1
|
Guzmán‐Mejía F, Molotla‐Torres DE, Godínez‐Victoria M, Valdes‐Hilarios X, Sánchez‐Miranda E, Oros‐Pantoja R, Drago‐Serrano ME. Looking Inside of the Intestinal Permeability Regulation by Protein-Derivatives from Bovine Milk. Mol Nutr Food Res 2024; 68:e2400384. [PMID: 39530631 PMCID: PMC11605791 DOI: 10.1002/mnfr.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/19/2024] [Indexed: 11/16/2024]
Abstract
The prime function of the epithelium is to regulate the intestinal permeability; the latter is a quantitative parameter that refers to the measurement of the rate of passage of solutes through the epithelial monolayer. Function of epithelial monolayer depends on the expression of protein complexes known as tight junction proteins; whose function and expression can be disrupted under conditions of inflammation including irritable bowel disease (IBD), intestinal infections, and high-fat diets, among others. This manuscript is focused to outline the effects of bovine milk protein derivatives on the intestinal permeability addressed mostly in animal models in which the intestinal barrier is disrupted. At present, the properties of bovine milk protein derivatives on intestinal permeability have been scarcely documented in humans, but evidence raised from clinical trials provides promising findings of potential application of colostrum to control of the intestinal permeability in critically ill patients, users of non-steroid anti-inflammatory drugs, like athletes and militia members.
Collapse
Affiliation(s)
- Fabiola Guzmán‐Mejía
- Departamento de Sistemas BiológicosUniversidad Autónoma Metropolitana Unidad XochimilcoCalzada del Hueso No. 1100Ciudad de México CP04960México
| | - Daniel Efrain Molotla‐Torres
- Doctorado en Ciencias Biológicas y de la SaludUniversidad Autónoma MetropolitanaCalzada del Hueso No. 1100Ciudad de México CP04960México
| | - Marycarmen Godínez‐Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico NacionalPlan de San Luis y Díaz Mirón s/nCiudad de México CP11340México
| | - Ximena Valdes‐Hilarios
- Departamento de Sistemas BiológicosUniversidad Autónoma Metropolitana Unidad XochimilcoCalzada del Hueso No. 1100Ciudad de México CP04960México
| | - Elizabeth Sánchez‐Miranda
- Departamento de Sistemas BiológicosUniversidad Autónoma Metropolitana Unidad XochimilcoCalzada del Hueso No. 1100Ciudad de México CP04960México
| | - Rigoberto Oros‐Pantoja
- Laboratorio de NeuroinmunoendocrinologíaFacultad de MedicinaUniversidad Autónoma del Estado de MéxicoToluca50180Mexico
| | - Maria Elisa Drago‐Serrano
- Departamento de Sistemas BiológicosUniversidad Autónoma Metropolitana Unidad XochimilcoCalzada del Hueso No. 1100Ciudad de México CP04960México
| |
Collapse
|
2
|
Wells JM, Gao Y, de Groot N, Vonk MM, Ulfman L, van Neerven RJJ. Babies, Bugs, and Barriers: Dietary Modulation of Intestinal Barrier Function in Early Life. Annu Rev Nutr 2022; 42:165-200. [PMID: 35697048 DOI: 10.1146/annurev-nutr-122221-103916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intestinal barrier is essential in early life to prevent infection, inflammation, and food allergies. It consists of microbiota, a mucus layer, an epithelial layer, and the immune system. Microbial metabolites, the mucus, antimicrobial peptides, and secretory immunoglobulin A (sIgA) protect the intestinal mucosa against infection. The complex interplay between these functionalities of the intestinal barrier is crucial in early life by supporting homeostasis, development of the intestinal immune system, and long-term gut health. Exclusive breastfeeding is highly recommended during the first 6 months. When breastfeeding is not possible, milk-based infant formulas are the only safe alternative. Breast milk contains many bioactive components that help to establish the intestinal microbiota and influence the development of the intestinal epithelium and the immune system. Importantly, breastfeeding lowers the risk for intestinal and respiratory tract infections. Here we review all aspects of intestinal barrier function and the nutritional components that impact its functionality in early life, such as micronutrients, bioactive milk proteins, milk lipids, and human milk oligosaccharides. These components are present in breast milk and can be added to milk-based infant formulas to support gut health and immunity. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jerry M Wells
- Host Microbe Interactomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Yifan Gao
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands
| | | | | | | | - R J Joost van Neerven
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands.,FrieslandCampina, Amersfoort, The Netherlands;
| |
Collapse
|
3
|
Sangild PT, Vonderohe C, Melendez Hebib V, Burrin DG. Potential Benefits of Bovine Colostrum in Pediatric Nutrition and Health. Nutrients 2021; 13:nu13082551. [PMID: 34444709 PMCID: PMC8402036 DOI: 10.3390/nu13082551] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Bovine colostrum (BC), the first milk produced from cows after parturition, is increasingly used as a nutritional supplement to promote gut function and health in other species, including humans. The high levels of whey and casein proteins, immunoglobulins (Igs), and other milk bioactives in BC are adapted to meet the needs of newborn calves. However, BC supplementation may improve health outcomes across other species, especially when immune and gut functions are immature in early life. We provide a review of BC composition and its effects in infants and children in health and selected diseases (diarrhea, infection, growth-failure, preterm birth, necrotizing enterocolitis (NEC), short-bowel syndrome, and mucositis). Human trials and animal studies (mainly in piglets) are reviewed to assess the scientific evidence of whether BC is a safe and effective antimicrobial and immunomodulatory nutritional supplement that reduces clinical complications related to preterm birth, infections, and gut disorders. Studies in infants and animals suggest that BC should be supplemented at an optimal age, time, and level to be both safe and effective. Exclusive BC feeding is not recommended for infants because of nutritional imbalances relative to human milk. On the other hand, adverse effects, including allergies and intolerance, appear unlikely when BC is provided as a supplement within normal nutrition guidelines for infants and children. Larger clinical trials in infant populations are needed to provide more evidence of health benefits when patients are supplemented with BC in addition to human milk or formula. Igs and other bioactive factors in BC may work in synergy, making it critical to preserve bioactivity with gentle processing and pasteurization methods. BC has the potential to become a safe and effective nutritional supplement for several pediatric subpopulations.
Collapse
Affiliation(s)
- Per Torp Sangild
- Comparative Pediatrics & Nutrition, University of Copenhagen, DK-1870 Copenhagen, Denmark;
- Department of Neonatology, Rigshospitalet, DK-1870 Copenhagen, Denmark
- Department of Pediatrics, Odense University Hospital, DK-5000 Odense, Denmark
| | - Caitlin Vonderohe
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
| | - Valeria Melendez Hebib
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
| | - Douglas G. Burrin
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
- Correspondence: ; Tel.: +1-713-798-7049
| |
Collapse
|
4
|
Zhu HL, Zhao XW, Han RW, DU QJ, Qi YX, Jiang HN, Huang DW, Yang YX. Changes in bacterial community and expression of genes involved in intestinal innate immunity in the jejunum of newborn lambs during the first 24 hours of life. J Dairy Sci 2021; 104:9263-9275. [PMID: 33985780 DOI: 10.3168/jds.2020-19888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
The newborn gut undergoes rapid colonization by commensal microorganisms and possible exposure to pathogens. The contribution of colostrum intake to host protection is well known; however, limited research exists on the intestinal innate immunity corresponding to colostrum intake during the passive immune transfer period in newborn ruminants. The aim of this study was to investigate the changes in bacterial community and expression of genes encoding toll-like receptors (TLR), mucins (MUC), antimicrobial peptides, and tight junctions in the jejunum of lambs that were fed colostrum during the first 24 h of life. Twenty-seven newborn lambs were used in this study, of which 18 lambs were bottle-fed pooled bovine colostrum within the first 2 h after birth to obtain an intake of approximately 8% of body weight. Lambs were slaughtered at 12 (n = 9) and 24 h (n = 9) after birth. The remaining 9 lambs without any feeding were slaughtered at 30 min after birth (0 h). Tissue and ligated segment samples from the jejunum were collected immediately after the lambs were slaughtered. The bacterial profile in the ligated jejunum segment was assessed using amplicon sequencing. The gene expression in the jejunum tissue was determined using quantitative real-time PCR. The relative abundances of Escherichia-Shigella, Lactobacillus, Lactococcus, and Streptococcus increased, whereas those of Sphingomonas, Phyllobacterium, Bradyrhizobium, and Rudaea decreased during the first 24 h of life. Expression of TLR2 and β-defensin 109-like was upregulated at 12 h after birth, but a recovery was detected at 24 h; TLR3, TLR5, LYZ, MUC1, MUC13, MUC20, and CLDN7 showed a higher expression level in samples taken at 24 h than in those taken at 0 h. In addition, expression level of CLDN1, CLDN4, and the junctional adhesion molecule-1 tended to be higher at 24 h than at 0 h after birth. Correlation analysis indicated that TLR2 expression was negatively correlated with the relative abundance of Lactobacillus and Bradyrhizobium, whereas TLR5 expression was positively correlated with the relative abundance of Escherichia-Shigella and Pelagibacterium. These results suggest that TLR, MUC, antimicrobial peptides, and CLDN act together and play an important role in intestinal defense during the passive immune transfer period. They are potentially associated with microbial colonization. The findings from this study provide novel information to elucidate the role of colostrum components in regulating the development of the intestinal mucosal immune barrier in newborn lambs during the passive immune transfer period.
Collapse
Affiliation(s)
- H L Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - X W Zhao
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - R W Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Q J DU
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Y X Qi
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - H N Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - D W Huang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Y X Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
5
|
Post-Delivery Milking Delay Influence on the Effect of Oral Supplementation with Bovine Colostrum as Measured with Intestinal Permeability Test. ACTA ACUST UNITED AC 2020; 56:medicina56100495. [PMID: 32987647 PMCID: PMC7598724 DOI: 10.3390/medicina56100495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022]
Abstract
Background and objective: The health supplement bovine colostrum reportedly improves immunity and regulates intestinal homeostasis. Reliable assessment methods are needed to ensure the satisfactory biological activity of all marketed colostrum products. Of the well-established effects of colostrum use, the restoration of appropriate intestinal permeability assessed with the lactulose/mannitol (L/M) differential sugar absorption test upon supplementation with colostrum has been consistently observed. Milking time after delivery is one of the factors that influences the composition of bovine colostrum, which causes a rapid decrease in bioactive components. Materials and methods: We use the L/M test to evaluate the intestinal permeability reduction upon supplementation with colostrum (2 × 500 mg) harvested at various times after delivery (2, 24, and 72 h) or a placebo (whey). In our randomized, double-blind placebo-controlled (DBPC) trial, 31 healthy athletes were divided into four groups and assessed at baseline and after the intervention. Results: The trial revealed that only colostrum collected after 2 h and 24 h caused a significant reduction of intestinal permeability. The comparison of post-intervention vs. baseline Δ values produced statistically significant results for 2 h colostrum versus the placebo and 72 h colostrum groups. Conclusions: We conclude that the change of bovine colostrum composition over the first three days of lactation is accompanied by a decrease in its biological activity as measured with the L/M test. This test may offer a biological quality measure for colostrum.
Collapse
|
6
|
Gupta R, Yin L, Grosche A, Lin S, Xu X, Guo J, Vaught LA, Okunieff PG, Vidyasagar S. An Amino Acid-Based Oral Rehydration Solution Regulates Radiation-Induced Intestinal Barrier Disruption in Mice. J Nutr 2020; 150:1100-1108. [PMID: 32133527 DOI: 10.1093/jn/nxaa025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/06/2020] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Radiotherapy inadvertently affects gastrointestinal (GI) epithelial cells, causing intestinal barrier disruption and increased permeability. OBJECTIVE We examined the effect of amino acid-based oral rehydration solution (AA-ORS) on radiation-induced changes of intestinal barrier function and epithelial tight junctions (TJs) in a randomized experimental study using a total-body irradiation (TBI) mouse model. METHODS Eight-week-old male Swiss mice received a single-dose TBI (0, 1, 3, or 5 Gy), and subsequent gastric gavage with AA-ORS (threonine, valine, serine, tyrosine, and aspartic acid) or saline for 2 or 6 d. Intestinal barrier function of mouse ileum was characterized by electrophysiological analysis of conductance, anion selectivity, and paracellular permeability [fluorescein isothiocyanate (FITC)-dextran]. Ultrastructural changes of TJs were evaluated by transmission electron microscopy. Membrane protein and mRNA expression of claudin-1, -2, -3, -5, and -7, occludin, and E-cadherin were analyzed with western blot, qPCR, and immunohistochemistry. Nonparametric tests were used to compare treatment-dose differences for each time point. RESULTS Saline-treated mice had a higher conductance at doses as low as 3 Gy, and as early as 2 d post-TBI compared with 0 Gy (P < 0.001). Paracellular permeability and dilution potential were increased 6 d after 5 Gy TBI (P < 0.001). Conductance decreased with AA-ORS after 2 d in 3-Gy and 5-Gy mice (P < 0.05 and P < 0.001), and on day 6 after 5 Gy TBI (P < 0.001). Anion selectivity and FITC permeability decreased from 0.73 ± 0.02 to 0.61 ± 0.03 pCl/pNa (P < 0.01) and from 2.7 ± 0.1 × 105 to 2.1 ± 0.1 × 105 RFU (P < 0.001) in 5-Gy mice treated with AA-ORS for 6 d compared with saline. Irradiation-induced ultrastructural changes of TJs characterized by decreased electron density and gap formation improved with AA-ORS. Reduced claudin-1, -3, and -7 membrane expression after TBI recovered with AA-ORS within 6 d, whereas claudin-2 decreased indicating restitution of TJ proteins. CONCLUSIONS Radiation-induced functional and structural disruption of the intestinal barrier in mice is reversed by AA-ORS rendering AA-ORS a potential treatment option in prospective clinical trials in patients with gastrointestinal barrier dysfunction.
Collapse
Affiliation(s)
- Reshu Gupta
- Entrinsic Health Solutions, Norwood, MA, USA
| | - Liangjie Yin
- Department of Radiation Oncology, University of Florida Shands Cancer Center, Gainesville, FL, USA
| | | | | | - Xiaodong Xu
- Department of Radiation Oncology, University of Florida Shands Cancer Center, Gainesville, FL, USA
| | - Jing Guo
- Department of Radiation Oncology, University of Florida Shands Cancer Center, Gainesville, FL, USA
| | - Lauren A Vaught
- Department of Radiation Oncology, University of Florida Shands Cancer Center, Gainesville, FL, USA
| | - Paul G Okunieff
- Department of Radiation Oncology, University of Florida Shands Cancer Center, Gainesville, FL, USA
| | - Sadasivan Vidyasagar
- Department of Radiation Oncology, University of Florida Shands Cancer Center, Gainesville, FL, USA
| |
Collapse
|
7
|
Triantafillidis JK, Tzouvala M, Triantafyllidi E. Enteral Nutrition Supplemented with Transforming Growth Factor-β, Colostrum, Probiotics, and Other Nutritional Compounds in the Treatment of Patients with Inflammatory Bowel Disease. Nutrients 2020; 12:E1048. [PMID: 32290232 PMCID: PMC7230540 DOI: 10.3390/nu12041048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Enteral nutrition seems to play a significant role in the treatment of both adults and children with active Crohn's disease, and to a lesser degree in the treatment of patients with active ulcerative colitis. The inclusion of some special factors in the enteral nutrition formulas might increase the rate of the efficacy. Actually, enteral nutrition enriched in Transforming Growth Factor-β reduced the activity index and maintained remission in patients with Crohn's disease. In addition, a number of experimental animal studies have shown that colostrum exerts a significantly positive result. Probiotics of a special type and a certain dosage could also reduce the inflammatory process in patients with active ulcerative colitis. Therefore, the addition of these factors in an enteral nutrition formula might increase its effectiveness. Although the use of these formulas is not supported by large clinical trials, it could be argued that their administration in selected cases as an exclusive diet or in combination with the drugs used in patients with inflammatory bowel disease could benefit the patient. In this review, the authors provide an update on the role of enteral nutrition, supplemented with Transforming Growth Factor-β, colostrum, and probiotics in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Maria Tzouvala
- Department of Gastroenterology “St Panteleimon” General Hospital, ZC 18454 Nicea, Greece;
| | | |
Collapse
|
8
|
Ogden HB, Child RB, Fallowfield JL, Delves SK, Westwood CS, Layden JD. The Gastrointestinal Exertional Heat Stroke Paradigm: Pathophysiology, Assessment, Severity, Aetiology and Nutritional Countermeasures. Nutrients 2020; 12:E537. [PMID: 32093001 PMCID: PMC7071449 DOI: 10.3390/nu12020537] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022] Open
Abstract
Exertional heat stroke (EHS) is a life-threatening medical condition involving thermoregulatory failure and is the most severe condition along a continuum of heat-related illnesses. Current EHS policy guidance principally advocates a thermoregulatory management approach, despite growing recognition that gastrointestinal (GI) microbial translocation contributes to disease pathophysiology. Contemporary research has focused to understand the relevance of GI barrier integrity and strategies to maintain it during periods of exertional-heat stress. GI barrier integrity can be assessed non-invasively using a variety of in vivo techniques, including active inert mixed-weight molecular probe recovery tests and passive biomarkers indicative of GI structural integrity loss or microbial translocation. Strenuous exercise is strongly characterised to disrupt GI barrier integrity, and aspects of this response correlate with the corresponding magnitude of thermal strain. The aetiology of GI barrier integrity loss following exertional-heat stress is poorly understood, though may directly relate to localised hyperthermia, splanchnic hypoperfusion-mediated ischemic injury, and neuroendocrine-immune alterations. Nutritional countermeasures to maintain GI barrier integrity following exertional-heat stress provide a promising approach to mitigate EHS. The focus of this review is to evaluate: (1) the GI paradigm of exertional heat stroke; (2) techniques to assess GI barrier integrity; (3) typical GI barrier integrity responses to exertional-heat stress; (4) the aetiology of GI barrier integrity loss following exertional-heat stress; and (5) nutritional countermeasures to maintain GI barrier integrity in response to exertional-heat stress.
Collapse
Affiliation(s)
- Henry B. Ogden
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| | - Robert B. Child
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2QU, UK;
| | | | - Simon K. Delves
- Institute of Naval Medicine, Alverstoke PO12 2DW, UK; (J.L.F.); (S.K.D.)
| | - Caroline S. Westwood
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| | - Joseph D. Layden
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| |
Collapse
|
9
|
Reiner J, Berlin P, Wobar J, Schäffler H, Bannert K, Bastian M, Vollmar B, Jaster R, Lamprecht G, Witte M. Teduglutide Promotes Epithelial Tight Junction Pore Function in Murine Short Bowel Syndrome to Alleviate Intestinal Insufficiency. Dig Dis Sci 2020; 65:3521-3537. [PMID: 32072437 PMCID: PMC7661426 DOI: 10.1007/s10620-020-06140-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND In short bowel syndrome, epithelial surface loss results in impaired nutrient absorption and may lead to intestinal insufficiency or intestinal failure. Nucleotide oligomerization domain 2 (Nod2) dysfunction predisposes to the development of intestinal failure after intestinal resection and is associated with intestinal barrier defects. Epithelial barrier function is crucial for intestinal absorption and for intestinal adaptation in the short bowel situation. AIMS The aim of the study was to characterize the effects of the GLP-2 analogue Teduglutide in the small intestine in the presence and absence of Nod2 in a mouse model of short bowel syndrome. METHODS Mice underwent 40% ICR and were thereafter treated with Teduglutide versus vehicle injections. Survival, body weight, stool water, and sodium content and plasma aldosterone concentrations were determined. Intestinal and kidney tissue was examined with light and fluorescence microscopy, Ussing chamber studies and quantitative PCR in wild type and transgenic mice. RESULTS Teduglutide reduced intestinal failure incidence in Nod2 k.o. mice. In wt mice, Teduglutide attenuated intestinal insufficiency as indicated by reduced body weight loss and lower plasma aldosterone concentrations, lower stool water content, and lower stool sodium losses. Teduglutide treatment was associated with enhanced epithelial paracellular pore function and enhanced claudin-10 expression in tight junctions in the villus tips, where it colocalized with sodium-glucose cotransporter 1 (SGLT-1), which mediates Na-coupled glucose transport. CONCLUSIONS In the SBS situation, Teduglutide not only maximizes small intestinal mucosal hypertrophy but also partially restores small intestinal epithelial function through an altered distribution of claudin-10, facilitating sodium recirculation for Na-coupled glucose transport and water absorption.
Collapse
Affiliation(s)
- Johannes Reiner
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Peggy Berlin
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Jakob Wobar
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Holger Schäffler
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Karen Bannert
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Manuela Bastian
- Institute for Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057 Rostock, Germany
| | - Robert Jaster
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Georg Lamprecht
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Maria Witte
- Department of General, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| |
Collapse
|
10
|
Filipescu IE, Leonardi L, Menchetti L, Guelfi G, Traina G, Casagrande-Proietti P, Piro F, Quattrone A, Barbato O, Brecchia G. Preventive effects of bovine colostrum supplementation in TNBS-induced colitis in mice. PLoS One 2018; 13:e0202929. [PMID: 30138385 PMCID: PMC6107273 DOI: 10.1371/journal.pone.0202929] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder for which the current medical therapy is not completely effective. Bovine colostrum (BC) is a biological fluid rich in bioactive molecules that may have beneficial effects on several gastrointestinal disorders. The objectives of this study were to assess the preventive effects of BC supplementation in a mouse model of 2,4,6 trinitrobenzene sulfonic acid (TNBS)-induced colitis using a multidisciplinary approach. Specifically, the following parameters were evaluated: (i) disease activity index (DAI), (ii) histological score, (iii) expression levels of TLR4, anti- and pro-inflammatory cytokines, and (iv) count of some bacterial species of the intestinal microbiota. Mice received a daily suspension of BC (BC group, n = 12) or saline solution (control, CN group, n = 12) for 21 days before the intrarectal inoculation with 1% of TNBS solution. BC was well tolerated and did not induce any histological damage or clinical symptoms. After TNBS treatment, BC group showed a reduction of body weight (BW) loss (P<0.01) and histological score (P<0.05) compared to CN. Moreover, the expression levels of TLR4 (P<0.05), IL-1β (P<0.001), IL-8 (P<0.001), and IL-10 (P<0.001) were lower in mice administered with BC, while the concentrations of TNF-α did not show any differences between groups. Finally, the supplementation with BC resulted in a differential response to TNBS treatment in the bacterial count. In CN group, E. coli and Enterococci increased (P<0.001), while Anaerobes (P<0.01), Lactobacilli, and Bifidobacteria (P<0.001) reduced. Conversely, no significant changes in bacterial load were found after the inoculation of TNBS in BC pre-treated mice. This study confirms that TNBS-induced colitis model in mice is useful for studying the mechanisms involved in IBD pathogenesis and shows that pre-treatment with BC reduces the intestinal damages and clinical signs of the colitis. Molecular mechanisms and intestinal microflora could be involved in the protective effect of colostrum.
Collapse
Affiliation(s)
| | - Leonardo Leonardi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Laura Menchetti
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Federica Piro
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Alda Quattrone
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Olimpia Barbato
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
11
|
The effect of bovine colostrum supplementation on intestinal injury and circulating intestinal bacterial DNA following exercise in the heat. Eur J Nutr 2018; 58:1441-1451. [PMID: 29574607 PMCID: PMC6561991 DOI: 10.1007/s00394-018-1670-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023]
Abstract
Purpose Exercise-induced changes in intestinal permeability are exacerbated in the heat. The aim of this study was to determine the effect of 14 days of bovine colostrum (Col) supplementation on intestinal cell damage (plasma intestinal fatty acid-binding protein, I-FABP) and bacterial translocation (plasma bacterial DNA) following exercise in the heat. Methods In a double-blind, placebo-controlled, crossover design, 12 males completed two experimental arms (14 days of 20 g/day supplementation with Col or placebo, Plac) consisting of 60 min treadmill running at 70% maximal aerobic capacity (30 °C, 60% relative humidity). Blood samples were collected pre-exercise (Pre-Ex), post-exercise (Post-Ex) and 1 h post-exercise (1 h Post-Ex) to determine plasma I-FABP concentration, and bacterial DNA (for an abundant gut species, Bacteroides). Results Two-way repeated measures ANOVA revealed an arm × time interaction for I-FABP (P = 0.005, with greater Post-Ex increase in Plac than Col, P = 0.01: Plac 407 ± 194% of Pre-Ex vs Col, 311 ± 134%) and 1 h Post-Ex (P = 0.036: Plac 265 ± 80% of Pre-Ex vs Col, 229 ± 56%). There was no interaction (P = 0.904) but there was a main effect of arm (P = 0.046) for plasma Bacteroides/total bacterial DNA, with lower overall levels evident in Col. Conclusion This is the first investigation to demonstrate that Col can be effective at reducing intestinal injury following exercise in the heat, but exercise responses (temporal pattern) of bacterial DNA were not influenced by Col (although overall levels may be lower).
Collapse
|
12
|
Perdijk O, van Splunter M, Savelkoul HFJ, Brugman S, van Neerven RJJ. Cow's Milk and Immune Function in the Respiratory Tract: Potential Mechanisms. Front Immunol 2018; 9:143. [PMID: 29483908 PMCID: PMC5816034 DOI: 10.3389/fimmu.2018.00143] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
During the last decades, the world has witnessed a dramatic increase in allergy prevalence. Epidemiological evidence shows that growing up on a farm is a protective factor, which is partly explained by the consumption of raw cow’s milk. Indeed, recent studies show inverse associations between raw cow’s milk consumption in early life and asthma, hay fever, and rhinitis. A similar association of raw cow’s milk consumption with respiratory tract infections is recently found. In line with these findings, controlled studies in infants with milk components such as lactoferrin, milk fat globule membrane, and colostrum IgG have shown to reduce respiratory infections. However, for ethical reasons, it is not possible to conduct controlled studies with raw cow’s milk in infants, so formal proof is lacking to date. Because viral respiratory tract infections and aeroallergen exposure in children may be causally linked to the development of asthma, it is of interest to investigate whether cow’s milk components can modulate human immune function in the respiratory tract and via which mechanisms. Inhaled allergens and viruses trigger local immune responses in the upper airways in both nasal and oral lymphoid tissue. The components present in raw cow’s milk are able to promote a local microenvironment in which mucosal immune responses are modified and the epithelial barrier is enforced. In addition, such responses may also be triggered in the gut after exposure to allergens and viruses in the nasal cavity that become available in the GI tract after swallowing. However, these immune cells that come into contact with cow’s milk components in the gut must recirculate into the blood and home to the (upper and lower) respiratory tract to regulate immune responses locally. Expression of the tissue homing-associated markers α4β7 and CCR9 or CCR10 on lymphocytes can be influenced by vitamin A and vitamin D3, respectively. Since both vitamins are present in milk, we speculate that raw milk may influence homing of lymphocytes to the upper respiratory tract. This review focuses on potential mechanisms via which cow’s milk or its components can influence immune function in the intestine and the upper respiratory tract. Unraveling these complex mechanisms may contribute to the development of novel dietary approaches in allergy and asthma prevention.
Collapse
Affiliation(s)
- Olaf Perdijk
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Marloes van Splunter
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Sylvia Brugman
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - R J Joost van Neerven
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands.,FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
13
|
March DS, Marchbank T, Playford RJ, Jones AW, Thatcher R, Davison G. Intestinal fatty acid-binding protein and gut permeability responses to exercise. Eur J Appl Physiol 2017; 117:931-941. [PMID: 28290057 PMCID: PMC5388720 DOI: 10.1007/s00421-017-3582-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/26/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE Intestinal cell damage due to physiological stressors (e.g. heat, oxidative, hypoperfusion/ischaemic) may contribute to increased intestinal permeability. The aim of this study was to assess changes in plasma intestinal fatty acid-binding protein (I-FABP) in response to exercise (with bovine colostrum supplementation, Col, positive control) and compare this to intestinal barrier integrity/permeability (5 h urinary lactulose/rhamnose ratio, L/R). METHODS In a double-blind, placebo-controlled, crossover design, 18 males completed two experimental arms (14 days of 20 g/day supplementation with Col or placebo, Plac). For each arm participants performed two baseline (resting) intestinal permeability assessments (L/R) pre-supplementation and one post-exercise following supplementation. Blood samples were collected pre- and post-exercise to determine I-FABP concentration. RESULTS Two-way repeated measures ANOVA revealed an arm × time interaction for L/R and I-FABP (P < 0.001). Post hoc analyses showed urinary L/R increased post-exercise in Plac (273% of pre, P < 0.001) and Col (148% of pre, P < 0.001) with post-exercise values significantly lower with Col (P < 0.001). Plasma I-FABP increased post-exercise in Plac (191% of pre-exercise, P = 0.002) but not in the Col arm (107%, P = 0.862) with post-exercise values significantly lower with Col (P = 0.013). Correlations between the increase in I-FABP and L/R were evident for visit one (P = 0.044) but not visit two (P = 0.200) although overall plots/patterns do appear similar for each. CONCLUSION These findings suggest that exercise-induced intestinal cellular damage/injury is partly implicated in changes in permeability but other factors must also contribute.
Collapse
Affiliation(s)
- Daniel S March
- Department of Infection, Immunity and Inflammation, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK
| | - Tania Marchbank
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
- Peninsula Medical School, Plymouth University, The John Bull Building, Tamar Science Park, Research Way, Plymouth, UK
| | - Raymond J Playford
- Peninsula Medical School, Plymouth University, The John Bull Building, Tamar Science Park, Research Way, Plymouth, UK
| | - Arwel W Jones
- Lincoln Institute for Health, University of Lincoln, Lincoln, UK
| | - Rhys Thatcher
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Glen Davison
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Medway Campus, Chatham Maritime, ME4 4AG, UK.
| |
Collapse
|
14
|
Bagwe S, Tharappel LJP, Kaur G, Buttar HS. Bovine colostrum: an emerging nutraceutical. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2016; 12:175-85. [PMID: 25781716 DOI: 10.1515/jcim-2014-0039] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 01/29/2015] [Indexed: 02/02/2023]
Abstract
Nutraceutical, a term combining the words "nutrition" and "pharmaceuticals", is a food or food product that provides health benefits as an adjuvant or alternative therapy, including the treatment and prevention of infectious diseases in children and adults. There is emerging evidence that bovine colostrum (BC) may be one of the promising nutraceuticals which can prevent or mitigate various diseases in newborns and adults. Immunity-related disorders are one of the leading causes of mortality in the world. BC is rich in immunity, growth and antimicrobial factors, which promote tissue growth and the maturation of digestive tract and immune function in neonatal animals and humans. The immunoglobulins and lactoferrin present in colostrum are known to build natural immunity in newborns which helps to reduce the mortality rate in this population. Also, the side-effect profile of colostrum proteins and possible lactose intolerance is relatively less in comparison with milk. In general, BC is considered safe and well tolerated. Since colostrum has several important nutritional constituents, well-designed, double-blind, placebo-controlled studies with colostrum products should be conducted to widen its therapeutic use. The objectives of this review are to create awareness about the nutraceutical properties of colostrum and to discuss the various ongoing alternative treatments of colostrum and its active ingredients as well as to address colostrum's future nutraceutical and therapeutic implications in humans.
Collapse
|
15
|
Morrison SA, Cheung SS, Cotter JD. Bovine colostrum, training status, and gastrointestinal permeability during exercise in the heat: a placebo-controlled double-blind study. Appl Physiol Nutr Metab 2014; 39:1070-82. [PMID: 25068884 DOI: 10.1139/apnm-2013-0583] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heat stress can increase gastrointestinal permeability, allowing ingress of gram-negative bacterial fragments and thus potentially inflammation and ultimately endotoxemia. Permeability may rise with intense exercise, yet some data indicate that endotoxemia may be mitigated with bovine colostrum supplementation. Using a double-blind, randomised, placebo-controlled crossover study, we tested whether bovine colostrum (COL; 1.7 g·kg(-1)·day(-1) for 7 days) would attenuate physiological strain and aid exercise capacity in the heat, especially in untrained individuals. Seven trained men (T; peak oxygen uptake 64 ± 4 mL·kg(-1)·min(-1)) and 8 untrained men (UT, peak oxygen uptake 46 ± 4 mL·kg(-1)·min(-1)) exercised for 90 min in 30 °C (50 % relative humidity) after COL or placebo (corn flour). Exercise consisted of 15-min cycling at 50 % heart rate reserve (HRR) before and after 60 min of running (30 min at 80 % HRR then 30-min distance trial). Heart rate, blood pressure (Finometer), esophageal, and skin temperatures were recorded continuously. Gastrointestinal permeability was assessed from urine (double-sugar model, using high-performance liquid chromatography) and blood (intestinal fatty acid-binding protein, I-FABP). The T group ran ∼2.4 km (35%) further than the UT group in the distance trial, and I-FABP increased more in the T group than in the UT group, but physiological and performance outcomes were unaffected by colostrum supplementation, irrespective of fitness. Circulating pro- and anti-inflammatory cytokine concentrations were higher following exercise, but were not modulated by fitness or COL. Despite substantial thermal and cardiovascular strain incurred in environmental conditions in which exertional endotoxemia may occur, bovine colostrum supplementation had no observable benefit on the physiology or performance of either highly trained endurance athletes or untrained individuals.
Collapse
Affiliation(s)
- Shawnda A Morrison
- a School of Physical Education, Sport and Exercise Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | | | | |
Collapse
|
16
|
Stelwagen K, Singh K. The role of tight junctions in mammary gland function. J Mammary Gland Biol Neoplasia 2014; 19:131-8. [PMID: 24249583 DOI: 10.1007/s10911-013-9309-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/29/2013] [Indexed: 10/26/2022] Open
Abstract
Tight junctions (TJ) are cellular structures that facilitate cell-cell communication and are important in maintaining the three-dimensional structure of epithelia. It is only during the last two decades that the molecular make-up of TJ is becoming unravelled, with two major transmembrane-spanning structural protein families, called occludin and claudins, being the true constituents of the TJ. These TJ proteins are linked via specific scaffolding proteins to the cell's cytoskeleton. In the mammary gland TJ between adjacent secretory epithelial cells are formed during lactogenesis and are instrumental in establishing and maintaining milk synthesis and secretion, whereas TJ integrity is compromised during mammary involution and also as result of mastitis and periods of mammary inflamation (including mastitis). They prevent the paracellular transport of ions and small molecules between the blood and milk compartments. Formation of intact TJ at the start of lactation is important for the establishment of the lactation. Conversely, loss of TJ integrity has been linked to reduced milk secretion and mammary function and increased paracellular transport of blood components into the milk and vice versa. In addition to acting as a paracellular barrier, the TJ is increasingly linked to playing an active role in intracellular signalling. This review focusses on the role of TJ in mammary function of the normal, non-malignant mammary gland, predominantly in ruminants, the major dairy producing species.
Collapse
Affiliation(s)
- Kerst Stelwagen
- SciLactis Ltd, Waikato Innovation Park, Hamilton, 3240, New Zealand,
| | | |
Collapse
|