reported due to their complexity. Methods Here, we crossed the white sesame 'Yuzhi No. 8' (YZ8) and the brown sesame 'Yanzhou Erhongpi' (YZEHP) to construct a recombinant inbred line (RIL) population with consecutive self-fertilization for ten generations. Results The selfed F1 seeds were brown which was controlled by a dominant gene. Based on the genotyping by whole-genome resequencing of the RILs, a major-effect QTL for brown coat color was identified through both bulk segregant analysis (BSA) and genetic linkage mapping in sesame, which was located within a 1.19 Mb interval on chromosome 6 (qBSCchr6). Moreover, we found that the YZEHP seed coat initially became pigmented at 20 days post-anthesis (DPA) and was substantially colored at 30 DPA. We screened 13 possible candidate genes based on the effects of genetic variants on protein coding and predicted gene functions. Furthermore, qRT‒PCR was used to verify the expression patterns of these genes in different post-anthesis developmental periods. We noted that in comparison to YZ8 seeds, YZEHP seeds had expression of SIN_1023239 that was significantly up-regulated 2.5-, 9.41-, 6.0-, and 5.9-fold at 15, 20, 25, and 30 DPA, respectively, which was consistent with the pattern of brown seed coat pigment accumulation. Discussion This study identified the first major-effect QTL for the control of the brown seed coat trait in sesame. This finding lays the foundation for further fine mapping and cloning as well as investigating the regulatory mechanism of seed coat color in sesame.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Chengqi Cui
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Yanyang Liu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Yongzhan Zheng
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Yiqing Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiaoqin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xueqi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Bing Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Hongxian Mei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Li H, Tahir ul Qamar M, Yang L, Liang J, You J, Wang L. Current Progress, Applications and Challenges of Multi-Omics Approaches in Sesame Genetic Improvement. Int J Mol Sci 2023; 24:3105. [PMID: 36834516 PMCID: PMC9965044 DOI: 10.3390/ijms24043105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Sesame is one of the important traditional oil crops in the world, and has high economic and nutritional value. Recently, due to the novel high throughput sequencing techniques and bioinformatical methods, the study of the genomics, methylomics, transcriptomics, proteomics and metabonomics of sesame has developed rapidly. Thus far, the genomes of five sesame accessions have been released, including white and black seed sesame. The genome studies reveal the function and structure of the sesame genome, and facilitate the exploitation of molecular markers, the construction of genetic maps and the study of pan-genomes. Methylomics focus on the study of the molecular level changes under different environmental conditions. Transcriptomics provide a powerful tool to study abiotic/biotic stress, organ development, and noncoding RNAs, and proteomics and metabonomics also provide some support in studying abiotic stress and important traits. In addition, the opportunities and challenges of multi-omics in sesame genetics breeding were also described. This review summarizes the current research status of sesame from the perspectives of multi-omics and hopes to provide help for further in-depth research on sesame.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Muhammad Tahir ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Junchao Liang
- Jiangxi Province Key Laboratory of Oil Crops Biology, Crop Research Institute, Nanchang Branch of National Center of Oil Crops Improvement, Jiangxi Academy of Agricultural Sciences, Nanchang 330000, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
6
|
Kefale H, Wang L. Discovering favorable genes, QTLs, and genotypes as a genetic resource for sesame ( Sesamum indicum L.) improvement. Front Genet 2022; 13:1002182. [PMID: 36544489 PMCID: PMC9763032 DOI: 10.3389/fgene.2022.1002182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
Abstract
Sesame (Sesamum indicum L.) is an ancient diploid oilseed crop with high oil content, quality protein, and antioxidant characteristics that is produced in many countries worldwide. The genes, QTLs, and genetic resources of sesame are utilized by sesame researchers and growers. Researchers have identified the many useful traits of this crop, which are available on different platforms. The genes, genotypes, QTLs, and other genetic diversity data of sesame have been collected and stored in more than nine genomic resources, and five sesame crop marker databases are available online. However, data on phenotypic and genotypic variability, which would contribute to sesame improvements, are limited and not yet accessible. The present study comprehensively reviewed more than 110 original published research papers and scientifically incorporated the results. The candidate genes, genotypes, and QTLs of significantly important traits of sesame were identified. Genetic resources related to grain yield and yield component traits, oil content and quality, drought tolerance, salt tolerance, waterlogging resistance, disease resistance, mineral nutrient, capsule shattering resistance, and other agronomic important traits of sesame were studied. Numerous candidate genotypes, genes, QTLs, and alleles associated with those traits were summarized and discovered. The chromosome regions and linkage groups, maps associated with the best traits, and candidate genes were also included. The variability presented in this paper combined with sesame genetic information will help inform further sesame improvement.
Collapse
Affiliation(s)
- Habtamu Kefale
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China,Department of Plant Science, College of Agriculture and Natural Resources, Debre Markos University, Debre Markos, Ethiopia,*Correspondence: Habtamu Kefale,
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
7
|
Dutta D, Harper A, Gangopadhyay G. Transcriptomic analysis of high oil-yielding cultivated white sesame and low oil-yielding wild black sesame seeds reveal differentially expressed genes for oil and seed coat colour. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Kouighat M, Nabloussi A, Adiba A, Fechtali ME, Hanine H. First Study of Improved Nutritional Properties and Anti-Oxidant Activity in Novel Sesame Mutant Lines as Compared to Their Wild-Types. PLANTS 2022; 11:plants11091099. [PMID: 35567100 PMCID: PMC9105725 DOI: 10.3390/plants11091099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Sesame seed represents a reservoir of nutritional components with many medicinal properties. With the current trend to increase both seed yield and nutritional quality, the cultivation of new high-quality sesame varieties is a necessity to improve human health and promote the economic efficiency of this crop. However, research efforts for the development of cultivars of high nutritional quality are too scarce. In this study, we evaluated the nutritional value and antioxidant activity of seeds of selected M3 sesame mutants, in comparison with their two wild-type cultivars. The measurements included ash, proteins, crude fibers, sugars, total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC), lignans and free radical scavenging activity (FRSA). The results show higher FRSA, TPC, TAC and lignans in the mutant “US2-6”, compared to the wild type “US06”. Besides this, seeds of the mutant “US1-DL” are rich in ash and sugars, while high protein and fiber contents were found in the mutants “ML2-5” and “US2-7”, respectively. This work highlights the possibility of improving the nutritional value of sesame germplasm through mutagenesis. The valuable germplasm obtained will be used in the sesame breeding program to develop cultivars with high nutritional quality and antioxidant activity, which could contribute to the prevention of diseases related to free radicals and nutritional deficiencies.
Collapse
Affiliation(s)
- Mohamed Kouighat
- Research Unit of Plant Breeding and Plant Genetic Resources Conservation, Regional Agricultural Research Center of Meknes, National Institute of Agricultural Research, Avenue Ennasr, P.O. Box 415, Rabat 10090, Morocco; (M.K.); (A.A.); (M.E.F.)
- Laboratory of Bioprocess and Biointerfaces, Department of Biology, Faculty of Sciences and Technics, University Moulay Slimane, P.O. Box 523, Beni-Mellal 23000, Morocco
| | - Abdelghani Nabloussi
- Research Unit of Plant Breeding and Plant Genetic Resources Conservation, Regional Agricultural Research Center of Meknes, National Institute of Agricultural Research, Avenue Ennasr, P.O. Box 415, Rabat 10090, Morocco; (M.K.); (A.A.); (M.E.F.)
- Correspondence: (A.N.); (H.H.)
| | - Atman Adiba
- Research Unit of Plant Breeding and Plant Genetic Resources Conservation, Regional Agricultural Research Center of Meknes, National Institute of Agricultural Research, Avenue Ennasr, P.O. Box 415, Rabat 10090, Morocco; (M.K.); (A.A.); (M.E.F.)
- Laboratory of Bioprocess and Biointerfaces, Department of Biology, Faculty of Sciences and Technics, University Moulay Slimane, P.O. Box 523, Beni-Mellal 23000, Morocco
| | - Mohamed El Fechtali
- Research Unit of Plant Breeding and Plant Genetic Resources Conservation, Regional Agricultural Research Center of Meknes, National Institute of Agricultural Research, Avenue Ennasr, P.O. Box 415, Rabat 10090, Morocco; (M.K.); (A.A.); (M.E.F.)
| | - Hafida Hanine
- Laboratory of Bioprocess and Biointerfaces, Department of Biology, Faculty of Sciences and Technics, University Moulay Slimane, P.O. Box 523, Beni-Mellal 23000, Morocco
- Correspondence: (A.N.); (H.H.)
| |
Collapse
|
9
|
Dossou SSK, Luo Z, Wang Z, Zhou W, Zhou R, Zhang Y, Li D, Liu A, Dossa K, You J, Wang L. The Dark Pigment in the Sesame (Sesamum indicum L.) Seed Coat: Isolation, Characterization, and Its Potential Precursors. Front Nutr 2022; 9:858673. [PMID: 35295915 PMCID: PMC8919073 DOI: 10.3389/fnut.2022.858673] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
Sesame is a worldwide oilseed crop used in the food pharmacy. Its seed phenotypes determine the seed quality values. However, a thorough assessment of seed coat metabolites is lacking, and the dark pigment in the seed coat is not well-characterized. Herein, we report the isolation of melanin by the alkali method from the black and brown sesame seeds. Physicochemical methods, including scanning electron microscopy (SEM), solubility, precipitation, UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric-differential scanning calorimetry (TG-DSC), were used to characterize the sesame melanins. The results clearly showed that the isolated pigments were similar to melanin from other sources. Both melanins were heat-stable and exhibited numerous characteristic absorption peaks. Through a comprehensible LC-MS/MS-based metabolome profiles analysis of NaOH and methanol extracts of black and white sesame seeds, caffeic, protocatechuic, indole-carboxylic, homogentisic, ferulic, vanillic, and benzoic acids were identified as the potential precursors of the sesame melanin. Our findings widen our understanding of dark seeds pigmentation in sesame. Furthermore, they show that black sesame seeds are promising sources of edible melanin for food and biotechnological applications.
Collapse
Affiliation(s)
- Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Laboratoire de Physiologie et de Biotechnologie Végétales, Faculté Des Sciences, Université de Lomé, Lomé, Togo
| | - Zishu Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhijian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wangyi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Aili Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Komivi Dossa
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Jun You
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Linhai Wang
| |
Collapse
|
10
|
Segla Koffi Dossou S, Xu F, You J, Zhou R, Li D, Wang L. Widely targeted metabolome profiling of different colored sesame (Sesamum indicum L.) seeds provides new insight into their antioxidant activities. Food Res Int 2022; 151:110850. [PMID: 34980388 DOI: 10.1016/j.foodres.2021.110850] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/01/2021] [Accepted: 11/27/2021] [Indexed: 11/28/2022]
Abstract
Sesame seeds are considered worldwide as a functional food due to their nutritional and therapeutical values. Several physiological functions are being associated with sesame seeds and their derived products. However, the phytochemicals responsible for these various proprieties are not well understood. Thus, to acknowledge the diversity and variability of metabolites in sesame seeds of different colors and reveal key metabolites and pathways contributing to differences in antioxidant activities, black, brown, yellow, and white sesame seeds from 12 varieties were subjected to LC-MS/MS-based widely targeted metabolomics analysis. Totally, 671 metabolites were identified and chemically classified. The metabolic compounds varied significantly with the seed coat color and genotype. Many flavonoids, amino acids, and terpenoids were up-regulated in dark seeds. Sixty key differential metabolites were filtered out. Phenylpropanoid biosynthesis, amino acids biosynthesis, and tyrosine metabolism were the main differently regulated pathways. The DPPH, ABTS, and FRAP assays showed that the antioxidant activities of the seeds increased with the seed coat darkness. Therefore, the pharmacological proprieties of black seeds might be related to their high content of flavonoids and essential amino acids mostly. These findings expand phytochemicals composition information of different colored sesame seeds and provide resources for their comprehensive use and quality improvement.
Collapse
Affiliation(s)
- Senouwa Segla Koffi Dossou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Fangtao Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Jun You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
11
|
Hu Q, Zhang Y, Ma R, An J, Huang W, Wu Y, Hou J, Zhang D, Lin F, Xu R, Sun Q, Sun L. Genetic dissection of seed appearance quality using recombinant inbred lines in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:72. [PMID: 37309518 PMCID: PMC10236129 DOI: 10.1007/s11032-021-01262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Soybean seed appearance quality greatly affects the marketability. The objective of this study was to identify the quantitative trait loci (QTLs) that control the appearance quality of soybean seeds. A total of 256 recombinant inbred lines from Qi Huang No.34 × Ji Dou No.17 were utilized for QTL mapping. We innovatively applied a machine vision system to quantify the seed appearance of each line. As a result of QTL mapping, a total of 145 QTLs for the machine vision parameters were detected across three environments. We integrated QTLs mapped overlapped and obtained 16 QTL hotspots in total. Of these hotspots, hotspot-4-1 was suggested to be a major locus controlling seed size, and hotspot-15 was identified to affect the seed color and texture. The mapping for principal components of the seed appearance also supported it. This study comprehensively dug up the QTLs for seed appearance quality of soybean cultivars while providing an efficient method for phenotyping of seed appearance. These results would contribute to dissecting the genetic bases of seed appearance quality for the improvement of soybean. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01262-9.
Collapse
Affiliation(s)
- Quan Hu
- State Key Laboratory of Agrobiotechnology, and College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Yanwei Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 Shandong China
| | - Ruirui Ma
- State Key Laboratory of Agrobiotechnology, and College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Jie An
- State Key Laboratory of Agrobiotechnology, and College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Wenxuan Huang
- State Key Laboratory of Agrobiotechnology, and College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Yueying Wu
- State Key Laboratory of Agrobiotechnology, and College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Jingjing Hou
- State Key Laboratory of Agrobiotechnology, and College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Dajian Zhang
- College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 Shandong China
| | - Qun Sun
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Lianjun Sun
- State Key Laboratory of Agrobiotechnology, and College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
12
|
Li C, Duan Y, Miao H, Ju M, Wei L, Zhang H. Identification of Candidate Genes Regulating the Seed Coat Color Trait in Sesame ( Sesamum indicum L.) Using an Integrated Approach of QTL Mapping and Transcriptome Analysis. Front Genet 2021; 12:700469. [PMID: 34422002 PMCID: PMC8371934 DOI: 10.3389/fgene.2021.700469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Seed coat color is an important seed quality trait in sesame. However, the genetic mechanism of seed coat color variation remains elusive in sesame. We conducted a QTL mapping of the seed coat color trait in sesame using an F2 mapping population. With the aid of the newly constructed superdense genetic linkage map comprised of 22,375 bins distributed in 13 linkage groups (LGs), 17 QTLs of the three indices (i.e., L, a, and b values) of seed coat color were detected in seven intervals on four LGs, with a phenotype variance explanation rate of 4.46-41.53%. A new QTL qSCa6.1 on LG 6 and a QTL hotspot containing at least four QTLs on LG 9 were further identified. Variants screening of the target intervals showed that there were 84 genes which possessed the variants that were high-impact and co-segregating with the seed coat color trait. Meanwhile, we performed the transcriptome comparison of the developing seeds of a white- and a black-seeded variety, and found that the differentially expressed genes were significantly enriched in 37 pathways, including three pigment biosynthesis related pathways. Integration of variants screening and transcriptome comparison results suggested that 28 candidate genes probably participated in the regulation of the seed coat color in sesame; of which, 10 genes had been proved or suggested to be involved in pigments biosynthesis or accumulation during seed formation. The findings gave the basis for the mechanism of seed coat color regulation in sesame, and exhibited the effects of the integrated approach of genome resequencing and transcriptome analysis on the genetics analysis of the complex traits.
Collapse
Affiliation(s)
- Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Henan Key Laboratory of Specific Oilseed Crops Genomics, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yinghui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Henan Key Laboratory of Specific Oilseed Crops Genomics, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Henan Key Laboratory of Specific Oilseed Crops Genomics, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ming Ju
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Henan Key Laboratory of Specific Oilseed Crops Genomics, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Henan Key Laboratory of Specific Oilseed Crops Genomics, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
13
|
Mei H, Liu Y, Cui C, Hu C, Xie F, Zheng L, Du Z, Wu K, Jiang X, Zheng Y, Ma Q. QTL mapping of yield-related traits in sesame. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:43. [PMID: 37309387 PMCID: PMC10236103 DOI: 10.1007/s11032-021-01236-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/27/2021] [Indexed: 06/14/2023]
Abstract
Improving yield is one of the most important targets of sesame breeding. Identifying quantitative trait loci (QTLs) of yield-related traits is a prerequisite for marker-assisted selection (MAS) and QTL/gene cloning. In this study, a BC1 population was developed and genotyped with the specific-locus amplified fragment (SLAF) sequencing technology, and a high-density genetic map was constructed. The map consisted of 13 linkage groups, contained 3528 SLAF markers, and covered a total of 1312.52 cM genetic distance, with an average distance of 0.37 cM between adjacent markers. Based on the map, 46 significant QTLs were identified for seven yield-related traits across three environments. These QTLs distributed on 11 linkage groups, each explaining 2.34-71.41% of the phenotypic variation. Of the QTLs, 23 were stable QTLs that were detected in more than one environment, and 20 were major QTLs that explained more than 10% of the corresponding phenotypic variation in at least one environment. Favorable alleles of 38 QTLs originated from the locally adapted variety, Yuzhi 4; the exotic germplasm line, BS, contributed favorable alleles to only 8 QTLs. The results should provide useful information for future molecular breeding and functional gene cloning. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01236-x.
Collapse
Affiliation(s)
- Hongxian Mei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450008 People’s Republic of China
| | - Yanyang Liu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450008 People’s Republic of China
| | - Chengqi Cui
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450008 People’s Republic of China
| | - Chengda Hu
- Henan Institute of Meteorological Science, Zhengzhou, 450003 People’s Republic of China
| | - Fuxin Xie
- Nanyang Academy of Agricultural Sciences, Nanyang, 473085 People’s Republic of China
| | - Lei Zheng
- Luohe Academy of Agricultural Sciences, Luohe, 462300 People’s Republic of China
| | - Zhenwei Du
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450008 People’s Republic of China
| | - Ke Wu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450008 People’s Republic of China
| | - Xiaolin Jiang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450008 People’s Republic of China
| | - Yongzhan Zheng
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450008 People’s Republic of China
| | - Qingrong Ma
- Henan Institute of Meteorological Science, Zhengzhou, 450003 People’s Republic of China
| |
Collapse
|
14
|
Xu F, Zhou R, Dossou SSK, Song S, Wang L. Fine Mapping of a Major Pleiotropic QTL Associated with Sesamin and Sesamolin Variation in Sesame ( Sesamum indicum L.). PLANTS 2021; 10:plants10071343. [PMID: 34209452 PMCID: PMC8309374 DOI: 10.3390/plants10071343] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Deciphering the genetic basis of quantitative agronomic traits is a prerequisite for their improvement. Herein, we identified loci governing the main sesame lignans, sesamin and sesamolin variation in a recombinant inbred lines (RILs, F8) population under two environments. The content of the two lignans in the seeds was investigated by HPLC. The sesamin and sesamolin contents ranged from 0.33 to 7.52 mg/g and 0.36 to 2.70 mg/g, respectively. In total, we revealed 26 QTLs on a linkage map comprising 424 SSR markers, including 16 and 10 loci associated with sesamin and sesamolin variation, respectively. Among them, qSmin_11.1 and qSmol_11.1 detected in both the two environments explained 67.69% and 46.05% of the phenotypic variation of sesamin and sesamolin, respectively. Notably, qSmin11-1 and qSmol11-1 were located in the same interval of 127-127.21cM on LG11 between markers ZMM1776 and ZM918 and acted as a pleiotropic locus. Furthermore, two potential candidate genes (SIN_1005755 and SIN_1005756) at the same locus were identified based on comparative transcriptome analysis. Our results suggest the existence of a single gene of large effect that controls expression, both of sesamin and sesamolin, and provide genetic information for further investigation of the regulation of lignan biosynthesis in sesame.
Collapse
|
15
|
Berhe M, Dossa K, You J, Mboup PA, Diallo IN, Diouf D, Zhang X, Wang L. Genome-wide association study and its applications in the non-model crop Sesamum indicum. BMC PLANT BIOLOGY 2021; 21:283. [PMID: 34157965 PMCID: PMC8218510 DOI: 10.1186/s12870-021-03046-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Sesame is a rare example of non-model and minor crop for which numerous genetic loci and candidate genes underlying features of interest have been disclosed at relatively high resolution. These progresses have been achieved thanks to the applications of the genome-wide association study (GWAS) approach. GWAS has benefited from the availability of high-quality genomes, re-sequencing data from thousands of genotypes, extensive transcriptome sequencing, development of haplotype map and web-based functional databases in sesame. RESULTS In this paper, we reviewed the GWAS methods, the underlying statistical models and the applications for genetic discovery of important traits in sesame. A novel online database SiGeDiD ( http://sigedid.ucad.sn/ ) has been developed to provide access to all genetic and genomic discoveries through GWAS in sesame. We also tested for the first time, applications of various new GWAS multi-locus models in sesame. CONCLUSIONS Collectively, this work portrays steps and provides guidelines for efficient GWAS implementation in sesame, a non-model crop.
Collapse
Affiliation(s)
- Muez Berhe
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, China
- Humera Agricultural Research Center of Tigray Agricultural Research Institute, Humera, Tigray, Ethiopia
| | - Komivi Dossa
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, China.
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, 10700, Dakar, Senegal.
- Laboratory of Genetics, Horticulture and Seed Sciences, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01 BP 526, Cotonou, Republic of Benin.
| | - Jun You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, China
| | - Pape Adama Mboup
- Département de Mathématiques et Informatique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, 10700, Dakar, Senegal
| | - Idrissa Navel Diallo
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, 10700, Dakar, Senegal
- Département de Mathématiques et Informatique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, 10700, Dakar, Senegal
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, 10700, Dakar, Senegal
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, and Rural Affairs, No.2 Xudong 2nd Road, Wuhan, 430062, China.
| |
Collapse
|
16
|
Cui C, Liu Y, Liu Y, Cui X, Sun Z, Du Z, Wu K, Jiang X, Mei H, Zheng Y. Genome-wide association study of seed coat color in sesame (Sesamum indicum L.). PLoS One 2021; 16:e0251526. [PMID: 34019554 PMCID: PMC8139513 DOI: 10.1371/journal.pone.0251526] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
Sesame (Sesamum indicum L.) is an important and ancient oilseed crop. Sesame seed coat color is related to biochemical functions involved in protein and oil metabolism, and antioxidant content. Because of its complication, the genetic basis of sesame seed coat color remains poorly understood. To elucidate the factors affecting the genetic architecture of seed coat color, 366 sesame germplasm lines were evaluated for seed coat color in 12 environments. The genome-wide association studies (GWAS) for three seed coat color space values, best linear unbiased prediction (BLUP) values from a multi-environment trial analysis and principal component scores (PCs) of three seed coat color space values were conducted. GWAS for three seed coat color space values identified a total of 224 significant single nucleotide polymorphisms (SNPs, P < 2.34×10-7), with phenotypic variation explained (PVE) ranging from 1.01% to 22.10%, and 35 significant SNPs were detected in more than 6 environments. Based on BLUP values, 119 significant SNPs were identified, with PVE ranging from 8.83 to 31.98%. Comparing the results of the GWAS using phenotypic data from different environments and the BLUP values, all significant SNPs detected in more than 6 environments were also detected using the BLUP values. GWAS for PCs identified 197 significant SNPs, and 30 were detected in more than 6 environments. GWAS results for PCs were consistent with those for three color space values. Out of 224 significant SNPs, 22 were located in the confidence intervals of previous reported quantitative trait loci (QTLs). Finally, 92 candidate genes were identified in the vicinity of the 4 SNPs that were most significantly associated with sesame seed coat color. The results in this paper will provide new insights into the genetic basis of sesame seed coat color, and should be useful for molecular breeding in sesame.
Collapse
Affiliation(s)
- Chengqi Cui
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yanyang Liu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yan Liu
- Nanyang Academy of Agricultural Sciences, Nanyang, Henan, China
| | - Xianghua Cui
- Zhumadian Academy of Agricultural Sciences, Zhumadian, Henan, China
| | - Zhiyu Sun
- College of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Zhenwei Du
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Ke Wu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xiaolin Jiang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Hongxian Mei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yongzhan Zheng
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Sheng C, Song S, Zhou R, Li D, Gao Y, Cui X, Tang X, Zhang Y, Tu J, Zhang X, Wang L. QTL-Seq and Transcriptome Analysis Disclose Major QTL and Candidate Genes Controlling Leaf Size in Sesame ( Sesamum indicum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:580846. [PMID: 33719280 PMCID: PMC7943740 DOI: 10.3389/fpls.2021.580846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Leaf size is a crucial component of sesame (Sesamum indicum L.) plant architecture and further influences yield potential. Despite that it is well known that leaf size traits are quantitative traits controlled by large numbers of genes, quantitative trait loci (QTL) and candidate genes for sesame leaf size remain poorly understood. In the present study, we combined the QTL-seq approach and SSR marker mapping to identify the candidate genomic regions harboring QTL controlling leaf size traits in an RIL population derived from a cross between sesame varieties Zhongzhi No. 13 (with big leaves) and ZZM2289 (with small leaves). The QTL mapping revealed 56 QTL with phenotypic variation explained (PVE) from 1.87 to 27.50% for the length and width of leaves at the 1/3 and 1/2 positions of plant height. qLS15-1, a major and environmentally stable pleiotropic locus for both leaf length and width explaining 5.81 to 27.50% phenotypic variation, was located on LG15 within a 408-Kb physical genomic region flanked by the markers ZMM6185 and ZMM6206. In this region, a combination of transcriptome analysis with gene annotations revealed three candidate genes SIN_1004875, SIN_1004882, and SIN_1004883 associated with leaf growth and development in sesame. These findings provided insight into the genetic characteristics and variability for sesame leaf and set up the foundation for future genomic studies on sesame leaves and will serve as gene resources for improvement of sesame plant architecture.
Collapse
Affiliation(s)
- Chen Sheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Shengnan Song
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Yuan Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xianghua Cui
- Zhumadian Academy of Agricultural Sciences, Zhumadian, China
| | - Xuehui Tang
- Xiangyang Academy of Agricultural Sciences, Xiangyang, China
| | - Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
18
|
Andargie M, Vinas M, Rathgeb A, Möller E, Karlovsky P. Lignans of Sesame ( Sesamum indicum L.): A Comprehensive Review. Molecules 2021; 26:883. [PMID: 33562414 PMCID: PMC7914952 DOI: 10.3390/molecules26040883] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Major lignans of sesame sesamin and sesamolin are benzodioxol--substituted furofurans. Sesamol, sesaminol, its epimers, and episesamin are transformation products found in processed products. Synthetic routes to all lignans are known but only sesamol is synthesized industrially. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, followed by the formation of dioxoles, oxidation, and glycosylation. Most genes of the lignan pathway in sesame have been identified but the inheritance of lignan content is poorly understood. Health-promoting properties make lignans attractive components of functional food. Lignans enhance the efficiency of insecticides and possess antifeedant activity, but their biological function in plants remains hypothetical. In this work, extensive literature including historical texts is reviewed, controversial issues are critically examined, and errors perpetuated in literature are corrected. The following aspects are covered: chemical properties and transformations of lignans; analysis, purification, and total synthesis; occurrence in Seseamum indicum and related plants; biosynthesis and genetics; biological activities; health-promoting properties; and biological functions. Finally, the improvement of lignan content in sesame seeds by breeding and biotechnology and the potential of hairy roots for manufacturing lignans in vitro are outlined.
Collapse
Affiliation(s)
- Mebeaselassie Andargie
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| | - Maria Vinas
- Centro para Investigaciones en Granos y Semillas (CIGRAS), University of Costa Rica, 2060 San Jose, Costa Rica;
| | - Anna Rathgeb
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| | - Evelyn Möller
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| |
Collapse
|
19
|
Yol E, Basak M, Kızıl S, Lucas SJ, Uzun B. A High-Density SNP Genetic Map Construction Using ddRAD-Seq and Mapping of Capsule Shattering Trait in Sesame. FRONTIERS IN PLANT SCIENCE 2021; 12:679659. [PMID: 34140967 PMCID: PMC8204047 DOI: 10.3389/fpls.2021.679659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/23/2021] [Indexed: 05/05/2023]
Abstract
The seed-bearing capsule of sesame shatters at harvest. This wildish trait makes the crop unsuitable for mechanized harvesting and also restricts its commercial potential by limiting the cultivation for countries that have no access to low-cost labor. Therefore, the underlying genetic basis of the capsule shattering trait is highly important in order to develop mechanization-ready varieties for sustainable sesame farming. In the present study, we generated a sesame F2 population derived from a cross between a capsule shattering cultivar (Muganli-57) and a non-shattering mutant (PI 599446), which was used to construct a genetic map based on double-digest restriction-site-associated DNA sequencing. The resulting high-density genetic map contained 782 single-nucleotide polymorphisms (SNPs) and spanned a length of 697.3 cM, with an average marker interval of 0.89 cM. Based on the reference genome, the capsule shattering trait was mapped onto SNP marker S8_5062843 (78.9 cM) near the distal end of LG8 (chromosome 8). In order to reveal genes potentially controlling the shattering trait, the marker region (S8_5062843) was examined, and a candidate gene including six CDSs was identified. Annotation showed that the gene encodes a protein with 440 amino acids, sharing ∼99% homology with transcription repressor KAN1. Compared with the capsule shattering allele, the SNP change and altered splicing in the flanking region of S8_5062843 caused a frameshift mutation in the mRNA, resulting in the loss of function of this gene in the mutant parent and thus in non-shattering capsules and leaf curling. With the use of genomic data, InDel and CAPS markers were developed to differentiate shattering and non-shattering capsule genotypes in marker-assisted selection studies. The obtained results in the study can be beneficial in breeding programs to improve the shattering trait and enhance sesame productivity.
Collapse
Affiliation(s)
- Engin Yol
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
- *Correspondence: Engin Yol,
| | - Merve Basak
- Department of Medicinal and Aromatic Plants, Akev University, Antalya, Turkey
| | - Sibel Kızıl
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Stuart James Lucas
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Bulent Uzun
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| |
Collapse
|
20
|
Wang L, Dossou SSK, Wei X, Zhang Y, Li D, Yu J, Zhang X. Transcriptome Dynamics during Black and White Sesame ( Sesamum indicum L.) Seed Development and Identification of Candidate Genes Associated with Black Pigmentation. Genes (Basel) 2020; 11:genes11121399. [PMID: 33255784 PMCID: PMC7768470 DOI: 10.3390/genes11121399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Seed coat color is a crucial agronomic trait in sesame (Sesamum indicum L.) since it is strongly linked to seed oil, proteins, and lignans contents, and also influences consumer preferences. In East Asia, black sesame seed is used in the treatment and the prevention of various diseases. However, in sesame, little is known about the establishment of the seed coat color, and only one gene has been reported to control black pigmentation. This study provides an overview of developing seeds transcriptome of two varieties of sesame "Zhongfengzhi No.1" (white seed) and "Zhongzhi No.33" (black seed) and shed light on genes involving in black seed formation. Until eight days post-anthesis (DPA), both the seeds of the two varieties were white. The black sesame seed turned to yellow between 9 and 11 DPA and then black between 12 and 14 DPA. The black and white sesame showed similar trend-expressed genes with the numbers increased at the early stages of seed development. The differentially expressed genes (DEGs) number increased with seed development in the two sesame varieties. We examined the DEGs and uncovered that more were up-regulated at the early stages. The DEGs between the black and white sesame were mainly enriched in 37 metabolic pathways, among which the flavonoid biosynthesis and biosynthesis of secondary metabolites were dominants. Furthermore, we identified 20 candidate genes associated with pigment biosynthesis in black sesame seed, among which 10 were flavonoid biosynthesis and regulatory genes. These genes also include isochorismate and polyphenol oxidase genes. By comparing the phenotypes and genes expressions of the black and white sesame seed at different development stages, this work revealed the important role of 8-14 DPA in black pigment biosynthesis and accumulation. Moreover, it unfolded candidate genes associated with black pigmentation in sesame. These findings provide a vast transcriptome dataset and list of genes that will be targeted for functional studies related to the molecular mechanism involved in biosynthesis and regulation of seed coat color in sesame.
Collapse
Affiliation(s)
- Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
| | - Jingyin Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
- Correspondence:
| |
Collapse
|
21
|
Genome-Wide Discovery of InDel Markers in Sesame ( Sesamum indicum L.) Using ddRADSeq. PLANTS 2020; 9:plants9101262. [PMID: 32987937 PMCID: PMC7599716 DOI: 10.3390/plants9101262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/15/2023]
Abstract
The development and validation of different types of molecular markers is crucial to conducting marker-assisted sesame breeding. Insertion-deletion (InDel) markers are highly polymorphic and suitable for low-cost gel-based genotyping. From this perspective, this study aimed to discover and develop InDel markers through bioinformatic analysis of double digest restriction site-associated DNA sequencing (ddRADSeq) data from 95 accessions belonging to the Mediterranean sesame core collection. Bioinformatic analysis indicated the presence of 7477 InDel positions genome wide. Deletions accounted for 61% of the InDels and short deletions (1-2 bp) were the most abundant type (94.9%). On average, InDels of at least 2 bp in length had a frequency of 2.99 InDels/Mb. The 86 InDel sites having length ≥8 bp were detected in genome-wide analysis. These regions can be used for the development of InDel markers considering low-cost genotyping with agarose gels. In order to validate these InDels, a total of 38 InDel regions were selected and primers were successfully amplified. About 13% of these InDels were in the coding sequences (CDSs) and in the 3'- and 5'- untranslated regions (UTRs). Furthermore, the efficiencies of these 16 InDel markers were assessed on 32 sesame accessions. The polymorphic information content (PIC) of these 16 markers ranged from 0.06 to 0.62 (average: 0.33). These results demonstrated the success of InDel identification and marker development for sesame with the use of ddRADSeq data. These agarose-resolvable InDel markers are expected to be useful for sesame breeders.
Collapse
|
22
|
Mohamed Ahmed IA, Musa Özcan M, Uslu N, Juhaimi FAL, Osman MA, Alqah HAS, Ghafoor K, Babiker EE. Effect of microwave roasting on color, total phenol, antioxidant activity, fatty acid composition, tocopherol, and chemical composition of sesame seed and oils obtained from different countries. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isam A. Mohamed Ahmed
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Mehmet Musa Özcan
- Department of Food Engineering Faculty of Agricultural Selcuk University Konya Turkey
| | - Nurhan Uslu
- Department of Food Engineering Faculty of Agricultural Selcuk University Konya Turkey
| | - Fahad A. L. Juhaimi
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Magdi A. Osman
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Hesham A. S. Alqah
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Kashif Ghafoor
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Elfadil E. Babiker
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| |
Collapse
|
23
|
Jayaramachandran M, Saravanan S, Motilal A, Prabhu PC, Hepziba SJ, Swain H, Boopathi NM. Genetic improvement of a neglected and underutilised oilseed crop: sesame (Sesamum indicum L.) through mutation breeding. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00329-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Du H, Zhang H, Wei L, Li C, Duan Y, Wang H. A high-density genetic map constructed using specific length amplified fragment (SLAF) sequencing and QTL mapping of seed-related traits in sesame (Sesamum indicum L.). BMC PLANT BIOLOGY 2019; 19:588. [PMID: 31881840 PMCID: PMC6935206 DOI: 10.1186/s12870-019-2172-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/28/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Sesame (Sesamum indicum L., 2n = 2x = 26) is an important oilseed crop with high oil content but small seed size. To reveal the genetic loci of the quantitative seed-related traits, we constructed a high-density single nucleotide polymorphism (SNP) linkage map of an F2 population by using specific length amplified fragment (SLAF) technique and determined the quantitative trait loci (QTLs) of seed-related traits for sesame based on the phenotypes of F3 progeny. RESULTS The genetic map comprised 2159 SNP markers distributed on 13 linkage groups (LGs) and was 2128.51 cM in length, with an average distance of 0.99 cM between adjacent markers. QTL mapping revealed 19 major-effect QTLs with the phenotypic effect (R2) more than 10%, i.e., eight QTLs for seed coat color, nine QTLs for seed size, and two QTLs for 1000-seed weight (TSW), using composite interval mapping method. Particularly, LG04 and LG11 contained collocated QTL regions for the seed coat color and seed size traits, respectively, based on their close or identical locations. In total, 155 candidate genes for seed coat color, 22 for seed size traits, and 54 for TSW were screened and analyzed. CONCLUSIONS This report presents the first QTL mapping of seed-related traits in sesame using an F2 population. The results reveal the location of specific markers associated with seed-related traits in sesame and provide the basis for further seed quality traits research.
Collapse
Affiliation(s)
- Hua Du
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| | - Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| | - Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| | - Yinghui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| | - Huili Wang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| |
Collapse
|
25
|
Zhang H, Miao H, Wei L, Li C, Duan Y, Xu F, Qu W, Zhao R, Ju M, Chang S. Identification of a SiCL1 gene controlling leaf curling and capsule indehiscence in sesame via cross-population association mapping and genomic variants screening. BMC PLANT BIOLOGY 2018; 18:296. [PMID: 30466401 PMCID: PMC6251216 DOI: 10.1186/s12870-018-1503-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/26/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Leaf shape can affect plantlet development and seed yield in sesame. The morphological, histological and genetic analyses of a sesame mutant cl1 (cl) with curly leaf and indehiscent capsule traits were performed in this study. In order to clone the cl1 gene for breeding selection, genome re-sequencing of the 130 individuals of cl1 × USA (0)-26 F2 population and a bulked segregation analysis (BSA) pool was carried out. The genome re-sequencing data of the 822 germplasm with normal leaf shape were applied. RESULTS For cl1 mutant, the adaxial/abaxial character of the parenchyma cells in the leaf blades is reduced. Results proved that the leaf curling trait is controlled by a recessive gene (Sicl1). Cross- population association of the F2 population of cl1 × USA (0)-26 indicated that the target cl locus was located on the interval C29 between C29_6522236 and C29_6918901 of SiChr. 1. Further regional genome variants screening determined the 6 candidate variants using genomic variants data of 822 natural germplasm and a BSA pool data. Of which, 5 markers C29_6717525, C29_6721553, C29_6721558, C29_6721563, and C29_6721565 existed in the same gene (C29.460). With the aid of the validation in the test F2 population of cl1 × Yuzhi 11 and natural germplasm, the integrated marker SiCLInDel1 (C29: 6721553-6721572) was determined as the target marker, and C29.460 was the target gene SiCL1 in sesame. SiCL1 is a KAN1 homolog with the full length of 6835 bp. In cl1, the 20 nucleic acids (CAGGTAGCTATGTATATGCA) of SiCLInDel1 marker were mutagenized into 6 nucleic acids (TCTTTG). The deletion led to a frameshift mutation and resulted in the earlier translation termination of the CL gene. The Sicl1 allele was shortened to 1829 bp. SiCL1 gene was expressed mainly in the tissues of stem, leaf, bud, capsule and seed. CONCLUSIONS SiCL1 encodes a transcription repressor KAN1 protein and controls leaf curling and capsule indehiscence in sesame. The findings provided an example of high-efficient gene cloning in sesame. The SiCL1 gene and the cl1 mutant supply the opportunity to explore the development regulation of leaf and capsule, and would improve the new variety breeding with high harvest mechanization adaption in sesame.
Collapse
Affiliation(s)
- Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Yinghui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Fangfang Xu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Wenwen Qu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Ruihong Zhao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Ming Ju
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Shuxian Chang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| |
Collapse
|
26
|
Liu H, Zhou F, Zhou T, Yang Y, Zhao Y. Cytological characterization and molecular mapping of a novel recessive genic male sterility in sesame (Sesamum indicum L.). PLoS One 2018; 13:e0204034. [PMID: 30235259 PMCID: PMC6147451 DOI: 10.1371/journal.pone.0204034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/02/2018] [Indexed: 11/18/2022] Open
Abstract
Recessive genic male sterility (RGMS) has great potential for F1 hybrid seeds production in sesame (Sesamum indicum L.). However, it is not yet widely used in practice due to poor understanding of the underlying mechanism in RGMS. Previously, we have developed a novel sesame RGMS line (D248A) controlled by a single recessive gene. To elucidate its cytological mechanism, histological observations were carried out in sterile and fertile buds. The results indicated that abnormality in D248A began at microspore mother cell stage and persisted until microspore stage. The microsporocytes had less cytoplasm and no obvious nucleus. Normal meiosis failed in microspore mother cells. Cytoplasm condensation and vacuolation frequently occurred in tetrads, leading to the production of crumpled and abortive microspores. To develop molecular markers for breeding of hybrid lines, InDel and SSR markers were analyzed in a fertility segregating NIL population constructed by sib-mating D248A with D248B. Five markers were identified for the male sterile gene (Ms), with a respective genetic distance of 1.47 and 5.17 cM for the two closest markers (SB2993 and LG1-170) on both sides. The Ms gene was further anchored into a 108-kb interval in the downstream of chromosome 1, within which 15 genes were predicted and four were likely to be responsible for male sterility. These findings provide a deeper understanding of the mechanism underlying RGMS in sesame.
Collapse
Affiliation(s)
- Hongyan Liu
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agriculture, Oil Crops Research Institute, CAAS, Wuhan, China
| | - Fang Zhou
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agriculture, Oil Crops Research Institute, CAAS, Wuhan, China
| | - Ting Zhou
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agriculture, Oil Crops Research Institute, CAAS, Wuhan, China
| | - Yuanxiao Yang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agriculture, Oil Crops Research Institute, CAAS, Wuhan, China
| | - Yingzhong Zhao
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agriculture, Oil Crops Research Institute, CAAS, Wuhan, China
- * E-mail:
| |
Collapse
|
27
|
Zhang Y, Wang L, Gao Y, Li D, Yu J, Zhou R, Zhang X. Genetic dissection and fine mapping of a novel dt gene associated with determinate growth habit in sesame. BMC Genet 2018; 19:38. [PMID: 29902971 PMCID: PMC6003200 DOI: 10.1186/s12863-018-0614-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/18/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As an important oil crop, growth habit of sesame (Sesamum indicum L.) is naturally indeterminate, which brings about asynchronous maturity of capsules and causes loss of yield. RESULTS The genetic basis of determinate growth habit in sesame was investigated by classical genetic analysis through multiple populations, results revealed that it was controlled by an unique recessive gene. The genotyping by sequencing (GBS) approach was employed for high-throughput SNP identification and genotyping in the F2 population, then a high density bin map was constructed, the map was 1086.403 cM in length, which consisted of 1184 bins (13,679 SNPs), with an average of 0.918 cM between adjacent bins. Based on bin mapping in conjunction with SSR markers analysis in targeted region, the novel sesame determinacy gene was mapped on LG09 in a genome region of 41 kb. CONCLUSIONS This study dissected genetic basis of determinate growth habit in sesame, constructed a new high-density bin map and mapped a novel determinacy gene. Results of this study demonstrate that we employed an optimized approach to get fine-accuracy, high-resolution and high-efficiency mapping result in sesame. The findings provided important foundation for sesame determinacy gene cloning and were expected to be applied in breeding for cultivars suited to mechanized production.
Collapse
Affiliation(s)
- Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, Wuhan, 430062, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, Wuhan, 430062, China
| | - Yuan Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, Wuhan, 430062, China
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, Wuhan, 430062, China
| | - Jingyin Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, Wuhan, 430062, China
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, Wuhan, 430062, China
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, Wuhan, 430062, China.
| |
Collapse
|
28
|
Development of an SSR-based genetic map in sesame and identification of quantitative trait loci associated with charcoal rot resistance. Sci Rep 2017; 7:8349. [PMID: 28827730 PMCID: PMC5566338 DOI: 10.1038/s41598-017-08858-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Sesame is prized for its oil. Genetic improvement of sesame can be enhanced through marker-assisted breeding. However, few simple sequence repeat (SSR) markers and SSR-based genetic maps were available in sesame. In this study, 7,357 SSR markers were developed from the sesame genome and transcriptomes, and a genetic map was constructed by generating 424 novel polymorphic markers and using a cross population with 548 recombinant inbred lines (RIL). The genetic map had 13 linkage groups, equalling the number of sesame chromosomes. The linkage groups ranged in size from 113.6 to 179.9 centimorgans (cM), with a mean value of 143.8 cM over a total length of 1869.8 cM. Fourteen quantitative trait loci (QTL) for sesame charcoal rot disease resistance were detected, with contribution rates of 3–14.16% in four field environments; ~60% of the QTL were located within 5 cM at 95% confidence interval. The QTL with the highest phenotype contribution rate (qCRR12.2) and those detected in different environments (qCRR8.2 and qCRR8.3) were used to predict candidate disease response genes. The new SSR-based genetic map and 14 novel QTLs for charcoal rot disease resistance will facilitate the mapping of agronomic traits and marker-assisted selection breeding in sesame.
Collapse
|
29
|
Dossa K, Diouf D, Wang L, Wei X, Zhang Y, Niang M, Fonceka D, Yu J, Mmadi MA, Yehouessi LW, Liao B, Zhang X, Cisse N. The Emerging Oilseed Crop Sesamum indicum Enters the "Omics" Era. FRONTIERS IN PLANT SCIENCE 2017; 8:1154. [PMID: 28713412 PMCID: PMC5492763 DOI: 10.3389/fpls.2017.01154] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/15/2017] [Indexed: 05/18/2023]
Abstract
Sesame (Sesamum indicum L.) is one of the oldest oilseed crops widely grown in Africa and Asia for its high-quality nutritional seeds. It is well adapted to harsh environments and constitutes an alternative cash crop for smallholders in developing countries. Despite its economic and nutritional importance, sesame is considered as an orphan crop because it has received very little attention from science. As a consequence, it lags behind the other major oil crops as far as genetic improvement is concerned. In recent years, the scenario has considerably changed with the decoding of the sesame nuclear genome leading to the development of various genomic resources including molecular markers, comprehensive genetic maps, high-quality transcriptome assemblies, web-based functional databases and diverse daft genome sequences. The availability of these tools in association with the discovery of candidate genes and quantitative trait locis for key agronomic traits including high oil content and quality, waterlogging and drought tolerance, disease resistance, cytoplasmic male sterility, high yield, pave the way to the development of some new strategies for sesame genetic improvement. As a result, sesame has graduated from an "orphan crop" to a "genomic resource-rich crop." With the limited research teams working on sesame worldwide, more synergic efforts are needed to integrate these resources in sesame breeding for productivity upsurge, ensuring food security and improved livelihood in developing countries. This review retraces the evolution of sesame research by highlighting the recent advances in the "Omics" area and also critically discusses the future prospects for a further genetic improvement and a better expansion of this crop.
Collapse
Affiliation(s)
- Komivi Dossa
- Centre d’Etudes Régional Pour l’Amélioration de l’Adaptation à la SécheresseThiès, Sénégal
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DiopDakar, Sénégal
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DiopDakar, Sénégal
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Xin Wei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Mareme Niang
- Centre d’Etudes Régional Pour l’Amélioration de l’Adaptation à la SécheresseThiès, Sénégal
| | - Daniel Fonceka
- Centre d’Etudes Régional Pour l’Amélioration de l’Adaptation à la SécheresseThiès, Sénégal
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, UMR AGAPMontpellier, France
| | - Jingyin Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Marie A. Mmadi
- Centre d’Etudes Régional Pour l’Amélioration de l’Adaptation à la SécheresseThiès, Sénégal
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DiopDakar, Sénégal
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Louis W. Yehouessi
- Centre d’Etudes Régional Pour l’Amélioration de l’Adaptation à la SécheresseThiès, Sénégal
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of AgricultureWuhan, China
| | - Ndiaga Cisse
- Centre d’Etudes Régional Pour l’Amélioration de l’Adaptation à la SécheresseThiès, Sénégal
| |
Collapse
|
30
|
Wei X, Gong H, Yu J, Liu P, Wang L, Zhang Y, Zhang X. SesameFG: an integrated database for the functional genomics of sesame. Sci Rep 2017; 7:2342. [PMID: 28539606 PMCID: PMC5443765 DOI: 10.1038/s41598-017-02586-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/12/2017] [Indexed: 11/09/2022] Open
Abstract
Sesame (Sesamum indicum L.) has high oil content, a small diploid genome and a short growth period, making it an attractive species for genetic studies on oilseed crops. With the advancement of next-generation sequencing technology, genomics and functional genomics research of sesame has developed quickly in the last few years, and large amounts of data have been generated. However, these results are distributed in many different publications, and there is a lack of integration. To promote functional genomics research of sesame, we collected genetic information combined with comprehensive phenotypic information and integrated them in the web-based database named SesameFG. The current version of SesameFG contains phenotypic information on agronomic traits of 705 sesame accessions, de novo assembled genomes of three sesame varieties, massive numbers of identified SNPs, gene expression profiles of five tissues, gene families, candidate genes for the important agronomic traits and genomic-SSR markers. All phenotypic and genotypic information in SesameFG is available for online queries and can be downloaded freely. SesameFG provides useful search functions and data mining tools, including Genome Browser and local BLAST services. SesameFG is freely accessible at http://ncgr.ac.cn/SesameFG/. SesameFG provides valuable resources and tools for functional genomics research and the molecular breeding of sesame.
Collapse
Affiliation(s)
- Xin Wei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Hao Gong
- National Center for Gene Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Jingyin Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Pan Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
31
|
Dar AA, Mudigunda S, Mittal PK, Arumugam N. Comparative assessment of genetic diversity in Sesamum indicum L. using RAPD and SSR markers. 3 Biotech 2017; 7:10. [PMID: 28391476 PMCID: PMC5385169 DOI: 10.1007/s13205-016-0578-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/30/2016] [Indexed: 11/26/2022] Open
Abstract
Sesame (Sesamum indicum L.) is an ancient oilseed crop known for its nutty seeds and high-quality edible oil. It is an unexplored crop with a great economic potential. The present study deals with assessment of genetic diversity in the crop. Twenty two RAPD and 18 SSR primers were used for analysis of the 47 different sesame accessions grown in different agroclimatic zones of India. A total of 256 bands were obtained with RAPD primers, of which 191 were polymorphic. SSR primers gave 64 DNA bands, of which all of were polymorphic. The Jaccard's similarity coefficient of RAPD, SSR, and pooled RAPD and SSR data ranged from 0.510 to 0.885, 0.167 to 0.867, and 0.505 to 0.853, respectively. Maximum polymorphic information content was reported with SSRs (0.194) compared to RAPDs (0.186). Higher marker index was observed with RAPDs (1.426) than with SSRs (0.621). Similarly, maximum resolving power was found with RAPD (4.012) primers than with SSRs (0.884). The RAPD primer RPI-B11 and SSR primer S16 were the most informative in terms of describing genetic variability among the varieties under study. At a molecular level, the seed coat colour was distinguishable by the presence and absence of a group of marker amplicon/s. White and brown seeded varieties clustered close to each other, while black seeded varieties remained distanced from the cluster. In the present study, we found higher variability in Sesamum indicum L. using RAPD and SSR markers and these could assist in DNA finger printing, conservation of germplasm, and crop improvement.
Collapse
Affiliation(s)
- Aejaz Ahmad Dar
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| | - Sushma Mudigunda
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Pramod Kumar Mittal
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Neelakantan Arumugam
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| |
Collapse
|
32
|
Mei H, Liu Y, Du Z, Wu K, Cui C, Jiang X, Zhang H, Zheng Y. High-Density Genetic Map Construction and Gene Mapping of Basal Branching Habit and Flowers per Leaf Axil in Sesame. FRONTIERS IN PLANT SCIENCE 2017; 8:636. [PMID: 28496450 PMCID: PMC5406510 DOI: 10.3389/fpls.2017.00636] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/07/2017] [Indexed: 05/11/2023]
Abstract
A good genetic map can provide the framework for quantitative trait loci (QTL) analysis, map-based gene cloning, and genome sequence assembling. The main objectives of this study were to develop a high-density genetic linkage map using specific length amplified fragment sequencing (SLAF-seq) in sesame. In the result, a high-resolution genetic map with 9,378 SLAF markers and 13 linkage groups (LGs) was constructed. The map spanned a total genetic distance of 1,974.23 cM, and the mean LG length was 151.86 cM, with an average genetic distance of 0.22 cM between adjacent markers. Based on the newly constructed genetic map, genes for basal branching habit (SiBH) and flowers per leaf axil (SiFA) were mapped to LG5 and LG11, respectively.
Collapse
|
33
|
Dossa K. A physical map of important QTLs, functional markers and genes available for sesame breeding programs. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:613-619. [PMID: 27924134 PMCID: PMC5120042 DOI: 10.1007/s12298-016-0385-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 05/29/2023]
Abstract
Sesame is one of the oldest oilseed crops grown mainly in Africa and Asia. Although genetic and genomic studies on sesame have started late, the past 5 years have witnessed extensive progresses in these areas on this crop. Important genomic sequence resources such as functional markers, genes and QTLs linked to agronomically important traits, have been generated through linkage mapping and association analysis to assist sesame improvement programs. However, most of these data are scattered in different maps making them hard to be exploited efficiently in breeding programs. In this study, we report a comprehensive physical map gathering 151 published genomic sequence resources which highlighted some hotspot functional regions in the sesame genome. Moreover, 83,135 non-redundant SSRs have been supplied along with their physical position and motif composition. This will assist future research in fine mapping or pinpointing more functional genes based on the already published QTLs and functional markers. This physical map represents a good landmark for further non-overlapping genetic and genomic studies working towards sesame improvement.
Collapse
Affiliation(s)
- Komivi Dossa
- Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse (CERAAS), BP 3320, Route de Khombole, Thiès, Senegal
| |
Collapse
|
34
|
Zhang H, Miao H, Li C, Wei L, Duan Y, Ma Q, Kong J, Xu F, Chang S. Ultra-dense SNP genetic map construction and identification of SiDt gene controlling the determinate growth habit in Sesamum indicum L. Sci Rep 2016; 6:31556. [PMID: 27527492 PMCID: PMC4985745 DOI: 10.1038/srep31556] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Sesame (Sesamum indicum L.) is an important oilseed crop and has an indeterminate growth habit. Here we resequenced the genomes of the parents and 120 progeny of an F2 population derived from crossing Yuzhi 11 (indeterminate, Dt) and Yuzhi DS899 (determinate, dt1), and constructed an ultra-dense SNP map for sesame comprised of 3,041 bins including 30,193 SNPs in 13 linkage groups (LGs) with an average marker density of 0.10 cM. Results indicated that the same recessive gene controls the determinacy trait in dt1 and a second determinate line, dt2 (08TP092). The QDt1 locus for the determinacy trait was located in the 18.0 cM-19.2 cM interval of LG8. The target SNP, SiDt27-1, and the determinacy gene, DS899s00170.023 (named here as SiDt), were identified in Scaffold 00170 of the Yuzhi 11 reference genome, based on genetic mapping and genomic association analysis. Unlike the G397A SNP change in the dt1 genotype, the SiDt allele in dt2 line was lost from the genome. This example of map-based gene cloning in sesame provides proof-of-concept of the utility of ultra-dense SNP maps for accurate genome research in sesame.
Collapse
Affiliation(s)
- Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| | - Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| | - Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| | - Yinghui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| | - Qin Ma
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| | - Jingjing Kong
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| | - Fangfang Xu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| | - Shuxian Chang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People’s Republic of China
| |
Collapse
|
35
|
Phytochemical Contents and Antioxidant and Antiproliferative Activities of Selected Black and White Sesame Seeds. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8495630. [PMID: 27597975 PMCID: PMC5002301 DOI: 10.1155/2016/8495630] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/07/2016] [Accepted: 06/30/2016] [Indexed: 11/23/2022]
Abstract
Sesame (Sesamum indicum L.) seeds are popular nutritional food but with limited knowledge about their antioxidant and antiproliferative activities of various varieties. Phytochemical profiles and antioxidant and antiproliferative activities of six varieties of sesame (Sesamum indicum L.) seeds were studied. Fenheizhi3 (black) cultivar exhibited the maximum contents of total phenolics and lignans and values of total oxygen radical absorbance capacity (ORAC) and antiproliferative activity (EC50) against HepG2 cells. Bound ORAC values showed strong associations with bound phenolics contents (r = 0.976, p < 0.01); in bound phenolic extracts, EC50 values showed strong negative associations with phenolic contents (r = −0.869, p < 0.05) and ORAC values (r = −0.918, p < 0.01). Moreover, the contents of free phenolics were higher than that of the bound phenolics, and the three black sesame seeds generally depicted higher total phenolics compared to the three white varieties. The antioxidant (ORAC values) and antiproliferation activities of six sesame seeds were both associated with contents of bound phenolics (r > 0.8, p < 0.05). Interestingly, nonlignan components in bound phenolics contributed to the antioxidant and antiproliferative activities. This study suggested that Fenheizhi3 variety is superior to the other five varieties as antioxidant supplements.
Collapse
|
36
|
Wang L, Xia Q, Zhang Y, Zhu X, Zhu X, Li D, Ni X, Gao Y, Xiang H, Wei X, Yu J, Quan Z, Zhang X. Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Genomics 2016; 17:31. [PMID: 26732604 PMCID: PMC4702397 DOI: 10.1186/s12864-015-2316-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/15/2015] [Indexed: 12/23/2022] Open
Abstract
Background Sesame is an important high-quality oil seed crop. The sesame genome was de novo sequenced and assembled in 2014 (version 1.0); however, the number of anchored pseudomolecules was higher than the chromosome number (2n = 2x = 26) due to the lack of a high-density genetic map with 13 linkage groups. Results We resequenced a permanent population consisting of 430 recombinant inbred lines and constructed a genetic map to improve the sesame genome assembly. We successfully anchored 327 scaffolds onto 13 pseudomolecules. The new genome assembly (version 2.0) included 97.5 % of the scaffolds greater than 150 kb in size present in assembly version 1.0 and increased the total pseudomolecule length from 233.7 to 258.4 Mb with 94.3 % of the genome assembled and 97.2 % of the predicted gene models anchored. Based on the new genome assembly, a bin map including 1,522 bins spanning 1090.99 cM was generated and used to identified 41 quantitative trait loci (QTLs) for sesame plant height and 9 for seed coat color. The plant height-related QTLs explained 3–24 % the phenotypic variation (mean value, 8 %), and 29 of them were detected in at least two field trials. Two major loci (qPH-8.2 and qPH-3.3) that contributed 23 and 18 % of the plant height were located in 350 and 928-kb spaces on Chr8 and Chr3, respectively. qPH-3.3, is predicted to be responsible for the semi-dwarf sesame plant phenotype and contains 102 candidate genes. This is the first report of a sesame semi-dwarf locus and provides an interesting opportunity for a plant architecture study of the sesame. For the sesame seed coat color, the QTLs of the color spaces L*, a*, and b* were detected with contribution rates of 3–46 %. qSCb-4.1 contributed approximately 39 % of the b* value and was located on Chr4 in a 199.9-kb space. A list of 32 candidate genes for the locus, including a predicted black seed coat-related gene, was determined by screening the newly anchored genome. Conclusions This study offers a high-density genetic map and an improved assembly of the sesame genome. The number of linkage groups and pseudomolecules in this assembly equals the number of sesame chromosomes for the first time. The map and updated genome assembly are expected to serve as a platform for future comparative genomics and genetic studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2316-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Qiuju Xia
- Shenzhen Engineering Laboratory of Crop Molecular Design Breeding, BGI-agro, 518083, Shenzhen, China.
| | - Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Xiaodong Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Xiaofeng Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Xuemei Ni
- Shenzhen Engineering Laboratory of Crop Molecular Design Breeding, BGI-agro, 518083, Shenzhen, China.
| | - Yuan Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Haitao Xiang
- Shenzhen Engineering Laboratory of Crop Molecular Design Breeding, BGI-agro, 518083, Shenzhen, China.
| | - Xin Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Jingyin Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Zhiwu Quan
- Shenzhen Engineering Laboratory of Crop Molecular Design Breeding, BGI-agro, 518083, Shenzhen, China.
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| |
Collapse
|
37
|
Wei X, Zhu X, Yu J, Wang L, Zhang Y, Li D, Zhou R, Zhang X. Identification of Sesame Genomic Variations from Genome Comparison of Landrace and Variety. FRONTIERS IN PLANT SCIENCE 2016; 7:1169. [PMID: 27536315 PMCID: PMC4971434 DOI: 10.3389/fpls.2016.01169] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/20/2016] [Indexed: 05/09/2023]
Abstract
Sesame (Sesamum indicum L.) is one of the main oilseed crops, providing vegetable oil and protein to human. Landrace is the gene source of variety, carrying many desire alleles for genetic improvement. Despite the importance of sesame landrace, genome of sesame landrace remains unexplored and genomic variations between landrace and variety still is not clear. To identify the genomic variations between sesame landrace and variety, two representative sesame landrace accessions, "Baizhima" and "Mishuozhima," were selected and re-sequenced. The genome sequencing and de novo assembling of the two sesame landraces resulted in draft genomes of 267 Mb and 254 Mb, respectively, with the contig N50 more than 47 kb. Totally, 1,332,025 SNPs and 506,245 InDels were identified from the genome of "Baizhima" and "Mishuozhima" by comparison of the genome of a variety "Zhongzhi13." Among the genomic variations, 70,018 SNPs and 8311 InDels were located in the coding regions of genes. Genomic variations may contribute to variation of sesame agronomic traits such as flowering time, plant height, and oil content. The identified genomic variations were successfully used in the QTL mapping and the black pigment synthesis gene, PPO, was found to be the candidate gene of sesame seed coat color. The comprehensively compared genomes of sesame landrace and modern variety produced massive useful genomic information, constituting a powerful tool to support genetic research, and molecular breeding of sesame.
Collapse
|
38
|
Su Y, Liu Y, Li Z, Fang Z, Yang L, Zhuang M, Zhang Y. QTL Analysis of Head Splitting Resistance in Cabbage (Brassica oleracea L. var. capitata) Using SSR and InDel Makers Based on Whole-Genome Re-Sequencing. PLoS One 2015; 10:e0138073. [PMID: 26406606 PMCID: PMC4583274 DOI: 10.1371/journal.pone.0138073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 08/26/2015] [Indexed: 11/19/2022] Open
Abstract
Head splitting resistance (HSR) in cabbage is an important trait closely related to both quality and yield of head. However, the genetic control of this trait remains unclear. In this study, a doubled haploid (DH) population derived from an intra-cross between head splitting-susceptible inbred cabbage line 79-156 and resistant line 96-100 was obtained and used to analyze inheritance and detect quantitative trait loci (QTLs) for HSR using a mixed major gene/polygene inheritance analysis and QTL mapping. HSR can be attributed to additive-epistatic effects of three major gene pairs combined with those of polygenes. Negative and significant correlations were also detected between head Hsr and head vertical diameter (Hvd), head transverse diameter (Htd) and head weight (Hw). Using the DH population, a genetic map was constructed with simple sequence repeat (SSR) and insertion-deletion (InDel) markers, with a total length of 1065.9 cM and average interval length of 4.4 cM between adjacent markers. Nine QTLs for HSR were located on chromosomes C3, C4, C7, and C9 based on 2 years of phenotypic data using both multiple-QTL mapping and inclusive composite interval mapping. The identified QTLs collectively explained 39.4 to 59.1% of phenotypic variation. Three major QTLs (Hsr 3.2, 4.2, 9.2) showing a relatively larger effect were robustly detected in different years or with different mapping methods. The HSR trait was shown to have complex genetic mechanisms. Results from QTL mapping and classical genetic analysis were consistent. The QTLs obtained in this study should be useful for molecular marker-assisted selection in cabbage breeding and provide a foundation for further research on HSR genetic regulation.
Collapse
Affiliation(s)
- Yanbin Su
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China
- Beijing Zhongnong Futong Horticulture Corporation Limited, Beijing 100083, People’s Republic of China
| | - Yumei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China
| | - Zhansheng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China
| |
Collapse
|
39
|
Wang L, Yu J, Li D, Zhang X. Sinbase: An Integrated Database to Study Genomics, Genetics and Comparative Genomics in Sesamum indicum. ACTA ACUST UNITED AC 2014; 56:e2. [DOI: 10.1093/pcp/pcu175] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Wu K, Liu H, Yang M, Tao Y, Ma H, Wu W, Zuo Y, Zhao Y. High-density genetic map construction and QTLs analysis of grain yield-related traits in sesame (Sesamum indicum L.) based on RAD-Seq techonology. BMC PLANT BIOLOGY 2014; 14:274. [PMID: 25300176 PMCID: PMC4200128 DOI: 10.1186/s12870-014-0274-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/03/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Sesame (Sesamum indicum L., 2n = 26) is an important oilseed crop with an estimated genome size of 369 Mb. The genetic basis, including the number and locations of quantitative trait loci (QTLs) of sesame grain yield and quality remain poorly understood, due in part to the lack of reliable markers and genetic maps. Here we report on the construction of a hitherto most high-density genetic map of sesame using the restriction-site associated DNA sequencing (RAD-seq) combined with 89 PCR markers, and the identification of grain yield-related QTLs using a recombinant inbred line (RIL) population. RESULT In total, 3,769 single-nucleotide polymorphism (SNP) markers were identified from RAD-seq, and 89 polymorphic PCR markers were identified including 44 expressed sequence tag-simple sequence repeats (EST-SSRs), 10 genomic-SSRs and 35 Insertion-Deletion markers (InDels). The final map included 1,230 markers distributed on 14 linkage groups (LGs) and was 844.46 cM in length with an average of 0.69 cM between adjacent markers. Using this map and RIL population, we detected 13 QTLs on 7 LGs and 17 QTLs on 10 LGs for seven grain yield-related traits by the multiple interval mapping (MIM) and the mixed linear composite interval mapping (MCIM), respectively. Three major QTLs had been identified using MIM with R2 > 10.0% or MCIM with ha 2 > 5.0%. Two co-localized QTL groups were identified that partially explained the correlations among five yield-related traits. CONCLUSION Three thousand eight hundred and four pairs of new DNA markers including SNPs and InDels were developed by RAD-seq, and a so far most high-density genetic map was constructed based on these markers in combination with SSR markers. Several grain yield-related QTLs had been identified using this population and genetic map. We report here the first QTL mapping of yield-related traits with a high-density genetic map using a RIL population in sesame. Results of this study solidified the basis for studying important agricultural traits and implementing marker-assisted selection (MAS) toward genetic improvement in sesame.
Collapse
Affiliation(s)
- Kun Wu
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| | - Hongyan Liu
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| | - Minmin Yang
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| | - Ye Tao
- />Shanghai Major Biological Medicine Technology Co., Ltd., Shanghai, 201203 China
| | - Huihui Ma
- />Fuyang Academy of Agricultural Sciences, Fuyang, Anhui 236065 China
| | - Wenxiong Wu
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| | - Yang Zuo
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| | - Yingzhong Zhao
- />Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062 China
| |
Collapse
|
41
|
Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C, Zhang Y, Zhang X, Wang Y, Hua W, Li D, Li D, Li F, Yu J, Xu C, Han X, Huang S, Tai S, Wang J, Xu X, Li Y, Liu S, Varshney RK, Wang J, Zhang X. Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 2014; 15:R39. [PMID: 24576357 PMCID: PMC4053841 DOI: 10.1186/gb-2014-15-2-r39] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 02/27/2014] [Indexed: 11/16/2022] Open
Abstract
Background Sesame, Sesamum indicum L., is considered the queen of oilseeds for its high oil content and quality, and is grown widely in tropical and subtropical areas as an important source of oil and protein. However, the molecular biology of sesame is largely unexplored. Results Here, we report a high-quality genome sequence of sesame assembled de novo with a contig N50 of 52.2 kb and a scaffold N50 of 2.1 Mb, containing an estimated 27,148 genes. The results reveal novel, independent whole genome duplication and the absence of the Toll/interleukin-1 receptor domain in resistance genes. Candidate genes and oil biosynthetic pathways contributing to high oil content were discovered by comparative genomic and transcriptomic analyses. These revealed the expansion of type 1 lipid transfer genes by tandem duplication, the contraction of lipid degradation genes, and the differential expression of essential genes in the triacylglycerol biosynthesis pathway, particularly in the early stage of seed development. Resequencing data in 29 sesame accessions from 12 countries suggested that the high genetic diversity of lipid-related genes might be associated with the wide variation in oil content. Additionally, the results shed light on the pivotal stage of seed development, oil accumulation and potential key genes for sesamin production, an important pharmacological constituent of sesame. Conclusions As an important species from the order Lamiales and a high oil crop, the sesame genome will facilitate future research on the evolution of eudicots, as well as the study of lipid biosynthesis and potential genetic improvement of sesame.
Collapse
|