1
|
Liu W, Ming S, Zhao X, Zhu X, Gong Y. Developmental expression of high-mobility group box 1 (HMGB1) in the mouse cochlea. Eur J Histochem 2023; 67:3704. [PMID: 37667832 PMCID: PMC10518653 DOI: 10.4081/ejh.2023.3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
The expression changes of high-mobility group box 1 (HMGB1) in the mouse cochlea have recently been implicated in noise-induced hearing loss, suggesting that HMGB1 participates in regulating cochlear function. However, the precise role of HMGB1 in the auditory system remains largely unclear. This study aimed to investigate its function in the developing mouse cochlea by examining the expression pattern of HMGB1 in the mouse cochlea from embryonic day (E) 18.5 to postnatal day (P) 28 using double immunofluorescence on frozen sections. Our findings revealed that HMGB1 was extensively expressed in the cell nucleus across various regions of the mouse cochlea, including the organ of Corti. Furthermore, its expression underwent developmental regulation during mouse cochlear development. Specifically, HMGB1 was found to be localized in the tympanic border cells at each developmental stage, coinciding with the gradual anatomical in this region during development. In addition, HMGB1 was expressed in the greater epithelial ridge (GER) and supporting cells of the organ of Corti, as validated by the supporting cell marker Sox2 at P1 and P8. However, at P14, the expression of HMGB1 disappeared from the GER, coinciding with the degeneration of the GER into the inner sulcus cells. Moreover, we observed that HMGB1 co-localized with Ki-67-positive proliferating cells in several cochlear regions during late embryonic and early postnatal stages, including the GER, the tympanic border cells, cochlear lateral wall, and cochlear nerves. Furthermore, by dual-staining Ki-67 with neuronal marker TUJ1 and glial marker Sox10, we determined the expression of Ki-67 in the neonatal glial cells. Our spatial-temporal analysis demonstrated that HMGB1 exhibited distinct expression patterns during mouse cochlear development. The co-localization of HMGB1 with Ki-67-positive proliferating cells suggested that HMGB1 may play a role in cochlear development.
Collapse
Affiliation(s)
- Wenjing Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing.
| | - Shanshan Ming
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing.
| | - Xiaobing Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing.
| | - Xin Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing.
| | - Yuxiang Gong
- Department of Nephrology, Zhongda Hospital, Southeast University, Nanjing.
| |
Collapse
|
2
|
Tamber SS, Bansal P, Sharma S, Singh RB, Sharma R. Biomarkers of liver diseases. Mol Biol Rep 2023; 50:7815-7823. [PMID: 37482588 DOI: 10.1007/s11033-023-08666-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
The liver is one of the pivotal organs in the human body and is fundamentally responsible for detoxification and metabolism. Various disorders such as non-alcoholic fatty liver disease, fibrosis, cirrhosis, hepatocellular carcinoma, and hepatitis are associated with improper functions of the liver. Hence, biomarkers are needed to determine the severity. Further, many liver enzymes, including the cascade of aspartate aminotransferase (AST)/serum glutamic oxaloacetic transaminase (SGOT), alanine aminotransferase (ALT)/serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (GGT), and total bilirubin (TBIL), are conventional liver biomarkers. They are not, however, unique to the liver; hence, efforts are being made to identify the precise biomarkers for liver illness that can target liver diseases. HMGB1, cytokeratin 18 (K18), glutathione-S-transferase-α (GST-α), glutamate dehydrogenase (GLDH), malate dehydrogenase (MDH), and microRNAs (miRNA) are a few examples of developing biomarkers used to detect many liver diseases. Hence, the review has highlighted various novel biomarkers of the liver so that various pathophysiological pathways and treatments can be made easier.
Collapse
Affiliation(s)
- Sukhbir Singh Tamber
- University School of Pharmaceutical Sciences, Rayat-Bahra University, Mohali, Punjab, 140103, India
| | - Palak Bansal
- University School of Pharmaceutical Sciences, Rayat-Bahra University, Mohali, Punjab, 140103, India
| | - Suraj Sharma
- University School of Pharmaceutical Sciences, Rayat-Bahra University, Mohali, Punjab, 140103, India
| | - Rai Barinder Singh
- University School of Pharmaceutical Sciences, Rayat-Bahra University, Mohali, Punjab, 140103, India
| | - Ramica Sharma
- University School of Pharmaceutical Sciences, Rayat-Bahra University, Mohali, Punjab, 140103, India.
| |
Collapse
|
3
|
Ye S, Mahmood DFD, Ma F, Leng L, Bucala R, Vera PL. Urothelial Oxidative Stress and ERK Activation Mediate HMGB1-Induced Bladder Pain. Cells 2023; 12:1440. [PMID: 37408274 PMCID: PMC10217556 DOI: 10.3390/cells12101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
Activation of intravesical protease activated receptors-4 (PAR4) results in bladder pain through the release of urothelial macrophage migration inhibitory factor (MIF) and high mobility group box-1 (HMGB1). We aimed to identify HMGB1 downstream signaling events at the bladder that mediate HMGB1-induced bladder pain in MIF-deficient mice to exclude any MIF-related effects. We studied whether oxidative stress and ERK activation are involved by examining bladder tissue in mice treated with intravesical disulfide HMGB1 for 1 h and analyzed with Western blot and immunohistochemistry. HMGB1 intravesical treatment increased urothelium 4HNE and phospho-ERK1/2 staining, suggesting that HMGB1 increased urothelial oxidative stress and ERK activation. Furthermore, we examined the functional roles of these events. We evaluated lower abdominal mechanical thresholds (an index of bladder pain) before and 24 h after intravesical PAR4 or disulfide HMGB1. Intravesical pre-treatments (10 min prior) included: N-acetylcysteine amide (NACA, reactive oxygen species scavenger) and FR180204 (FR, selective ERK1/2 inhibitor). Awake micturition parameters (voided volume; frequency) were assessed at 24 h after treatment. Bladders were collected for histology at the end of the experiment. Pre-treatment with NACA or FR significantly prevented HMGB1-induced bladder pain. No significant effects were noted on micturition volume, frequency, inflammation, or edema. Thus, HMGB1 activates downstream urothelial oxidative stress production and ERK1/2 activation to mediate bladder pain. Further dissection of HMGB1 downstream signaling pathway may lead to novel potential therapeutic strategies to treat bladder pain.
Collapse
Affiliation(s)
- Shaojing Ye
- Lexington VA Health Care System, Research & Development, Lexington, KY 40502, USA
| | - Dlovan F. D. Mahmood
- Lexington VA Health Care System, Research & Development, Lexington, KY 40502, USA
| | - Fei Ma
- Lexington VA Health Care System, Research & Development, Lexington, KY 40502, USA
| | - Lin Leng
- Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Pedro L. Vera
- Lexington VA Health Care System, Research & Development, Lexington, KY 40502, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
4
|
Bushra S, Al-Sadeq DW, Bari R, Sahara A, Fadel A, Rizk N. Adiponectin Ameliorates Hyperglycemia-Induced Retinal Endothelial Dysfunction, Highlighting Pathways, Regulators, and Networks. J Inflamm Res 2022; 15:3135-3166. [PMID: 35662872 PMCID: PMC9156523 DOI: 10.2147/jir.s358594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/04/2022] [Indexed: 12/25/2022] Open
Abstract
Background The pathophysiology of diabetic retinopathy (DR) is multifaced. A low level of circulating adiponectin (APN) in type 2 diabetes is associated with microvasculature complications, and its role in the evolution of DR is complex. Aim This study is designed to explore the potential impact of APN in the pathogenesis of DR, linking the changes in cellular and biological processes with the pathways, networks, and regulators involved in its actions. Methods Human microvascular retinal endothelial cells (HMRECs) were exposed to 30mM glucose (HG) and treated with globular adiponectin (30μg/mL) for 24 hours. The cells were evaluated for reactive oxidative stress (ROS) and apoptosis. RT-PCR profile arrays were utilized to evaluate the profile of genes involved in endothelial functions, angiogenesis, extracellular matrix, and adhesion molecules for hyperglycemic HMRECs treated with adiponectin. In addition, the barrier function, leukocyte migration, and angiogenesis were evaluated. The differential expressed genes (DEGs) were outlined, and bioinformatic analysis was applied. Results Adiponectin suppresses ROS production and apoptosis in HMRECs under HG conditions. Adiponectin improved migration and barrier functions in hyperglycemic cells. The bioinformatic analysis highlighted that the signaling pathways of integrin, HMGB1, and p38 AMPK, are mainly involved in the actions of APN on HMRECs. APN significantly affects molecular functions, including the adhesion of cells, chemotaxis, migration of WBCs, and angiogenesis. STAT3, NFKB, IKBKB, and mir-8 are the top upstream regulators, which affect the expressions of the genes of the data set, while TNF and TGFB1 are the top regulators. Conclusion Adiponectin significantly counteracts hyperglycemia at various cellular and molecular levels, reducing its impact on the pathophysiological progression towards DR in vitro using HMRECs. Adiponectin ameliorates inflammatory response, oxidative stress, and endothelial barrier dysfunction using a causal network of NFBk complex, TNF, and HMGB1 and integrin pathways.
Collapse
Affiliation(s)
- Sumbul Bushra
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha, Qatar
| | - Duaa W Al-Sadeq
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha, Qatar
| | - Redwana Bari
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha, Qatar
| | - Afifah Sahara
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha, Qatar
| | - Amina Fadel
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha, Qatar
| | - Nasser Rizk
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha, Qatar
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
- Correspondence: Nasser Rizk, Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, P.O. Box 2713, Doha, Qatar, Tel +974-4403-4786, Email
| |
Collapse
|
5
|
Ren S, Pan L, Yang L, Niu Z, Wang L, Feng H, Yuan M. miR-29a-3p transferred by mesenchymal stem cells-derived extracellular vesicles protects against myocardial injury after severe acute pancreatitis. Life Sci 2021; 272:119189. [PMID: 33571516 DOI: 10.1016/j.lfs.2021.119189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 02/05/2023]
Abstract
AIMS Acute pancreatitis (AP) is an inflammatory disease of the pancreas that may affect local tissues or remote organ systems, while severe acute pancreatitis (SAP) is a life-threatening disorder associated with multiple organ failure. In this investigation, we set about to determine whether microRNA-29a-3p (miR-29a-3p) carried by mesenchymal stem cell (MSCs)-derived extracellular vesicles (EVs) affects the myocardial injury during SAP. MAIN METHODS EVs were isolated from MSCs of rat bone marrow by differential centrifugation. An SAP rat model was developed and treated with MSCs-EVs and/or alteration of miR-29a-3p and HMGB1 expression, followed by assessment of the rats' cardiac function and inflammation. Next, cardiomyocytes H9C2 were co-cultured with MSC-EVs and internalization of EVs was evaluated, followed by evaluation of whether EVs could transmit miR-29a-3p cargos into H9C2 cells and affect their biological functions. KEY FINDINGS EVs derived from MSCs were observed to protect against SAP-induced myocardial injury. In SAP-induced rats, miR-29a-3p was under-expressed in myocardial tissues. In addition, we also confirmed that miR-29a-3p could be transferred into the H9C2 cardiomyocytes by MSC-derived EVs, which downregulated the expression of inflammatory markers and improve cardiac function to attenuate myocardial injury. Furthermore, miR-29a-3p inhibited the expression of HMGB1 to downregulate TLR4 expression and further inactivate the Akt signaling pathway. SIGNIFICANCE These findings support the cardioprotective action of miR-29a-3p transmitted by MSCs-derived EVs in SAP-induced myocardial injury via downregulation of the HMGB1/TLR4/Akt axis, highlighting a promising target for the EV-based therapy for SAP.
Collapse
Affiliation(s)
- Song Ren
- Department of Geriatric Digestive Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Linqing Yang
- Department of Nursing, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Zequn Niu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Liming Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Hui Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Miao Yuan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| |
Collapse
|
6
|
Ni YA, Chen H, Nie H, Zheng B, Gong Q. HMGB1: An overview of its roles in the pathogenesis of liver disease. J Leukoc Biol 2021; 110:987-998. [PMID: 33784425 DOI: 10.1002/jlb.3mr0121-277r] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/06/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is an abundant architectural chromosomal protein that has multiple biologic functions: gene transcription, DNA replication, DNA-damage repair, and cell signaling for inflammation. HMGB1 can be released passively by necrotic cells or secreted actively by activated immune cells into the extracellular milieu after injury. Extracellular HMGB1 acts as a damage-associated molecular pattern to initiate the innate inflammatory response to infection and injury by communicating with neighboring cells through binding to specific cell-surface receptors, including Toll-like receptors (TLRs) and the receptor for advanced glycation end products (RAGE). Numerous studies have suggested HMGB1 to act as a key protein mediating the pathogenesis of chronic and acute liver diseases, including nonalcoholic fatty liver disease, hepatocellular carcinoma, and hepatic ischemia/reperfusion injury. Here, we provide a detailed review that focuses on the role of HMGB1 and HMGB1-mediated inflammatory signaling pathways in the pathogenesis of liver diseases.
Collapse
Affiliation(s)
- Yuan-Ao Ni
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Hui Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| |
Collapse
|
7
|
Chang SH, Liu JY, Hsiao MW, Yang HL, Wang GW, Ye JC. Protective Effects of Ocimum gratissimumAqueous Extracts on HaCaT Cells Against UVC-Induced Inhibition of Cell Viability and Migration. Int J Med Sci 2021; 18:2086-2092. [PMID: 33850479 PMCID: PMC8040403 DOI: 10.7150/ijms.54644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Ultraviolet C (UVC) has been applied to treatment of infections in wounds for at least the last two decades, however, cells being treated can be damaged if exposure is prolonged, which calls for protective measures, such as drug or herbal pre-treatment, to minimize damage. Ocimum gratissimum contains plant polyphenols such as isoflavones and caffeic acid, which have antioxidant effects. We hypothesize that Ocimum gratissimum aqueous extracts (OGE) can inhibit UVC-induced oxidative damage on skin cells. In this study, HaCaT skin cells are used to test the protective effects of OGE on cell proliferation and migration after exposure to UVC radiation. Pretreatment with OGE (50~150μg/mL) before 40 J/m2 UVC exposure was able to restore survival from 32.25% to between 46.77% and 68.00%, and 80 J/m2 UVC exposure from 11.49% to between 19.07% and 43.04%. Morphological observation of primarily apoptotic cell death confirms the above findings. The flow cytometry analysis revealed that UVC increased the number of cells at the sub-G1 phase in a dose dependent manner, and when pre-treated with OGE the changes were partially reversed. Moreover, the wound healing test for observing migration showed that UVC 40-80 J/m2 decreased cell migration to 47-28% activity and 100 μg/mL OGE was able to restore cell activity to81-69% at day 3. Based on the above results, we suggest that OGE has a protective effect on UVC-induced inhibition of cell proliferation and migration of skin cells and thus has potential application in wound care.
Collapse
Affiliation(s)
- Sheng-Huang Chang
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
| | - Jer-Yuh Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Meen-Woon Hsiao
- School of Applied Chemistry, Chung-Shan Medical University, Taichung, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Guan-Wei Wang
- School of Applied Chemistry, Chung-Shan Medical University, Taichung, Taiwan
| | - Je-Chiuan Ye
- Department of Bachelor's Degree Program for Indigenous Peoples in Senior Health and Care Management, National Taitung University, Taitung, Taiwan.,Master Program in Biomedical Science, National Taitung University, Taitung, Taiwan
| |
Collapse
|
8
|
Zhang Y, Li Y, Mu T, Tong N, Cheng P. Hepatic stellate cells specific liposomes with the Toll-like receptor 4 shRNA attenuates liver fibrosis. J Cell Mol Med 2021; 25:1299-1313. [PMID: 33336563 PMCID: PMC7812270 DOI: 10.1111/jcmm.16209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/04/2020] [Accepted: 12/04/2020] [Indexed: 02/05/2023] Open
Abstract
The hepatic stellate cells (HSCs) play a significant role in the onset of liver fibrosis, which can be treated by the inhibition and reversal of HSC activation. The RNA interference-mediated TLR4 gene silencing might be a potential therapeutic approach for liver fibrosis. The crucial challenge in this method is the absence of an efficient delivery system for the RNAi introduction in the target cells. HSCs have an enhanced capacity of vitamin A intake as they contain retinoic acid receptors (RARs). In the current study, we developed cationic liposomes modified with vitamin A to improve the specificity of delivery vehicles for HSCs. The outcome of this study revealed that the VitA-coupled cationic liposomes delivered the TLR4 shRNA to aHSCs more efficiently, as compared to the uncoupled cationic liposomes, both in the in vitro and in vivo conditions. Besides, as evident from the outcome of this study, the TLR4 gene silencing inhibited the HSCs activation and attenuated the liver fibrosis via the NF-κB transcriptional inactivation, pro-inflammatory cytokines secretion and reactive oxygen species (ROS) synthesis. Thus, the VitA-coupled liposomes encapsulated with the TLR4-shRNA might prove as an efficient therapeutic agent for liver fibrosis.
Collapse
Affiliation(s)
- Yuwei Zhang
- Division of Endocrinology and MetabolismState Key Laboratory of BiotherapyWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yang Li
- Division of Endocrinology and MetabolismState Key Laboratory of BiotherapyWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Tong Mu
- Division of Endocrinology and MetabolismState Key Laboratory of BiotherapyWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Nanwei Tong
- Division of Endocrinology and MetabolismState Key Laboratory of BiotherapyWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| |
Collapse
|
9
|
Zhang J, Shen H, Xu J, Liu L, Tan J, Li M, Xu N, Luo S, Wang J, Yang F, Tang J, Li Q, Wang Y, Yu L, Yan Z. Liver-Targeted siRNA Lipid Nanoparticles Treat Hepatic Cirrhosis by Dual Antifibrotic and Anti-inflammatory Activities. ACS NANO 2020; 14:6305-6322. [PMID: 32378877 DOI: 10.1021/acsnano.0c02633] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Previous studies on the treatment of hepatic cirrhosis have been focusing on how to inhibit liver fibrosis, while ignoring liver inflammation, a key and underlying factor that promotes cirrhosis. High mobility group box-1 (HMGB1) protein, a pro-inflammatory factor and fibroblast chemokine, can promote the proliferation of hepatic stellate cells (HSCs) and the development of hepatic inflammation and fibrosis, playing a key role in cirrhosis formation. In this study, we prepared pPB peptide (C*SRNLIDC*)-modified and HMGB1-siRNA-loaded stable nucleic acid lipid nanoparticles (HMGB1-siRNA@SNALP-pPB) to effectively treat hepatic cirrhosis by their dual antifibrotic and anti-inflammatory activities. The pPB peptide-modified and heat shock protein 47 (HSP47)-siRNA-loaded stable nucleic acid lipid nanoparticles (HSP47-siRNA@SNALP-pPB), which have only an antifibrotic effect without an anti-inflammatory effect, was used as control. The results demonstrated that HMGB1-siRNA@SNALP-pPB were actively targeted to HSCs by the mediation of pPB peptide, effectively silenced the HMGB1 gene, inhibited the activation and proliferation of HSCs, reduced the release of HMGB1 protein, inhibited collagen deposition and fibrosis formation in the liver, and significantly prolonged the survival time of cirrhotic mice models. HMGB1-siRNA@SNALP-pPB showed a stronger therapeutic effect on liver cirrhosis than HSP47-siRNA@SNALP-pPB. This study provides an actively targeted siRNA delivery system for cirrhosis treatment based on the dual antifibrotic and anti-inflammatory effects. In addition, this study clarified the role of inflammatory problems in cirrhosis treatment in addition to liver fibrosis, providing a useful idea and scientific basis for the development of cirrhosis treatment strategies in the future.
Collapse
Affiliation(s)
- Jinfang Zhang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Hongwei Shen
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Jiaojiao Xu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Li Liu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Jingwen Tan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Minghao Li
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Nan Xu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Shenggen Luo
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Jing Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Qinghua Li
- Department of Hepatology and Pancreatology, Shanghai East Hospital, Tongji University, Shanghai 200120, People's Republic of China
| | - Yiting Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Zhiqiang Yan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| |
Collapse
|
10
|
Zhou Z, Kim JW, Qi J, Eo SK, Lim CW, Kim B. Toll-Like Receptor 5 Signaling Ameliorates Liver Fibrosis by Inducing Interferon β-Modulated IL-1 Receptor Antagonist in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:614-629. [PMID: 31972159 DOI: 10.1016/j.ajpath.2019.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/17/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023]
Abstract
Bacterial flagellin, recognized by cell surface of Toll-like receptor (TLR) 5, is a potent activator of many types of cells, leading to the activation of innate or adaptive immunity, which are pivotal in regulating fibrotic process. However, the exact role of TLR5 signaling in hepatic fibrogenesis remains unclear, and this study aims to elucidate its underlying mechanisms. Flagellin was injected to hepatotoxin- and cholestasis-induced liver fibrosis murine models. Flagellin-induced TLR5 activation significantly decreased the severity of liver fibrosis. Interestingly, the expression levels of IL-1 receptor antagonist (IL1RN) and interferon (IFN)β markedly increased in fibrotic livers on flagellin treatment. Consistently, in vivo activation of TLR5 signaling markedly increased IFNβ and IL1RN expression in the livers. Notably, flagellin injection significantly exacerbated the severity of liver fibrosis in IFN-α/β receptor 1 (IFNAR1) knockout mice. Furthermore, hepatic expression of IL1RN in the fibrotic livers of IFNAR1 knockout mice was significantly lower than those of wild-type mice. In support of these findings, flagellin-mediated IL1RN production is not sufficient to alleviate the severity of hepatic fibroinflammatory responses in IFNAR1-deficient milieu. Finally, hepatic stellate cells treated with IL1RN had significantly decreased cellular activation and its associated fibrogenic responses. Collectively, manipulation of TLR5 signaling may be a promising therapeutic strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Zixiong Zhou
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Jong-Won Kim
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Jing Qi
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Seong Kug Eo
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Chae Woong Lim
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Bumseok Kim
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea.
| |
Collapse
|
11
|
Effects of Ethyl Pyruvate on Bile Duct Ligation-Induced Liver Fibrosis by Regulating Nrf2 Pathway and Proinflammatory Cytokines in Rats. Gastroenterol Res Pract 2019; 2019:2969802. [PMID: 31933629 PMCID: PMC6942817 DOI: 10.1155/2019/2969802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 12/14/2022] Open
Abstract
Aim The aim of this paper is to investigate the effects of ethyl pyruvate (EP) on experimental liver fibrosis induced by bile duct ligation (BDL) and explore the underlying molecular mechanisms. Material and Method Rats were randomly divided into three groups: the sham group, the BDL group, and the BDL+EP group. Liver fibrosis was induced by common bile duct ligation and was evaluated by serum biochemical parameter levels, Masson's trichrome staining, α-SMA expression, and collagen I deposition. The levels of Nrf2 signaling pathway-related antioxidant genes (Nrf2, SOD2, NQO1, and GSH-Px) in liver tissues were also measured. Meanwhile, the mRNA expression levels of HMGB1, IL-1β, TNF-α, and HSP27 were analyzed. In BDL-induced liver fibrosis rats, the successfully established model was confirmed by the significant increase of serum ALT and AST levels, the high liver fibrosis score, α-SMA expression, and collagen deposition. Results Compared with the BDL group, EP administration could diminish fibrosis level and substantially increase the expression of Nrf2 signaling pathway-related antioxidant genes. Furthermore, EP significantly suppressed the mRNA expression levels of HMGB1, IL-1β, TNF-α, and HSP27. Conclusions The results suggested that EP administration could effectively inhibit the liver fibrosis induced by BDL in rat, which may be associated with the enhanced activity of Nrf2 to mediate antioxidant enzyme system and downregulate the inflammatory genes.
Collapse
|
12
|
Zandi Z, Kashani B, Bashash D, Poursani EM, Mousavi SA, Chahardoli B, Ghaffari SH. The anticancer effect of the TLR4 inhibition using TAK‐242 (resatorvid) either as a single agent or in combination with chemotherapy: A novel therapeutic potential for breast cancer. J Cell Biochem 2019; 121:1623-1634. [DOI: 10.1002/jcb.29397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital Tehran University of Medical Sciences Tehran Iran
- Department of Medical Genetics, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital Tehran University of Medical Sciences Tehran Iran
- Department of Medical Genetics, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ensieh M. Poursani
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital Tehran University of Medical Sciences Tehran Iran
| | - Seyed A. Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital Tehran University of Medical Sciences Tehran Iran
| | - Bahram Chahardoli
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital Tehran University of Medical Sciences Tehran Iran
| | - Seyed H. Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
13
|
Zhang X, Huang H, Zhang G, Li D, Wang H, Jiang W. Raltegravir Attenuates Experimental Pulmonary Fibrosis In Vitro and In Vivo. Front Pharmacol 2019; 10:903. [PMID: 31481891 PMCID: PMC6710384 DOI: 10.3389/fphar.2019.00903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022] Open
Abstract
Raltegravir, an inhibitor of human immunodeficiency virus-1 (HIV-1) integrase, has been used to treat HIV/acquired immunodeficiency syndrome; however, its therapeutic effects on pulmonary fibrosis have not been investigated. In this study, the in vitro effects of raltegravir (RAV) on transforming growth factor beta 1 (TGF-β1)-induced pulmonary fibrosis on L929 mouse fibroblasts were investigated. In addition, the effects of RAV on an in vivo pulmonary fibrosis model induced by intratracheal instillation of bleomycin were investigated. The proliferation of L929 cells was inhibited after RAV treatment. Meanwhile, the in vitro and in vivo protein expression of nucleotide-binding oligomerization domain-like receptor 3 (NLRP3), high-mobility group box 1 (HMGB1), toll-like receptor 4 (TLR4), prolyl hydroxylase domain protein 2, phosphorylated nuclear factor-κB (p-NF-κB), hypoxia-inducible factor-1α (HIF-1α), collagens I and III was reduced relative to TGF-β1 or the bleomycin group. Raltegravir ameliorated pulmonary fibrosis by reducing the pathology score, collagen deposition, and expression of α-smooth muscle actin, NLRP3, HMGB1, TLR4, inhibitor of kappa B, p-NF-κB, HIF-1α, collagen I, and collagen III. The results of this study demonstrate that RAV attenuated experimental attenuates pulmonary fibrosis by inhibiting NLRP3 activation.
Collapse
Affiliation(s)
- Xue Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Haidi Huang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Guanghua Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Defang Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Hongbo Wang
- School of Pharmacy, Yantai University, Yantai, China
| | - Wanglin Jiang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
14
|
Retraction: High Mobility Group Box-1 Promotes the Proliferation and Migration of Hepatic Stellate Cells via TLR4-Dependent Signal Pathways of PI3K/Akt and JNK. PLoS One 2019; 14:e0216942. [PMID: 31071173 PMCID: PMC6508643 DOI: 10.1371/journal.pone.0216942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
15
|
A short peptide potentially promotes the healing of skin wound. Biosci Rep 2019; 39:BSR20181734. [PMID: 30842341 PMCID: PMC6430730 DOI: 10.1042/bsr20181734] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/20/2019] [Accepted: 03/05/2019] [Indexed: 12/20/2022] Open
Abstract
Skin wound, a common form of skin damage in daily life, remains a serious challenge in clinical treatment. Bioactive peptides with high efficiency have been considered as potential therapeutic candidates for wound healing. In this report, a novel short linear peptide, with mature peptide sequence of 'GLLSGINAEWPC' and no obvious similarity with other known bioactive peptides, was identified by genomic method from the skin of odorous frog, Odorrana andersonii Our results suggested that OA-GL12 (OA: abbreviation of species (O. andersonii), GL: two initial amino acids, 12: peptide length) obviously accelerated the scratch-healing of keratinocytes and human fibroblasts in a time- and concentration-dependent manner. Meanwhile, OA-GL12 showed significant effect in promoting the wound healing on the full-thickness skin wound model. Inflammatory assay results demonstrated that OA-GL12 induced the secretion of tumor necrosis factor (TNF) and transforming growth factor β1 (TGF-β1) on murine macrophage cell line (RAW264.7), which might explain the powerful accelerating capacity of wound healing. Moreover, results also indicated that epidermal growth factor receptor (EGFR) was involved in the mechanisms underlying the scratch-healing promoting activity of OA-GL12. In addition, OA-GL12 showed obvious free radical scavenging activity. Results supported that OA-GL12 did not exert risk in acute toxicity, hemolytic activity, and direct antibacterial activity. The remarkable effect of OA-GL12 on promoting wound healing verified in this research made it potential to be a novel template for the development of wound healing-promoting agents.
Collapse
|
16
|
Liu P, Choi JW, Lee MK, Choi YH, Nam TJ. Wound Healing Potential of Spirulina Protein on CCD-986sk Cells. Mar Drugs 2019; 17:md17020130. [PMID: 30813318 PMCID: PMC6409727 DOI: 10.3390/md17020130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
Wound healing is a dynamic and complex process. The proliferation and migration of dermal fibroblasts are crucial for wound healing. Recent studies have indicated that the extracts from Spirulina platensis have a positive potential for wound healing. However, its underlying mechanism is not fully understood. Our previous study showed that spirulina crude protein (SPCP) promoted the viability of human dermal fibroblast cell line (CCD-986sk cells). In this study, we further investigated the wound healing effect and corresponding mechanisms of SPCP on CCD-986sk cells. Bromodeoxyuridine (BrdU) assay showed that SPCP promoted the proliferation of CCD-986sk cells. The wound healing assay showed that SPCP promoted the migration of CCD-986sk cells. Furthermore, cell cycle analysis demonstrated that SPCP promoted CCD-986sk cells to enter S and G2/M phases from G0/G1 phase. Western blot results showed that SPCP significantly upregulated the expression of cyclin D1, cyclin E, cyclin-dependent kinase 2 (Cdk2), cyclin-dependent kinase 4 (Cdk4), and cyclin-dependent kinase 6 (Cdk6), as well as inhibited the expression of CDK inhibitors p21 and p27 in CCD-986sk cells. In the meanwhile, SPCP promoted the phosphorylation and activation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt). However, the phosphorylation of Akt was significantly blocked by PI3K inhibitor (LY294002), which in turn reduced the SPCP-induced proliferation and migration of CCD-986sk cells. Therefore, the results presenting in this study suggested that SPCP can promote the proliferation and migration of CCD-986sk cells; the PI3K/Akt signaling pathway play a positive and important role in these processes.
Collapse
Affiliation(s)
- Ping Liu
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea.
| | - Jeong-Wook Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
| | - Min-Kyeong Lee
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
| | - Youn-Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
- Department of Marine Bio-Materials and Aquaculture, Pukyong National University, Busan 48513, Korea.
| | - Taek-Jeong Nam
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea.
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
| |
Collapse
|
17
|
Leng X, Shang J, Gao D, Wu J. Low-intensity pulsed ultrasound promotes proliferation and migration of HaCaT keratinocytes through the PI3K/AKT and JNK pathways. ACTA ACUST UNITED AC 2018; 51:e7862. [PMID: 30365726 PMCID: PMC6207286 DOI: 10.1590/1414-431x20187862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
Abstract
Although the effects of low-intensity pulsed ultrasound (LIPUS) on diverse cell types have been fully studied, the functional role of LIPUS in keratinocytes remains poorly understood. This study aimed to investigate the effects of LIPUS on proliferation and migration of HaCaT cells as well as the regulatory mechanisms associated with signaling pathways. Human HaCaT cells were exposed or not to LIPUS, and cell proliferation and migration were measured by BrdU incorporation assay and Transwell assay, respectively. Expression of proteins associated with proliferation and migration was evaluated by western blot analysis. Expression of key kinases in the PI3K/AKT and JNK pathways was also evaluated by western blot analysis. Effects of LIPUS on the PI3K/AKT and JNK pathways, and whether LIPUS affected HaCaT cells via these two pathways were finally explored. When the parameter of LIPUS (number of cycles) was set at 300, cell viability was the highest after LIPUS stimulation. We then found that the percentage of BrdU positive cells was enhanced by LIPUS, along with up-regulation of cyclinD1, CDK6, CDK4, and VEGF. LIPUS promoted migration, as well as up-regulation of MMP-2 and MMP-9. Phosphorylation levels of key kinases in the PI3K/AKT and JNK pathways were increased by LIPUS. Inhibition of either PI3K/AKT pathway or JNK pathway attenuated effects of LIPUS on HaCaT cells, and co-inhibition of these two pathways showed augmented effects. LIPUS promoted proliferation and migration of HaCaT cells through activating the PI3K/AKT and JNK pathways.
Collapse
Affiliation(s)
- Xiaoyan Leng
- Department of Ultrasound, Chengyang People's Hospital, Qingdao, China
| | - Jing Shang
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Danhui Gao
- Department of Ultrasound, Chengyang People's Hospital, Qingdao, China
| | - Jiang Wu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Wu D, Liang H, Wang H, Duan C, Yazdani H, Zhou J, Pan Y, Shan B, Su Z, Wei J, Cui T, Tai S. Hepatitis B virus-X protein regulates high mobility group box 1 to promote the formation of hepatocellular carcinoma. Oncol Lett 2018; 16:4418-4426. [PMID: 30214576 PMCID: PMC6126216 DOI: 10.3892/ol.2018.9178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a risk factor for hepatocellular carcinoma (HCC). HBV X protein (HBx) is an important carcinogen for HBV-induced HCC. When the HBx gene is integrated into the host cell genome, it is difficult to eradicate. The identification of an effective target to inhibit the oncogenic function of HBx is therefore critically important. The present study demonstrated that HBx, particularly truncated HBx, was expressed in several HBV-derived cell lines (e.g., Hep3B and SNU423). By analyzing data from The Cancer Genome Atlas, it was revealed that high expression of high mobility group box 1 (HMGB1) was associated with the process and prognosis of HCC. In vitro experiments confirmed that HBx could regulate the expression of HMGB1 and knockdown of HMGB1 could decrease the ability of HBx to promote cellular proliferation. HBx could also upregulate six transcription factors (GATA binding protein 3, Erb-B2 receptor tyrosine kinase 3, heat shock transcription factor 1, nuclear factor κB subunit 1, TATA-box binding protein and Kruppel-like factor 4), which could directly regulate HMGB1. By analyzing genes that are co-expressed with HMGB1, several signaling pathways associated with the development of HCC were identified. HBx and HMGB1 were revealed to be involved in these pathways, which may be the mechanism by which HBx promotes HCC by regulating HMGB1. These findings suggested that HMGB1 may be an effective target for inhibiting HBV-induced HCC.
Collapse
Affiliation(s)
- Dehai Wu
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hao Liang
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hao Wang
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Changhu Duan
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hamza Yazdani
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jinan Zhou
- Biochemistry Department, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yujia Pan
- Biochemistry Department, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Baga Shan
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhilei Su
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jinping Wei
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Tiangang Cui
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Sheng Tai
- General Surgery Department 1, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
19
|
Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol 2018; 2:6. [PMID: 29872724 PMCID: PMC5871907 DOI: 10.1038/s41698-018-0048-z] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/23/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has become a leading cause of cancer-related death, making the elucidation of its underlying mechanisms an urgent priority. Inflammation is an adaptive response to infection and tissue injury under strict regulations. When the host regulatory machine runs out of control, nonresolving inflammation occurs. Nonresolving inflammation is a recognized hallmark of cancer that substantially contributes to the development and progression of HCC. The HCC-associated inflammation can be initiated and propagated by extrinsic pathways through activation of pattern-recognition receptors (PRRs) by pathogen-associated molecule patterns (PAMPs) derived from gut microflora or damage-associated molecule patterns (DAMPs) released from dying liver cells. The inflammation can also be orchestrated by the tumor itself through secreting factors that recruit inflammatory cells to the tumor favoring the buildup of a microenvironment. Accumulating datas from human and mouse models showed that inflammation promotes HCC development by promoting proliferative and survival signaling, inducing angiogenesis, evading immune surveillance, supporting cancer stem cells, activating invasion and metastasis as well as inducing genomic instability. Targeting inflammation may represent a promising avenue for the HCC treatment. Some inhibitors targeting inflammatory pathways have been developed and under different stages of clinical trials, and one (sorafenib) have been approved by FDA. However, as most of the data were obtained from animal models, and there is a big difference between human HCC and mouse HCC models, it is challenging on successful translation from bench to bedside.
Collapse
|
20
|
Zhou F, Wang A, Li D, Wang Y, Lin L. Pinocembrin from Penthorum chinense Pursh suppresses hepatic stellate cells activation through a unified SIRT3-TGF-β-Smad signaling pathway. Toxicol Appl Pharmacol 2018; 341:38-50. [DOI: 10.1016/j.taap.2018.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/03/2018] [Accepted: 01/13/2018] [Indexed: 01/18/2023]
|
21
|
Zhang S, Wang Z, Zhu J, Xu T, Zhao Y, Zhao H, Tang F, Li Z, Zhou J, Gao D, Tian X, Yao J. Carnosic Acid Alleviates BDL-Induced Liver Fibrosis through miR-29b-3p-Mediated Inhibition of the High-Mobility Group Box 1/Toll-Like Receptor 4 Signaling Pathway in Rats. Front Pharmacol 2018; 8:976. [PMID: 29403377 PMCID: PMC5780338 DOI: 10.3389/fphar.2017.00976] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/21/2017] [Indexed: 12/19/2022] Open
Abstract
Fibrosis reflects a progression to liver cancer or cirrhosis of the liver. Recent studies have shown that high-mobility group box-1 (HMGB1) plays a major role in hepatic injury and fibrosis. Carnosic acid (CA), a compound extracted from rosemary, has been reported to alleviate alcoholic and non-alcoholic fatty liver injury. CA can also alleviate renal fibrosis. We hypothesized that CA might exert anti-liver fibrosis properties through an HMGB1-related pathway, and the results of the present study showed that CA treatment significantly protected against hepatic fibrosis in a bile duct ligation (BDL) rat model. CA reduced the liver expression of α-smooth muscle actin (α-SMA) and collagen 1 (Col-1). Importantly, we found that CA ameliorated the increase in HMGB1 and Toll-like receptor 4 (TLR4) caused by BDL, and inhibited NF-κB p65 nuclear translocation in fibrotic livers. In vitro, CA inhibited LX2 cell activation by inhibiting HMGB1/TLR4 signaling pathway. Furthermore, miR-29b-3p decreased HMGB1 expression, and a dual-luciferase assay validated these results. Moreover, CA down-regulated HMGB1 and inhibited LX2 cell activation, and these effects were significantly counteracted by antago-miR-29b-3p, indicating that the CA-mediated inhibition of HMGB1 expression might be miR-29b-3p dependent. Collectively, the results demonstrate that a miR-29b-3p/HMGB1/TLR4/NF-κB signaling pathway, which can be modulated by CA, is important in liver fibrosis, and indicate that CA might be a prospective therapeutic drug for liver fibrosis.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jie Zhu
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Ting Xu
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Huanyu Zhao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Fan Tang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhenlu Li
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junjun Zhou
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Dongyan Gao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xiaofeng Tian
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
High-Mobility Group Box 1 Mediates Fibroblast Activity via RAGE-MAPK and NF-κB Signaling in Keloid Scar Formation. Int J Mol Sci 2017; 19:ijms19010076. [PMID: 29283384 PMCID: PMC5796026 DOI: 10.3390/ijms19010076] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
Emerging studies have revealed the involvement of high-mobility group box 1 (HMGB1) in systemic fibrotic diseases, yet its role in the cutaneous scarring process has not yet been investigated. We hypothesized that HMGB1 may promote fibroblast activity to cause abnormal cutaneous scarring. In vitro wound healing assay with normal and keloid fibroblasts demonstrated that HMGB1 administration promoted the migration of both fibroblasts with increased speed and a greater traveling distance. Treatment of the HMGB1 inhibitor glycyrrhizic acid (GA) showed an opposing effect on both activities. To analyze the downstream mechanism, the protein levels of extracellular signal-regulated kinase (ERK) 1/2, protein kinase B (AKT), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were measured by western blot analysis. HMGB1 increased the expression levels of ERK1/2, AKT, and NF-κB compared to the control, which was suppressed by GA. HMGB1 promoted both normal and keloid fibroblasts migration to a degree equivalent to that achieved with TGF-β. We concluded that HMGB1 activates fibroblasts via the receptor for advanced glycation end product (RAGE)—mitogen-activated protein kinases (MAPK) and NF-κB interaction signaling pathways. Further knowledge of the relationship of HMGB1 with skin fibrosis may lead to a promising clinical approach to manage abnormal scarring.
Collapse
|
23
|
Bhattacharyya S, Varga J. Endogenous ligands of TLR4 promote unresolving tissue fibrosis: Implications for systemic sclerosis and its targeted therapy. Immunol Lett 2017; 195:9-17. [PMID: 28964818 DOI: 10.1016/j.imlet.2017.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
Fibrosis, the hallmark of scleroderma or systemic sclerosis (SSc), is a complex, dynamic and generally irreversible pathophysiological process that leads to tissue disruption, and lacks effective therapy. While early-stage fibrosis resembles normal wound healing, in SSc fibrosis fails to resolve. Innate immune signaling via toll-like receptors (TLRs) has recently emerged as a key driver of persistent fibrotic response in SSc. Recurrent injury in genetically predisposed individual causes generation of "damage-associated molecular patterns" (DAMPs) such as fibronectin-EDA and tenascin-C. Sensing of these danger signals by TLR4 on resident cells elicits potent stimulatory effects on fibrotic gene expression and myofibroblast differentiation, and appears to sensitize fibroblasts to the profibrotic stimulatory effect of TGF-β. Thus, DAMPs induce TLR4-mediated innate immune signaling on resident mesenchymal cells which drives the emergence and persistence of fibrotic cells in tissues, and underlies the switch from a self-limited repair response to non-resolving pathological fibrosis characteristic of SSc. In this review, we present current views of the DAMP-TLR4 axis in driving sustained fibroblasts activation and its pathogenic roles in fibrosis progression in SSc, and potential anti-fibrotic approaches for selective therapeutic targeting of TLR4 signaling.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States.
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
24
|
Song S, Ji Y, Zhang G, Zhang X, Li B, Li D, Jiang W. Protective Effect of Atazanavir Sulphate Against Pulmonary Fibrosis In Vivo and In Vitro. Basic Clin Pharmacol Toxicol 2017; 122:199-207. [PMID: 28816009 DOI: 10.1111/bcpt.12871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/26/2017] [Indexed: 01/08/2023]
Abstract
Atazanavir sulphate, an antiretroviral protease inhibitor, has been used to treat HIV/AIDS, but its ability to serve as an antipulmonary fibrosis (PF) agent remains unknown. In this study, the effects of atazanavir sulphate on various aspects of PF were examined and CoCl2 was used to induce the hypoxia-mimicking condition in vitro, including epithelial-mesenchymal transition (EMT) in A549 cells, endothelial-mesenchymal transition (EndMT) in human pulmonary microvascular endothelial cells (HPMECs), proliferation in human lung fibroblasts (HLF-1) and potential protective effects in human type I alveolar epithelial cells (AT I). Additionally, the effects of atazanavir sulphate were examined using a bleomycin (BLM)-induced pulmonary fibrosis model. After atazanavir sulphate treatment, in A549 cells and HPMECs, the expression of vimentin, HMGB1, Toll-like receptor 4 (TLR-4) and p-NF-κB decreased, while the expression of E-cadherin and VE-cadherin increased. In AT I cells, the expression of aquaporin 5 and RAGE were increased after atazanavir treatment. Proliferation of HLF-1 was reduced after atazanavir treatment, meanwhile the expression of hypoxia-inducible factor-1α (HIF-1α), prolyl hydroxylase domain protein 2 (PHD-2), HMGB1, TLR-9, p-NF-κB, collagen I and collagen III was decreased. In the BLM-induced pulmonary fibrosis rat model, atazanavir sulphate ameliorated PF by reducing pathological score, collagen deposition and the expression of α-SMA, HIF-1α, PHD-2, HMGB1, TLR-4, TLR-9 and p-NF-κB. In summary, our study supports the proposal that atazanavir sulphate may have a therapeutic potential in reducing the progression of pulmonary fibrosis by suppressing HMGB1/TLR signalling.
Collapse
Affiliation(s)
- Shina Song
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Yunxia Ji
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Guanghua Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Xue Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Bin Li
- Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong, China
| | - Defang Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Wanglin Jiang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
25
|
Jiang M, Wu YL, Li X, Zhang Y, Xia KL, Cui BW, Lian LH, Nan JX. Oligomeric proanthocyanidin derived from grape seeds inhibited NF-κB signaling in activated HSC: Involvement of JNK/ERK MAPK and PI3K/Akt pathways. Biomed Pharmacother 2017; 93:674-680. [DOI: 10.1016/j.biopha.2017.06.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/14/2017] [Accepted: 06/29/2017] [Indexed: 01/05/2023] Open
|
26
|
Liu Y, Li L, Liu J, She WM, Shi JM, Li J, Wang JY, Jiang W. Activated hepatic stellate cells directly induce pathogenic Th17 cells in chronic hepatitis B virus infection. Exp Cell Res 2017; 359:129-137. [PMID: 28780305 DOI: 10.1016/j.yexcr.2017.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 02/08/2023]
Abstract
Th17 cells are involved in liver fibrosis by activating hepatic stellate cells (HSCs). We aimed to investigate whether HSCs are able to regulate the function of Th17 cells and to determine the relevant mechanism. Sixty-five patients diagnosed with chronic hepatitis B (CHB) were enrolled in this study. To determine the effect of HSCs on T cells, naïve CD4+T cells and Th17 cells were sorted from CHB patients and cultured with or without activated-HSCs, and cytokine expression and gene transcription were analyzed. In addition, the regulatory mechanism of HSCs was investigated. ELISA and qRT-PCR showed that Th17 cells from CHB patients were more pathogenic, on the basis of the expression of IL-17A, IL-23R, RORC, CCL20 and CCR6, and meanwhile, they could activate the primary HSCs. Co-culture experiments indicated that activated HSCs dramatically promoted proliferation of CD4+T cells in a time- and dose-dependent manner. In addition, they could induce naïve CD4+T cells to become Th17 cells which had a more pathogenic phenotype. Moreover, activated HSCs-mediated induction of Th17 cells might depend on the release of IL-1β and IL-6 as well as on the COX-PGE2 pathway. Th17 cells cooperated with HSCs in a proinflammatory feedback loop might provide a better understanding of the pathogenic role of Th17 cells in the chronicity of HBV infection.
Collapse
Affiliation(s)
- Yun Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Gastroenterology, Huzhou Central Hospital, Zhejiang 313003, China
| | - Wei-Min She
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie-Min Shi
- Department of Gastroenterology, Huzhou Central Hospital, Zhejiang 313003, China
| | - Jing Li
- Department of Gastroenterology, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Ji-Yao Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
27
|
Ge S, Xiong Y, Wu X, Xie J, Liu F, He J, Xiang T, Cheng N, Lai L, Zhong Y. Role of growth factor receptor-bound 2 in CCl 4-induced hepatic fibrosis. Biomed Pharmacother 2017; 92:942-951. [PMID: 28618656 DOI: 10.1016/j.biopha.2017.05.142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/19/2017] [Accepted: 05/28/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Growth Factor Receptor-bound 2 (GRB2) plays a crucial role in regulation of cellular function including proliferation and differentiation, and we previously identified GRB2 as promoting HSCs (HSCs) proliferation. However, the underlying mechanisms that are involving in the regulation of GRB2 in hepatic fibrogenesis remain unknown. METHODS In the present study, we tested the function of GRB2 in hepatic fibrosis. Hepatic fibrosis was induced by subcutaneous CCl4 administration at a dose of 3mL/kg in rats. The rat HSC cell line HSC-T6 were cultured for proliferation investigation by CCK-8 and BrdU incorporation method. The levels of GRB2, HMGB1, PI3K/AKT, COL1A1 and α-SMA were analyzed by western blot or real-time PCR. RESULTS showed that the expression of GRB2 and HMGB1 was obviously increased in liver tissues of hepatic fibrosis rats accompanied by up-regulation of COL1A1 and α-SMA. In cultured HSCs, application of exogenous HMGB1 induced cell proliferation and cell proliferation rate concomitantly with up-regulation of GRB2 expression and PI3K/AKT phosphorylation. The effects of HMGB1-induced proliferation of HSCs and up-regulation of COL1A1 and α-SMA were abolished by GRB2 siRNA. HMGB1-induced proliferation of HSCs and up-regulation of COL1A1 and α-SMA was reversed in the presence of LY294002, an inhibitor of PI3K inhibitor. CONCLUSIONS These findings suggest that GRB2 plays an important role in CCl4-induced hepatic fibrosis by regulating HSCs' function, and up-regulation of GRB2 induced by HMGB1 is mediated via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Shanfei Ge
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Ying Xiong
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Xiaoping Wu
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Jianping Xie
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Fei Liu
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jinni He
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Tianxing Xiang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Na Cheng
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Lingling Lai
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Yuanbin Zhong
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
28
|
Cheng C, Yu S, Kong R, Yuan Q, Ma Y, Yang W, Cao G, Xie L. CTRP3 attenuates hepatic stellate cell activation through transforming growth factor-β/Smad signaling pathway. Biomed Pharmacother 2017; 89:1387-1391. [DOI: 10.1016/j.biopha.2017.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023] Open
|
29
|
The potential curative effect of rebamipide in hepatic ischemia/reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:691-700. [DOI: 10.1007/s00210-017-1370-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/21/2017] [Indexed: 01/11/2023]
|
30
|
Wang Q, Wang J, Wang J, Hong S, Han F, Chen J, Chen G. HMGB1 induces lung fibroblast to myofibroblast differentiation through NF‑κB‑mediated TGF‑β1 release. Mol Med Rep 2017; 15:3062-3068. [PMID: 28339089 PMCID: PMC5428737 DOI: 10.3892/mmr.2017.6364] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 01/30/2017] [Indexed: 11/28/2022] Open
Abstract
The proinflammatory factor high-mobility group box protein 1 (HMGB1) has been implicated in the pathogenesis of lung fibrosis; however, the role of HMGB1 in lung fibrosis remains unclear. It has previously been reported that nuclear factor (NF)-κB and transforming growth factor (TGF)-β1 may be involved in lung fibrosis. Therefore, the present study aimed to examine the potential molecular mechanisms that underlie HMGB1-induced lung fibrosis via the regulation of NF-κB and TGF-β1. The results demonstrated that HMGB1 stimulation increased the activation of NF-κB and the release of TGF-β1, as well as the expression of α-smooth muscle actin (α-SMA) and collagen I in human lung fibroblasts in vitro. In addition, inhibition of NF-κB activation blocked HMGB1-induced TGF-β1 release, as well as α-SMA and collagen I expression in lung fibroblasts. Preventing the release of TGF-β1 inhibited HMGB1-induced α-SMA and collagen I expression; however, it had no effect on NF-κB activation. Collectively, these findings indicate that HMGB1 induces fibroblast to myofibroblast differentiation of lung fibroblasts via NF-κB-mediated TGF-β1 release.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Jun Wang
- Department of Respiration, Suzhou Kowloon Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu 215000, P.R. China
| | - Junfang Wang
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Shanchao Hong
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Feifei Han
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Jingyu Chen
- Department of Thoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Guoqian Chen
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
31
|
Li X, Jin Q, Yao Q, Xu B, Li Z, Tu C. Quercetin attenuates the activation of hepatic stellate cells and liver fibrosis in mice through modulation of HMGB1-TLR2/4-NF-κB signaling pathways. Toxicol Lett 2016; 261:1-12. [PMID: 27601294 DOI: 10.1016/j.toxlet.2016.09.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate the effects of quercetin on liver fibrogenesis in mice and to elucidate the underlying molecular mechanisms. Mice were administered with carbon tetrachloride (CCl4) for eight weeks to induce liver fibrosis and concomitantly orally treated with quercetin (50mgkg-1day-1). Here, we demonstrated that quercetin dramatically ameliorated liver injury, inflammation, and hepatic fibrogenesis induced by CCl4. Quercetin also inhibited the activation of hepatic stellate cells (HSC) in vivo and in vitro, as evaluated by α-smooth muscle actin (α-SMA) expression, which is a specific marker of HSC activation. Moreover, reduced fibrosis was associated with decreased high-mobility group box 1 (HMGB1), toll like receptor (TLR) 2 and TLR4 genes, and protein expression. Quercetin also inhibited the cytoplasmic translocation of HMGB1 in hepatocytes of fibrotic livers. Further investigation demonstrated that quercetin treatment significantly attenuated CCl4-induced nuclear translocation of the nuclear factor-κB (NF-κB) p65 and inhibited degradation of IκBα (an inhibitor of NF-κB) expression in the liver compared with vehicle-treated fibrotic mice. Considered together, our data indicate that quercetin has hepatoprotective and anti-fibrotic effects in animal models of liver fibrosis, the mechanism of which may be involved in modulating the HMGB1-TLR2/4-NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xi Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai Institute of Liver Diseases, Shanghai, China; Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Qianwen Jin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai Institute of Liver Diseases, Shanghai, China.
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai Institute of Liver Diseases, Shanghai, China.
| | - Beili Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai Institute of Liver Diseases, Shanghai, China.
| | - Zheng Li
- Laboratory Animal Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Chuantao Tu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai Institute of Liver Diseases, Shanghai, China.
| |
Collapse
|
32
|
Egg antigen p40 of Schistosoma japonicum promotes senescence in activated hepatic stellate cells by activation of the STAT3/p53/p21 pathway. Cell Death Dis 2016; 7:e2315. [PMID: 27468691 PMCID: PMC4973363 DOI: 10.1038/cddis.2016.228] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is a serious disease that is characterized by the excess deposition of extracellular matrix (ECM) components. Activated hepatic stellate cells (HSCs) are a major source of ECM and serve as a key regulator in liver fibrogenesis. Inactivation of HSCs is essential for liver fibrotic regression. The present study explores the underlying mechanisms of Schistosoma japonicum egg antigen p40 (Sjp40) promoting senescence in HSCs and antifibrosis. For the first time we report that Sjp40 inhibits the activation and proliferation of an immortalized human HSC line (LX-2 cells) and promotes cellular senescence and cell cycle arrest. Sjp40 through action on the STAT3/p53/p21 pathway triggered cellular senescence, while knockdown of p53 or STAT3 partly restored cell senescence. In addition, Sjp40-induced cellular senescence caused LX-2 cells to be more sensitive to a human NK cell line (YT cells). Together these findings provide novel insights into the mechanism of antifibrosis and may have implications for the development of antifibrosis therapies.
Collapse
|
33
|
Feng Y, Ying HY, Qu Y, Cai XB, Xu MY, Lu LG. Novel matrine derivative MD-1 attenuates hepatic fibrosis by inhibiting EGFR activation of hepatic stellate cells. Protein Cell 2016; 7:662-72. [PMID: 27342773 PMCID: PMC5003784 DOI: 10.1007/s13238-016-0285-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Matrine (MT), the effective component of Sophora flavescens Ait, has been shown to have anti-inflammation, immune-suppressive, anti-tumor, and anti-hepatic fibrosis activities. However, the pharmacological effects of MT still need to be strengthened due to its relatively low efficacy and short half-life. In the present study, we report a more effective thio derivative of MT, MD-1, and its inhibitory effects on the activation of hepatic stellate cells (HSCs) in both cell culture and animal models. Cytological experiments showed that MD-1 can inhibit the proliferation of HSC-T6 cells with a half-maximal inhibitory concentration (IC50) of 62 μmol/L. In addition, MD-1 more strongly inhibits the migration of HSC-T6 cells compared to MT and can more effectively induce G0/G1 arrest and apoptosis. Investigating the biological mechanisms underlying anti-hepatic fibrosis in the presence of MD-1, we found that MD-1 can bind the epidermal growth factor receptor (EGFR) on the surface of HSC-T6 cells, which can further inhibit the phosphorylation of EGFR and its downstream protein kinase B (Akt), resulting in decreased expression of cyclin D1 and eventual inhibition of the activation of HSC-T6 cells. Furthermore, in rats with dimethylnitrosamine (DMN)-induced hepatic fibrosis, MD-1 slowed the development and progression of hepatic fibrosis, protecting hepatic parenchymal cells and improving hepatic functions. Therefore, MD-1 is a potential drug for anti-hepatic fibrosis.
Collapse
Affiliation(s)
- Yi Feng
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China.
| | - Hai-Yan Ying
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Ying Qu
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Xiao-Bo Cai
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Ming-Yi Xu
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Lun-Gen Lu
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China.
| |
Collapse
|
34
|
High Mobility Group Box-1 Promotes Inflammation-Induced Lymphangiogenesis via Toll-Like Receptor 4-Dependent Signalling Pathway. PLoS One 2016; 11:e0154187. [PMID: 27100831 PMCID: PMC4839690 DOI: 10.1371/journal.pone.0154187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/11/2016] [Indexed: 01/28/2023] Open
Abstract
Lymphangiogenesis in inflammation has received considerable attention in recent years. Administration of modulating lymphangiogenesis provides more possibilities of treating inflammation-associated diseases. However, the main mediators and factors governing inflammation-induced lymphangiogenesis (ILA) are yet to be defined. Here, we explored the role of HMGB1-TLR4 signalling pathway in modulating inflammation-induced lymphangiogenesis and its underlying mechanisms using an ILA mouse model and 2 cell lines. Our results show that HMGB1 promoted VEGF-C-induced HDLECs proliferation in a dose-dependent manner and TLR4 mediates HMGB1-induced LECs proliferation and tube formation in vitro. And in vivo, rHMGB1 treatment significantly promoted ILA, and the promoting effects was inhibited notably when HMGB1-TLR4 was blocked. HMGB1-associated ILA is primarily dependent on TLR4 but not on TLR2. In mechanisms, the recruitment and activation of CD11b+ cells are important cellular mechanisms in HMGB1-TLR4 associated ILA, and multiple key pro-lymphangiogenesis molecules mediates HMGB1-TLR4 associated ILA, including VEGF-C/VEGFR3, inflammatory factors IL-1β and TNF-α, MMP-2 and MMP-9 and NF-κB p65. In conclusion, HMGB1-associated ILA is primarily dependent on TLR4, and CD11b+ cells and multiple molecular mechanisms mediate HMGB1-TLR4 associated ILA. Furthermore, the ILA can be effectively modulated by HMGB1-TLR4 signalling. Consequently, administration of modulating ILA through HMGB1-TLR4 pathway may provide us more possibilities of treating inflammation and lymphangiogenesis associated diseases.
Collapse
|
35
|
Lea JD, Clarke JI, McGuire N, Antoine DJ. Redox-Dependent HMGB1 Isoforms as Pivotal Co-Ordinators of Drug-Induced Liver Injury: Mechanistic Biomarkers and Therapeutic Targets. Antioxid Redox Signal 2016; 24:652-65. [PMID: 26481429 DOI: 10.1089/ars.2015.6406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE High-mobility group box 1 (HMGB1) is a critical protein in the coordination of the inflammatory response in drug-induced liver injury (DILI). HMGB1 is released from necrotic hepatocytes and activated immune cells. The extracellular function of HMGB1 is dependent upon redox modification of cysteine residues that control chemoattractant and cytokine-inducing properties. Existing biomarkers of DILI such as alanine aminotransferase (ALT) have limitations such as lack of sensitivity and tissue specificity that can adversely affect clinical intervention. RECENT ADVANCES HMGB1 isoforms have been shown to be more sensitive biomarkers than ALT for predicting DILI development and the requirement for liver transplant following acetaminophen (APAP) overdose. Hepatocyte-specific conditional knockout of HMGB1 has demonstrated the pivotal role of HMGB1 in DILI and liver disease. Tandem mass spectrometry (MS/MS) enables the characterization and quantification of different mechanism-dependent post-translationally modified isoforms of HMGB1. CRITICAL ISSUES HMGB1 shows great promise as a biomarker of DILI. However, current diagnostic assays are either too time-consuming to be clinically applicable (MS/MS) or are unable to distinguish between different redox and acetyl isoforms of HMGB1 (ELISA). Additionally, HMGB1 is not liver specific, so while it outperforms ALT (also not liver specific) as a biomarker for the prediction of DILI development, it should be used in a biomarker panel along with liver-specific markers such as miR-122. FUTURE DIRECTIONS A point-of-care test for HMGB1 and the development of redox and acetyl isoform-targeting antibodies will advance clinical utility. Work is ongoing to validate baseline levels of circulating HMGB1 in healthy volunteers.
Collapse
Affiliation(s)
- Jonathan D Lea
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Joanna I Clarke
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Niamh McGuire
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Daniel J Antoine
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| |
Collapse
|
36
|
Bigorgne AE, John B, Ebrahimkhani MR, Shimizu-Albergine M, Campbell JS, Crispe IN. TLR4-Dependent Secretion by Hepatic Stellate Cells of the Neutrophil-Chemoattractant CXCL1 Mediates Liver Response to Gut Microbiota. PLoS One 2016; 11:e0151063. [PMID: 27002851 PMCID: PMC4803332 DOI: 10.1371/journal.pone.0151063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/22/2016] [Indexed: 02/07/2023] Open
Abstract
Background & Aims The gut microbiota significantly influences hepatic immunity. Little is known on the precise mechanism by which liver cells mediate recognition of gut microbes at steady state. Here we tested the hypothesis that a specific liver cell population was the sensor and we aimed at deciphering the mechanism by which the activation of TLR4 pathway would mediate liver response to gut microbiota. Methods Using microarrays, we compared total liver gene expression in WT versus TLR4 deficient mice. We performed in situ localization of the major candidate protein, CXCL1. With an innovative technique based on cell sorting, we harvested enriched fractions of KCs, LSECs and HSCs from the same liver. The cytokine secretion profile was quantified in response to low levels of LPS (1ng/mL). Chemotactic activity of stellate cell-derived CXCL1 was assayed in vitro on neutrophils upon TLR4 activation. Results TLR4 deficient liver had reduced levels of one unique chemokine, CXCL1 and subsequent decreased of neutrophil counts. Depletion of gut microbiota mimicked TLR4 deficient phenotype, i.e., decreased neutrophils counts in the liver. All liver cells were responsive to low levels of LPS, but hepatic stellate cells were the major source of chemotactic levels of CXCL1. Neutrophil migration towards secretory hepatic stellate cells required the TLR4 dependent secretion of CXCL1. Conclusions Showing the specific activation of TLR4 and the secretion of one major functional chemokine—CXCL1, the homolog of human IL-8-, we elucidate a new mechanism in which Hepatic Stellate Cells play a central role in the recognition of gut microbes by the liver at steady state.
Collapse
Affiliation(s)
- Amélie E. Bigorgne
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
- * E-mail:
| | - Beena John
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
| | - Mohammad R. Ebrahimkhani
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
| | - Masami Shimizu-Albergine
- Department of Pathology, University of Washington, Seattle, Washington, 98195–7470, United States of America
| | - Jean S. Campbell
- Department of Pathology, University of Washington, Seattle, Washington, 98195–7470, United States of America
| | - Ian N. Crispe
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, 98195–7470, United States of America
| |
Collapse
|
37
|
Bai L, Kong M, Zheng Q, Zhang X, Liu X, Zu K, Chen Y, Zheng S, Li J, Ren F, Lou J, Liu S, Duan Z. Inhibition of the translocation and extracellular release of high-mobility group box 1 alleviates liver damage in fibrotic mice in response to D-galactosamine/lipopolysaccharide challenge. Mol Med Rep 2016; 13:3835-41. [PMID: 27035642 PMCID: PMC4838152 DOI: 10.3892/mmr.2016.5003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 12/08/2015] [Indexed: 12/25/2022] Open
Abstract
Acute liver injury in the setting of fibrosis is an area of interest in investigations, and remains to be fully elucidated. Previous studies have suggested the beneficial effects of liver fibrosis induced by thioacetamide and partial bile duct ligation against Fas-mediated acute liver injury. The activation of AKT and extracellular signal-regulated kinase signaling is considered to be crucial in this hepatoprotection. To demonstrate the protection of CCl4-induced liver fibrosis against lethal challenge, the present study compared the reactivity to lethal doses of D-galactosamine (D-GalN)/lipopolysaccharide (LPS) between fibrotic mice and control mice groups. The extent of hepatic damage was assessed by survival rate and histopathological analysis. The molecular basis of the fibrosis-based hepatoprotection was examined, with a particular focus on the translocation and release of high-mobility group box (HMGB)1 and the inflammatory response triggered by HMGB1. Hepatoprotection induced by fibrosis was demonstrated by improved survival rates (100%, vs. 20%) and improved preservation of liver architecture in fibrotic mice subjected to D-GalN/LPS, compared with control mice treated in the same way. D-GalN/LPS evoked the translocation and release of HMGB1, detected by immunohistochemistry, in the control mice, which was significantly inhibited in the fibrotic mice. The gene expression levels of HMGB1-associated proinflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α and IL-12p40, were markedly inhibited in the fibrotic mice when exposed to D-GalN/LPS. These findings confirmed that CCl4-based fibrosis induced hepatoprotection, and provided evidence that fibrosis inhibited the translocation and release of HMGB1, and the proinflammatory response triggered by HMGB1. This alleviated liver damage following exposure to D-GalN/LPS challenge.
Collapse
Affiliation(s)
- Li Bai
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Ming Kong
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Qingfen Zheng
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Xiaohui Zhang
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Xin Liu
- Clinical Laboratory Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Kejia Zu
- Department of Pathology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Yu Chen
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Sujun Zheng
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Junfeng Li
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Feng Ren
- Research Department, Beijing Institute of Liver Diseases, Beijing 100069, P.R. China
| | - Jinli Lou
- Clinical Laboratory Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Shuang Liu
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Zhongping Duan
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
38
|
Sharma S, Evans A, Hemers E. Mesenchymal-epithelial signalling in tumour microenvironment: role of high-mobility group Box 1. Cell Tissue Res 2016; 365:357-66. [PMID: 26979829 PMCID: PMC4943978 DOI: 10.1007/s00441-016-2389-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/29/2016] [Indexed: 12/12/2022]
Abstract
Glucose deprivation, hypoxia and acidosis are characteristic features of the central core of most solid tumours. Myofibroblasts are stromal cells present in many such solid tumours, including those of the colon, and are known to be involved in all stages of tumour progression. HMGB1 is a nuclear protein with an important role in nucleosome stabilisation and gene transcription; it is also released from immune cells and is involved in the inflammatory process. We report that the microenvironmental condition of glucose deprivation is responsible for the active release of HMGB1 from various types of cancer cell lines (HT-29, MCF-7 and A549) under normoxic conditions. Recombinant HMGB1 (10 ng/ml) triggered proliferation in myofibroblast cells via activation of PI3K and MEK1/2. Conditioned medium collected from glucose-deprived HT-29 colon cancer cells stimulated the migration and invasion of colonic myofibroblasts, and these processes were significantly inhibited by immunoneutralising antibodies to HMGB1, RAGE and TLR4, together with specific inhibitors of PI3K and MEK1/2. Our data suggest that HMGB1 released from cancer cells under glucose deprivation is involved in stimulating colonic myofibroblast migration and invasion and that this occurs through the activation of RAGE and TLR4, resulting in the activation of the MAPK and PI3K signalling pathways. Thus, HMGB1 might be released by cancer cells in areas of low glucose in solid tumours with the resulting activation of myofibroblasts and is a potential therapeutic target to inhibit solid tumour growth.
Collapse
Affiliation(s)
- Sikander Sharma
- Biomolecular Sciences, School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Andrew Evans
- Biomolecular Sciences, School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Elaine Hemers
- Biomolecular Sciences, School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
39
|
rhHMGB1 drives osteoblast migration in a TLR2/TLR4- and NF-κB-dependent manner. Biosci Rep 2016; 36:e00300. [PMID: 26744383 PMCID: PMC4759610 DOI: 10.1042/bsr20150239] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/06/2016] [Indexed: 02/02/2023] Open
Abstract
Osteoblast migration is significant in skeletal development. Recently, high mobility group box 1 protein (HMGB1) has been shown to highly expressed in cartilage to regulate endochondral ossification. Nevertheless, whether HMGB1 can modulate osteoblast proliferation and migration is poorly understood, as well as the intracellular signalling pathways that are involved in this process. Herein, we examined the effects of recombinant human HMGB1 (rhHMGB1) on the proliferation and migration of rat osteoblasts and investigated whether Toll-like receptor 2 (TLR2)- and TLR4-dependent signalling pathways are involved in the regulation of intracellular signalling. A transwell chamber assay was used to evaluate the migration of osteoblasts and the MTT assay was used to assess osteoblast proliferation. rhHMGB1 could significantly promote the migration of osteoblasts without inhibiting their proliferation. Meanwhile, rhHMGB1 can increase the nuclear translocation of nuclear factor-kappa B (NF-κB) p65. Specific siRNA constructs that target TLR2 or TLR4 could markedly inhibit HMGB1-induced migration of osteoblasts and HMGB1-enhanced activation of NF-κB. Collectively, HMGB1 could significantly enhance the migration of osteoblasts in vitro, and TLR2/TLR4-dependent NF-κB pathways are involved in HMGB1-induced osteoblast migration.
Collapse
|
40
|
Zhang H, Liu Z, Liu S. HMGB1 induced inflammatory effect is blocked by CRISPLD2 via MiR155 in hepatic fibrogenesis. Mol Immunol 2016; 69:1-6. [DOI: 10.1016/j.molimm.2015.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022]
|
41
|
Wei SZ, Luo SQ, Wang J, Wang JB, Li RS, Zhang XM, Guo YL, Chen C, Ma X, Chen Z, Liu HH, Yang ZR, Li JY, Wang RL, Zhang YM, Yang HY, Xiao XH, Zhao YL. San-Cao Granule (三草颗粒) Ameliorates Hepatic Fibrosis through High Mobility Group Box-1 Protein/Smad Signaling Pathway. Chin J Integr Med 2015; 24:502-511. [PMID: 26688180 DOI: 10.1007/s11655-015-2127-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2015] [Indexed: 01/13/2023]
|
42
|
Wang W, Yan M, Ji Q, Lu J, Ji Y, Ji J. Suberoylanilide hydroxamic acid suppresses hepatic stellate cells activation by HMGB1 dependent reduction of NF-κB1. PeerJ 2015; 3:e1362. [PMID: 26557438 PMCID: PMC4636417 DOI: 10.7717/peerj.1362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/08/2015] [Indexed: 01/20/2023] Open
Abstract
Hepatic stellate cells (HSCs) activation is essential to the pathogenesis of liver fibrosis. Exploring drugs targeting HSC activation is a promising anti-fibrotic strategy. In the present study, we found suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, prominently suppressed the activation phenotype of a human hepatic stellate cell line—LX2. The production of collagen type I and α-smooth muscle actin (α-SMA) as well as the proliferation and migration of LX2 cells were significantly reduced by SAHA treatment. To determine the molecular mechanisms underlying this suppression, genome wild gene regulation by SAHA was determined by Affymetrix 1.0 human cDNA array. Upon SAHA treatment, the abundance of 331 genes was up-regulated and 173 genes was down-regulated in LX2 cells. Bioinformatic analyses of these altered genes highlighted the high mobility group box 1 (HMGB1) pathway was one of the most relevant pathways that contributed to SAHA induced suppression of HSCs activation. Further studies demonstrated the increased acetylation of intracellular HMGB1 in SAHA treated HSCs, and this increasing is most likely to be responsible for SAHA induced down-regulation of nuclear factor kappa B1 (NF-κB1) and is one of the main underlying mechanisms for the therapeutic effect of SAHA for liver fibrosis.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Pathology, Medical School of Nantong University , Nantong , China ; Department of Pathology, Traditional Chinese Medicine Hospital of Jiangyin City , Jiangyin , China
| | - Min Yan
- Department of Pathology, Medical School of Nantong University , Nantong , China
| | - Qiuhong Ji
- Neurology Department, Affiliated Hospital of Nantong University , Nantong , China
| | - Jinbiao Lu
- Department of Pathology, Medical School of Nantong University , Nantong , China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration, Nantong University , Nantong , China
| | - Juling Ji
- Department of Pathology, Medical School of Nantong University , Nantong , China
| |
Collapse
|
43
|
Abstract
Sepsis is a state of disrupted inflammatory homeostasis that is initiated by infection. High mobility group box 1 (HMGB1) protein acting as a late mediator of severe vascular inflammatory conditions, such as sepsis and endothelial cell protein C receptor (EPCR), is involved in vascular inflammation. Fisetin, an active compound from the family Fabaceae, was reported to have antiviral, neuroprotective, and anti-inflammatory activities. Here, we determined the anti-septic effects of fisetin on HMGB1-mediated inflammatory responses and on the shedding of EPCR in vitro and in vivo, for the first time. First, we monitored the effects of post-treatment fisetin on lipopolysaccharide (LPS) and cecal ligation and puncture (CLP)-mediated release of HMGB1 and HMGB1-mediated regulation of pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and septic mice. Post-treatment fisetin was found to suppress LPS-mediated release of HMGB1 and HMGB1-mediated cytoskeletal rearrangements. Fisetin also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in septic mice. Fisetin induced potent inhibition of phorbol-12-myristate 13-acetate (PMA) and CLP-induced EPCR. Fisetin also inhibited the expression and activity of tumor necrosis factor-α converting enzyme, induced by PMA in endothelial cells. In addition, fisetin inhibited the production of tumor necrosis factor-α and the activation of AKT, nuclear factor-κB, and extracellular regulated kinases 1/2 by HMGB1 in HUVECs. Fisetin also down-regulated CLP-induced release of HMGB1, production of interleukin 1β, and reduced septic mortality. Collectively, these results suggest that fisetin may be a candidate therapeutic agent for the treatment of vascular inflammatory diseases via inhibition of the HMGB1 signaling pathway.
Collapse
|
44
|
Lee W, Ku SK, Park EJ, Na DH, Kim KM, Bae JS. Exendin-4 inhibits HMGB1-induced inflammatory responses in HUVECs and in murine polymicrobial sepsis. Inflammation 2015; 37:1876-88. [PMID: 24826914 DOI: 10.1007/s10753-014-9919-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exendin-4 (EX4) has been reported to attenuate myocardial ischemia and reperfusion (I/R) injury and inflammatory and oxidative responses. Nuclear DNA-binding protein high-mobility group box 1 (HMGB1) protein acts as a late mediator of severe vascular inflammatory conditions. However, the effect of EX4 on HMGB1-induced inflammatory response has not been studied. First, we accessed this question by monitoring the effects of posttreatment EX4 on lipopolysaccharide (LPS) and cecal ligation and puncture (CLP)-mediated release of HMGB1 and HMGB1-mediated regulation of proinflammatory responses in human umbilical vein endothelial cells (HUVECs) and septic mice. Posttreatment EX4 was found to suppress LPS-mediated release of HMGB1 and inhibited HMGB1-mediated hyperpermeability and leukocyte migration in septic mice. EX4 also induced downregulation of CLP-induced release of HMGB1, production of IL-6, and mortality. Collectively, these results suggest that EX4 may be regarded as a candidate therapeutic agent for treatment of vascular inflammatory diseases via inhibition of the HMGB1 signaling pathway.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
45
|
HMGB1-Induced Cross Talk between PTEN and miRs 221/222 in Thyroid Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:512027. [PMID: 26106610 PMCID: PMC4461734 DOI: 10.1155/2015/512027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 01/14/2023]
Abstract
High mobility group box 1 (HMGB1) is an ubiquitous protein that plays different roles in the nucleus, cytoplasm, and extracellular space. It is an important DAMP molecule that allows communication between damaged or tumor cells and the immune system. Tumor cells exploit HMGB1's ability to activate intracellular pathways that lead to cell growth and migration. Papillary thyroid cancer is a well-differentiated tumor and is often used to study relationships between cells and the inflammatory microenvironment as the latter is characterized by high levels of inflammatory cells and cytokines. Anaplastic thyroid cancer is one of the most lethal human cancers in which many microRNAs and tumor suppressor genes are deregulated. Upregulation of microRNAs 221 and 222 has been shown to induce the malignant phenotype in many human cancers via inhibition of PTEN expression. In this study we suggest that extracellular HMGB1 interaction with RAGE enhances expression of oncogenic cluster miR221/222 that in turn inhibits tumor suppressor gene PTEN in two cell lines derived from human thyroid anaplastic and papillary cancers.
The newly identified pathway HMGB1/RAGE/miR221/222 may represent an effective way of tumor escape from immune surveillance that could be used to develop new therapeutic strategies against anaplastic tumors.
Collapse
|
46
|
Duval F, Moreno-Cuevas JE, González-Garza MT, Maldonado-Bernal C, Cruz-Vega DE. Liver fibrosis and mechanisms of the protective action of medicinal plants targeting inflammation and the immune response. Int J Inflam 2015; 2015:943497. [PMID: 25954568 PMCID: PMC4411506 DOI: 10.1155/2015/943497] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/29/2014] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a central feature of liver fibrosis as suggested by its role in the activation of hepatic stellate cells leading to extracellular matrix deposition. During liver injury, inflammatory cells are recruited in the injurious site through chemokines attraction. Thus, inflammation could be a target to reduce liver fibrosis. The pandemic trend of obesity, combined with the high incidence of alcohol intake and viral hepatitis infections, highlights the urgent need to find accessible antifibrotic therapies. Medicinal plants are achieving popularity as antifibrotic agents, supported by their safety, cost-effectiveness, and versatility. The aim of this review is to describe the role of inflammation and the immune response in the pathogenesis of liver fibrosis and detail the mechanisms of inhibition of both events by medicinal plants in order to reduce liver fibrosis.
Collapse
Affiliation(s)
- Florent Duval
- Catedra de Terapia Celular, Escuela de Medicina, Tecnológico de Monterrey, Avenida Morones Prieto 3000 Pte., 64710 Monterrey, NL, Mexico
| | - Jorge E. Moreno-Cuevas
- Catedra de Terapia Celular, Escuela de Medicina, Tecnológico de Monterrey, Avenida Morones Prieto 3000 Pte., 64710 Monterrey, NL, Mexico
| | - María Teresa González-Garza
- Catedra de Terapia Celular, Escuela de Medicina, Tecnológico de Monterrey, Avenida Morones Prieto 3000 Pte., 64710 Monterrey, NL, Mexico
| | - Carmen Maldonado-Bernal
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Calle Dr. Márquez 162, 06720 Ciudad de México, DF, Mexico
| | - Delia Elva Cruz-Vega
- Catedra de Terapia Celular, Escuela de Medicina, Tecnológico de Monterrey, Avenida Morones Prieto 3000 Pte., 64710 Monterrey, NL, Mexico
| |
Collapse
|
47
|
Zabini D, Crnkovic S, Xu H, Tscherner M, Ghanim B, Klepetko W, Olschewski A, Kwapiszewska G, Marsh LM. High-mobility group box-1 induces vascular remodelling processes via c-Jun activation. J Cell Mol Med 2015; 19:1151-61. [PMID: 25726846 PMCID: PMC4420616 DOI: 10.1111/jcmm.12519] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022] Open
Abstract
Extracellular high-mobility group box-1 (HMGB1) acts as a signalling molecule during inflammation, cell differentiation and angiogenesis. Increased abundance of HMGB1 is associated with several pathological disorders such as cancer, asthma and chronic obstructive pulmonary disease (COPD). In this study, we investigated the relevance of HMGB1 in the pathological remodelling present in patients with idiopathic pulmonary arterial hypertension (IPAH) and pulmonary hypertension (PH) associated with COPD. Remodelled vessels present in COPD with PH and IPAH lung samples were often surrounded by HMGB1-positive cells. Increased HMGB1 serum levels were detected in both patient populations compared to control samples. The effects of physiological HMGB1 concentrations were then examined on cellular responses in vitro. HMGB1 enhanced proliferation of pulmonary arterial smooth muscle cells (PASMC) and primary human arterial endothelial cells (PAEC). HMGB1 stimulated p38, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) phosphorylation. Furthermore, activation of the downstream AP-1 complex proteins c-Fos and c-Jun was observed. Silencing of c-Jun ablated the HMGB1-induced proliferation in PASMC. Thus, an inflammatory component such as HMGB1 can contribute to PASMC and PAEC proliferation and therefore potentially to vascular remodelling and PH pathogenesis.
Collapse
Affiliation(s)
- Diana Zabini
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
49
|
Lee W, Ku SK, Jeong TC, Lee S, Bae JS. Ginsenosides Inhibit HMGB1-induced Inflammatory Responses in HUVECs and in Murine Polymicrobial Sepsis. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.10.2955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Martín-Vílchez S, Rodríguez-Muñoz Y, López-Rodríguez R, Hernández-Bartolomé Á, Borque-Iñurrita MJ, Molina-Jiménez F, García-Buey L, Moreno-Otero R, Sanz-Cameno P. Inhibition of tyrosine kinase receptor Tie2 reverts HCV-induced hepatic stellate cell activation. PLoS One 2014; 9:e106958. [PMID: 25302785 PMCID: PMC4193738 DOI: 10.1371/journal.pone.0106958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/12/2014] [Indexed: 01/18/2023] Open
Abstract
Background Hepatitis C virus (HCV) infection is a major cause of chronic liver disease (CLD) and is frequently linked to intrahepatic microvascular disorders. Activation of hepatic stellate cells (HSC) is a central event in liver damage, due to their contribution to hepatic renewal and to the development of fibrosis and hepatocarcinoma. During the progression of CLDs, HSC attempt to restore injured tissue by stimulating repair processes, such as fibrosis and angiogenesis. Because HSC express the key vascular receptor Tie2, among other angiogenic receptors and mediators, we analyzed its involvement in the development of CLD. Methods Tie2 expression was monitored in HSC cultures that were exposed to media from HCV-expressing cells (replicons). The effects of Tie2 blockade on HSC activation by either neutralizing antibody or specific signaling inhibitors were also examined. Results Media from HCV-replicons enhanced HSC activation and invasion and upregulated Tie2 expression. Notably, the blockade of Tie2 receptor (by a specific neutralizing antibody) or signaling (by selective AKT and MAPK inhibitors) significantly reduced alpha-smooth muscle actin (α-SMA) expression and the invasive potential of HCV-conditioned HSC. Conclusions These findings ascribe a novel profibrogenic function to Tie2 receptor in the progression of chronic hepatitis C, highlighting the significance of its dysregulation in the evolution of CLDs and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Samuel Martín-Vílchez
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Yolanda Rodríguez-Muñoz
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rosario López-Rodríguez
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ángel Hernández-Bartolomé
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - María Jesús Borque-Iñurrita
- Unidad de Biología Molecular, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Francisca Molina-Jiménez
- Unidad de Biología Molecular, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Luisa García-Buey
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ricardo Moreno-Otero
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Paloma Sanz-Cameno
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- * E-mail:
| |
Collapse
|